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SELF-CONSISTENT CALCULATIONS OF WORK FUNCTION, SHOTTKY
BARRIER HEIGHTS AND SURFACE ENERGY OF METAL NANOFILMS

IN DIELECTRIC CONFINEMENT

We suggest a method for the self-consistent calculations of characteristics of metal films in
dielectric environment. Within a modified Kohn-Sham method and stabilized jellium model, the
most interesting case of asymmetric metal-dielectric sandwiches is considered, for which di-
electric media are different from the two sides of the film. As an example, we focus on Na, Al
and Pb. We calculate the spectrum, electron work function, and surface energy of polycrystal-
line and crystalline films placed into passive isolators. We find that a dielectric environment
generally leads to the decrease of both the electron work function and surface energy. It is
revealed that the change of the work function is determined only by the average of dielectric
constants from both sides of the film. We introduced the position of a conductivity band in the
dielectric as a parameter in the self-consistency procedure and performed calculations, using

image potential, for the aluminum film with ideal interfaces vacuum/Al(111)/SiO 2 ,

vacuum/Al(111)/AlO and sandwiches SiO/Al(111)/AlO. As a result, effective potential pro-
files and the Schottky barrier heights were calculated.

Keywords: metal nanofilm, dielectric, work function, surface energy, Schottky barrier
height.

1. INTRODUCTION

Thin metal films and flat islands on semiconductor or
dielectric substrates can be considered as two-dimensional
electron systems with properties, which are of interest both
from the fundamental point of view and from the perspective
of their application in nanoscale electronic devices.

There are a limited number of experimental works focused
on quantum size effects in such systems (for reviews, see
[1–9]) due to difficulties in sample fabrication, as well as
because of lack of suitable experimental methods. One of
the most important characteristics of metal nanostructures
is electron work function.

As a rule, calculations of electron work functions for
films are performed for the idealized case of films in vacuum.
Similarly to clusters, this quantity defines an ionization
potential. There are different methods, which enable one to
calculate electron structure of slabs (in vacuum) consisting
of few monoatomic layers (ML). Let us combine them into
three groups according to the complexity of computations:

© Babich A. V., Pogosov V. V., Vakula P. V., 2013

I – the Sommerfeld electrons in-a-box model (analytical
calculations, slabs and wires) [10–15]; II – self-consistent
calculations within various versions of jellium model (slabs
and wires) [16–20]; III – ab initio calculations (slabs) [21–
24]. The obtained results are illustrated in Fig. 1 for all these
three groups. An important ingredient of approaches within
group III is the monolayer number in the film (see dots in
Fig. 1). For groups I and II, L changes continuously.

In group I, the Fermi energy (kinetic energy) Fε ( )L  is
counted from the flat bottom of conductivity band, while
the work function )(LW  is counted from the vacuum level.
Therefore, their size dependencies are «asymmetric». In
addition to quantum oscillations, these quantities contain
monotonic size contributions, which, at small film
thicknesses, together show up through inequalities

0<)(<0 WLW  and F Fε ( ) > ε > 0L , where 0W  and Fε
correspond to the three dimensional (3D) metal (allowing
for the energy counting for Fε ).
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.

Fig. 1. Illustration of the computation results for groups I, II
and III (data for group I are deduced from [12])

In [25, 26], an asymptotic behavior of electron chemical
potential for spherical clusters of radius R was determined,
from which it follows that

,<=)( 0
1

0 W
R
cWRW − (1)

where 1 02,5ec V a= ⋅  for simple metals, )/(= 22
0 mea = . It is

expectable that such a monotonic contribution must appear
for films also. However, in contrast to the case of group I,
self-consistent calculations of groups II and III (see Fig. 1),
at small film thickness, point out to the suppression of
monotonic dependence (having an asymptotic (1)) by
corrections of higher orders of smallness. For instance,

compensation of terms 2
21 // LcLc +−  occurs at 12

* /= ccL ,

and *L  is large, provided 2 1 > 0c c>> .
Experimental results also do not allow to draw unambiguous

conclusions on the character of monotonic component of
)(LW : in experiments [3], it is absent (Yb films on Si substrate),

while, according to [2, 5], it coincides with the one of group I.
Note that the comparison of a measured work function for the
sandwich consisting of Ag film on Fe(100) in [2, 5] with
calculated results for slabs in vacuum is rather relative.

If the film placed on the substrate is considered, in order
to determine characteristics of contacts in the easiest case, it
is necessary to know the dielectric constant κ  as well as the
position of conductivity band −χ  (χ is the electron affinity)
in dielectric material. The approximation = 0χ  was widely
used to the work function, polarizability and surface plasmon
resonance of jellium spheres and wires embedded in different
dielectric matrices (see [19, 27–29] and references therein).

The aim of this work is to compute energy characteristics
of metal films in dielectrics. We suggest a method for self-
consistent calculations of equilibrium profiles of electron
concentration, effective potential, energy spectrum, and
integral characteristics of metal films in dielectrics and
dielectric substrates. The developed method is based on a
stabilized jellium model [30] and lcal density approximation
for exchange-correlation potential [31], which were used by
us before [32] to analyze characteristics of semi-infinite metal

with dielectric coating. For our problem, in the spirit of Serena
et al. [33], we introduce the nonlocal potential matched at
the image-plane positions to the local exchange-correlation
potential. We also introduce the position of a conductivity
band in the dielectric as a parameter in the self-consistency
procedure and performed calculations the effective potential
profiles and the Schottky barrier heights for the vacuum/
Al(111)/SiO2, vacuum/Al(111)/Al 2O3 and sandwich
SiO 2 /Al(111)/Al 2O3.

This paper is organized as follows. In Section II, we
formulate our model. In Section III, we presents our main
results and provide a discussion of them. We conclude in
Section IV.

2. MODEL
Let us consider a metallic film of thickness L at zero

temperature. We direct z -axis perpendicularly to the film
surface (Fig. 2 (a), LΛ >> ).

Principal identities for the film can be obtained within a
model of a rectangular well for conduction electrons. To
perform a preliminary analysis, we suppose that the bottom
of the potential well is flat and we count energies starting
from its value. Final expression for the kinetic energies of
conduction electrons depends only on energy differences;
therefore, energies counting in such a way is allowed.
.

Fig. 2. (a) – Scheme of the film in dielectric environment; (b)
and (c) – split semi-infinite metal samples, which have been in
contact with dielectrics before the splitting. Split parts form a

sandwich in figure 2 (a)
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We study a film of thickness L comparable in magnitude
to the Fermi wavelength F Fλ = 2π / k  of an electron in 3D
metal. The longitudinal sizes of the sample are assumed to
be considerably larger than the film thickness ( ,x yL L L= ),
which leads to the pronounced quantization of the
transverse component of the electron momentum. The three-
dimensional Schrodinger equation for a quantum box can
be separated into one-dimensional equations.

The eigenenergies are given by

||

2
|| 2 2 2

||ε = ε , = ,
2ik i x y

k
k k k+ + (2)

where εi  is the eigenvalue of the i-th perpendicular state ψ ( )i z
(hereafter the Hartree atomic units are used: = = = 1m e= ).
The eigenvalue εi  is the bottom of the i-th subband. For finite
and periodic systems in the z-direction Dirichlet and periodic
boundary conditions are used, respectively. Therefore,
possible allowed electron states zyx kkk ,,   form a system of
parallel planes in the  k-space, iz kk ≡ .

Occupation of electron states starts from the point

{ }10,0, k  and follows an increase of radius-vector. As a
result, it turns out that all the occupied states are contained
within the area of k-space, confined between the plane

1= kkz  and semi-sphere of radius F F= 2εk (see Fig. 3).
The number of states dZ in each of the circles, formed

by the intersection of Fermi semi-sphere with planes iz kk =
of area yxLLS = , within the interval of wave vectors

|| || ||( , )k k dk+  and taking into account both possible spin

projections, is 2 2
|| ||( ) = 2 (π ) / (2π)dZ k Sd k . The maximum

value of ||k  in each circle numbered by i , is equal to the circle

radius 1/222
F)(F )(= ii kkk − . In order to find the number of

the occupied states, which coincides with the number of
valence electrons N  in the film, one should integrate dZ
over ||k  in each circle, and then sum up contributions of all
the circles:

Fig. 3. Scheme for the occupation of electronic states in the k
space

F( )F F2 2
|| || F F

=1 =10
= = .
π 2π

ki ii

i
i i

S SN dk k i k k
⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑ ∑∫ (3)

Taking into account an expression for electron kinetic

energy 2 21 ( )
2 ik k+& , the total kinetic energy of electron

subsystem equals

( )
2F( )F F F( )2 2 2 2

s || || || F( )
=1 =10

= = ,
2π 4π 2

ki ii
i

i i i
i i

kS ST dk k k k k k
⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑∫  (4)

where Fi  is the number of the last occupied or partially
occupied subband.

In the frame of density-functional theory and stabilized
jellium model (SJ), the total energy of metal sample is
represented by the functional of nonhomogeneous electron
concentration )(rn :

SJ s H p M[ ( )] = ,xc sE n r T E E E E+ + + + (5)

where sT  is the (non-interacting) electron kinetic energy,,
xcE  is the exchange-correlation energy, HE  is the Hartree

(electrostatic) energy, psE  is the pseudopotential (Ashcroft)
correction, and ME  is the Madelung energy. The sum of
first three terms in expression (5) corresponds to the energy
of «ordinary» jellium, JE . The average energy per valence
electron in the bulk of metal is SJ,J SJ,Jε = [ ] /E n N , where N
is a total number of free electrons of concentration n , defined
by valence and atomic density.

The positive (ionic) charge distribution can be modeled
by the step function

ρ( ) = ( / 2 | |).z n L zθ − (6)

 Solving the Kohn-Sham equations

( ) ( ) ( ) ( )2
eff

1 ψ , ψ = ε ψ ,
2 i i i iz v z n z z z− ∇ + ⎡ ⎤⎣ ⎦ (7)

eff c face[ , ( )] = ( ) ( ) δ θ( / 2 | |)xv z n z z v z v L zφ + + −  (8)

together with the Poisson equation

[ ]2 4π( ) = ( ) ρ( ) ,
κ( )

z n z z
z

∇ φ − − (9)

with the step function

l

r

1; < / 2, / 2 < < / 2, > / 2,
( ) κ ; / 2 < < / 2,

κ ; / 2 < < / 2,

z L z L z
z z L

L z

−Λ − Λ⎧
⎪= − Λ −⎨
⎪ Λ⎩

κ  (10)

we obtain the single electron wave function and the
eigenvalue εi self-consistently..
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It is generally believed that the more «physical» potential,
the better the result of computations for the location of the
Fermi energy (as the eigenvalue of the highest occupied state).
One of the limitations of the method of effective potentials in
LDA is its failure in reproducing a correct behavior of image
potentials outside metal surfaces (see [34] and references
therein). Therefore, for our problem, in the spirit of the work

[33], we introduce the nonlocal potential NL ( )xcv z  matched at
the image-plane positions to the local exchange-correlation

potential LD ( ) = [ ( )ε ( )] / ( )xc xcv z d n z z dn z :

NL,l l
c

LD l r
xc c

NL,r r

( ), ,

( ) ( ), ,

( ), ,

x

x

xc

v z z Z

v z v z Z z Z

v z z Z

⎧ ≤
⎪⎪= ≤ ≤⎨
⎪

≥⎪⎩

(11)

 where l
0

l /2= zLZ −− , r
0

r /2= zLZ + , and the image-

plane positions ( l,r
0 > 0z ) are counted from the left and right

sides of film surfaces,

l( )/l lNL,l l l
x l

l

1 [1 ( ) / (4λ )]
= χ ,

4κ ( )

z Z

c
z Z e

v
z Z

− λ
− − −

− +
−

(12)

r( )/λr rNL,r r r
c r

r

1 [1 ( ) / (4λ )]
= χ .

4κ ( )

z Z

x
z Z e

v
z Z

− −
− + −

− −
−

 (13)

 For instance, far from the surface, (13) has a correct
asymptotic behavior r r 1

r{ χ [4ε ( )] }z Z −− − − , which is an
image potential. From the condition of matching of potential
(11) as well as its first derivatives in the image planes from
left and right sides, we obtain simple relations:

l,r LD l,r l,r
l,r c

3λ = ,
16κ [ ( ) χ ]xv Z

−
+

LD
l,r=

l,rLD l,r l,r 2
c

| v ( ) / | 16= κ .
9[ ( ) χ ]

xc z Z

x

d z dz

v Z +
(14)

The second relation in (14) is treated as an equation for
rz ,l

0 . The values of  at the left and right sides out of the film
are calculated self-consistently by solving at every iteration
the Kohn-Sham equations. In this way the effective potential
is matched self-consistently to its image-potential-like form
at large distances. The result of the work [33] for the semi-
infinite metal is reproduced κ = 1 and χ = 0.

The term fδv ace〈 〉  in (8), which makes it possible to
distinguish different crystal faces, represents the difference
between the potential of the ionic lattice and the electrostatic
potential of the positively charged background averaged
over the Wigner-Seitz cell:

2 JM
f W W

εε πδv = δv , δv = ,
3 6ace S S

dn d n
dn

⎛ ⎞〈 〉 〈 〉 − + 〈 〉 −⎜ ⎟
⎝ ⎠

where d is the distance between the atomic planes parallel
to the surface. The term Wδv S〈 〉  describes a polycrystalline
sample [30]. In equation (10) lε  and rε  are dielectric constants
of isolators from the left and right side of the film, respectively.

The electron density profile )(zn  is expressed through
the wave functions ψ ( )i z

2F 2
F( ) 2

=1

ψ ( )1( ) = .
2π ψ ( )

i
i

i
i i

z
n z k

dz z
+∞
−∞

∑
∫

(15)

Values of Fi  and Fε  are determined by the solution of the
equation

F
F F F F

=1
π ε ε = 0; = 1,2, , ; ε ε ,

i

i i
i

Ln i i i+ − ≤∑ …  (16)

which follows from the normalization condition (3) and
definition of the Fermi energy. In this equation, the
integration over k& is already performed and therefore the
summation is made only over the subband number.

In nanofilms, the spatial oscillation of a electronic density
is significant throughout the sample. Therefore, energies
are counted from the vacuum level, which is the energy of
the electron in rest in the area | | / 2z >> Λ . For bound states,
energies are negative, including Fε .

We use iterative procedure (see Appendix) allowing us
to solve self-consistently the system of equations (7), (9),
(15) and to find optimal profiles )(zn , φ( )z , as well as
spectrum of one-particle energies. As a result, metal/vacuum
and metal/dielectric work functions are defined in the form

F= ε ,W − (17)

l,r l,r l,r
Fd = ε (κ,χ ) χ .W − − (18)

 There are two situations, when l,r
F| ε |> χ  and l,rχ≤ .

The value dW  is the Schottky barrier height.
Let us consider a scheme for the surface energy

determination (see figure 2 (b) and (c)) for the film of
thickness L in a dielectric environment.

First, we take a semi-infinite metal (Me ∞ ) covered by a
dielectric ( rκ ). Let us denote the energy of such a sample as

r{Me | κ }E ∞ . We now split the sample and move the parts,
as shown in Fig. 2 (b). As a result, two new surfaces of the
same area S are formed, which are in a contact with the
vacuum ( = 1κ ). We denote the energies of these two parts
as {Me |1}E ∞  and /2 r{1 | Me | κ }LE , while the irreversible
work A, which is needed to form them, as

/2 r r{M |1} {1 | M | κ } {M | κ }.LE e E e E e∞ ∞+ − (19)
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 Let us stress that, as a result of these manipulations,
the «fabricated» sandwich represents a film of thickness

dL ≥/2  on the dielectric substrate in vacuum (air).
Similar manipulations with another sample (Fig. 2 (c))

require a work

l /2 l{1 | Me } {κ | Me |1} {κ | Me }.LE E E∞ ∞+ − (20)

Next, a simplifying step is taken in separating the total
energy of the system into bulk and surface contributions,
assuming that the former is the same for a thin film as for a
semi-infinite film (see, for example, [18])

.= sb EEE +

Then, bulk components bE  do compensate in the
expressions (19) and (20). In each case considered above,
the specific surface energy γ equals SA/2 . When the width
of the film tends to infinity, the term sE  for the slab
approaches the surface components of the semi-infinite
system.

The work needed to «create» a film on a dielectric is

s
/2 /2

1{ | Me |1} = [ {κ | Me |1}
2L LA E +κ

s s{1 | Me } {κ | Me }].E E∞ ∞+ − (21)

Now, we join two sandwiches by their free surfaces. We
obtain a film shown in Fig. 2 (a). The work to create it can be
represented as the energy of adhesion of such two pieces
with the minus sign

s
l r l r

1{κ | Me | κ } = [ {κ | Me | κ }
2L LA E −

s s
l /2 /2 r{κ | Me |1} {1 | Me | κ }].L LE E− −  (22)

Electron density profiles and potentials for each of the
contributions in the expressions (21) and (22) are different,
so that they must be calculated self-consistently and
separately.

As similar to the definition for the semi-infinite metal [35,
32], sE  for the film is determined by the difference between
the total film energy (5) and the energy of homogeneous
metal (stabilized jellium) of the same volume:

s
l r SJ SJ{κ | Me | κ } = ( ) ε =LE E L SLn−

/2

J face
/2

= 2 γ δv [ ( ) ] .
L

L
S dz n z n

−

⎧ ⎫⎪ ⎪+ 〈 〉 −⎨ ⎬
⎪ ⎪⎩ ⎭

∫ (23)

By using equation (4), quantum-mechanical definition
of an energy

2 2= ψ ( ) ψ ( ),i i ik dz z z
∞

−∞

− ∇∫

as well as the definition given by equation (23), we obtain
an expression for the first component of Jγ :

F 2 2 2
s F( ) F( ) s

=1

1 1 1γ = ψ ( ) ψ ( ) ,
8π 2 2

i

i i i i
i

k k dz z z Lnt
∞

−∞

⎛ ⎞
− ∇ −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∫  (24)

where /103= 2
Fs kt  is the kinetic energy per 1 electron for

bulk. The remaining components are

1 1γ = ( )ε [ ( )] ε ( );
2 2xc xc xcdzn z n z Ln n

∞

−∞

−∫ (25)

[ ]H
1γ = φ( ) ( ) ρ( ) .
4

dz z n z z
∞

−∞

−∫ (26)

For asymmetric sandwiches, l r{κ | Me | κ }L , due to the
formal division on the doubled area, the surface energy is
calculated «in average». This is the consequence of the
definition of γ  through the integral of tangential component
of pressure tensor over z from ∞−  to ∞+ . The pressure
tensor contains the nonelectrostatic part and the Maxwell
stress tensor (see, for example, [36]).

3. RESULTS AND DISCUSSION

We perform calculations for both polycrystalline and
crystalline films made of Na, Al and Pb, with electron
concentration 3= 3 / 4π sn r  with corresponding electron
parameter = 3,99sr ; 2,07 and 2,30 0a . The minimal thickness
of «crystalline» sandwiches should be not less than d2 . It
must be equal to d4  for l r{ε | M | ε }e , only in the case Eq.
(22) is used. d is comparable to Fλ / 2 ( Fλ = 13,06, 6,78 and
7,53  for Na, Al and Pb, respectively).

Let us firstly perform calculations: (i) taking into account
formulas (11)–(14), in which it is formally assumed that χ = 0

and LD
xc xcv v≡ ; (ii) using (11)–(14) and χ 0≠ .

(i) For symmetric sandwich the effect of a dielectric
coating on the surfaces is reduced to the «elongation» of
the electron distribution tail and the effective potential
beyond the surface of a metal (polycrystalline films {1 | Al |1}
and {3 | Al | 3} on Fig. 4). The calculations were performed
for κ = 1, ,12… . Inside the film one can see the Friedel
oscillations of electron density with peaks near geometrical
boundaries. The period of oscillations is close to Fλ / 2
and only weakly depends on the presence of dielectric
coatings. The situation is similar for Na and Pb films.

At the boundaries between the metal film and the
coatings, there are jumps in the derivative of the electrostatic
potential ( )z′φ , which disappear, provided the dielectric
constants of the coatings are equal to 1. These jumps are
due to the boundary conditions (28) at /2= Lz ± . The jumps
are also reflected on eff ( )v z  profile, since ( )zφ  is one of its
components. In addition, at the borders, there are another
jumps of not only the derivative eff '( )v z , but also of eff ( )v z
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Fig. 4. The results of self-consistent calculations of the profiles
of the one-electron effective potential e ( )ffv z , and the

electrostatic potential ( )zφ  for sandwiches: {1 | Al |1},
{1 | Al | 5}  and {3 | Al | 3}  with F= 2λL

Within the rectangular-box model, in contrast to the SJ
model, Fε ( )L  is always located above one for 3D metal.
Amplitudes of oscillations decrease as L increases. Within
both models, maximum Fermi energies (minimum work
functions (17)) correspond to the points, in which curves of
eigenenergies intersect Fermi energies. Within the SJ model,
in contrast to the rectangular-box model, minimum Fermi
energies correspond to the points, in which Fermi energy is
located between two nearest eigenenergies (magic film
thicknesses similar to magic numbers in clusters).

Asymmetric sandwiches l r{ | Me | }κ κ  and {1 | M | }e κ ,
which contacts the air or vacuum, are of particular interest
from the viewpoint of experimental investigation due to the
perspective of their use in technological applications (see,
for example, [5]).

Let us consider both electron density and potential profiles
for the polycrystalline film {1 | Al | 5}. Presence of a dielectric
at the right side of the film leads to the asymmetry of electron
distribution (see the insets in Fig. 4), so that there appears a
hump in both the electrostatic and effective potential at the
left side above the vacuum level. This should result, for
example, in the anisotropy of a field emission along the z-axis.
It is worth mentioning that bottoms of wells for sandwiches
{1 | Al | 5} and {3 | Al | 3} are essentially the same, some
difference appears only in «tails» of potential profiles.

It is of interest to compare heights of humps at
= 10;12;13,5L  and 20; 22; 23,5 0a . These thicknesses

correspond to the minimum, maximum, minimum of the
dependence )(LW  for {1 | Al | 5}. It turns out that, with the
increase of L, the hump height weakly oscillates and decays
similarly to the work function, but maxima of the hump height
corresponds to minima of the )(LW . For the values of  L, as
given above, these heights are 0,176; 0,148; 0,170 and 0,158;
0,139; 0,156 eV, respectively.

Fig. 5. Results of calculation for the energy spectrum

(subbands) and Fermi energy Fε ( )L  of the film {1 | Al |1}  by
the self-consisting method (solid lines) and in rectangular-box

model (dashed lines)

profile itself for any values of κ , including κ = 1. Such jumps
have another origin compared to the first ones. This fact is
linked to some features of the model [30], namely to the
presence of the effective potential component

faceδ ( / 2 | |)v L zθ − . These nonphysical jumps should not
be taken into account in the estimation of the effective force

eff effF ( ) ( ).z v z≡ −∇

It is seen from Fig. 4 that force orientations are opposite
at both sides of the film, so that the film in whole must be
stressed. The existence of the force should lead to the
increase of spacings between some lattice planes d, while
spacings between other planes must become narrower.

The depth of the potential well, in which the electrons
are located in metal film, decreases «in average» with
increasing ε  and, as a result, the electron work function

l,
F l,= ε (κ ,χ = 0)r

rW −  also decreases (see Fig. 5).
Film spectra {1 | Al |1}L  are presented in Fig. 5. For

comparison, in the same figure, we also provide the results
obtained within the electrons-in-a-box model with the well
depth 0 0 F= ( ε ) < 0U W− + .

It is seen from Fig. 5 that the dependence of the eigenstate
energies on the film thickness, within the SJ model, is
oscillating and decreasing. For subbands with large numbers

10,11=i , there are gaps due to the algorithm instability in
the vicinity of the vacuum level. Within the rectangular-box

model, this dependence is only decreasing. Due to smoother
edges of the self-consistent well, it contains more subbands
compared to the model of a rectangular box. Difference in
subbands numbers significantly affects calculated dielectric
function and optical conductivity of the nanofilm [14].
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In order to analyze such a behavior of potential profiles, it
is necessary to go beyond the isotropic model based on a
defined (6) distribution of homogeneous positively charged
background, i.e. one has to take into account not only the
reaction of the electron subsystem, but also the reaction of the
ion subsystem to the presence of a dielectric. Spacings between
the lattice planes are determined by the balance of forces from
the right and left sides for each plane. A simplest realization of
this idea is to disregard variations of spacings between the
lattice planes and to vary the profile of the ion jellium distribution
(6). We found that such a procedure leads to a significant
deformation of the well bottom, but does not result to
considerable changes of both the spectrum and hump height.

Figs. 6 and 7 show results of our calculations of both the
electron work function and surface energy for crystalline
sandwiches using expression (23). Horizontal lines
correspond to semiinfinite samples. In contrast to the surface
energy, size dependences )(LW  have deep and pronounced

Fig. 6. Work function for crystalline sandwiches l r{ | Me | }κ κ
and semi-infinite metal covered by a dielectric {Me | }∞ κ

(Me ≡  Na, Al, Pb), χ = 0

minima. It is easier to analyze them using a simple model
[12]. Amplitudes of largest work function «oscillations» are
smaller than 0,5 eV. By considering dependencies for
different metals, it is easy to see that all the differences are
due to values of sr . For the Al, which has the smallest sr ,
work function oscillations are maximum, while the period is
minimum. Positions of both maxima and minima depend
weakly on ε of a dielectric and slightly shift towards smaller
L  with the increase κ.

In contrast to the work function, surface energy
oscillations can be approximated by analytical dependences

( )Fs s sin 2 φ
{κ | Me | κ} = {Me | ε} ,L

k L
E E

L∞
+

+ Γ

with Γ and ϕ. Maxima of function )(LW , γ( )L  ,  correspond
to «magic» film thicknesses, which are defined by maximum
occupation of a given subband.

Fig. 7. Energy per unit of area for crystalline sandwiches

l r{ε | M | ε }e  and semi-infinite metal covered by a dielectric
{M | ε}e∞  (Me ≡  Na, Al, Pb), χ = 0
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Material He Ne Ar Kr Xe 2SiO  2 3Al O   Si 
κ  1,10 1,20 1,50 1,65 1,90 4 9 13 

χ , eV –1,0 0,10 0,20 0,45 0,68 1,1 1,35 4,05 

Table 1. The examles of simplest coating and substrates [38, 39]

We also performed computations for infinite-size systems
( ∞=L ): r

d = 2,00W  and 1,48 eV for Al/SiO2 and Al/Al2O3,
respectively. However, in these calculations, it is not taken into
account that the vacuum/metal interface exists at the left side
of the samples. Therefore, the comparison with the data of
Table 2 is not possible, since results do depend on the average
dielectric constant of two media κ〈 〉, and not only on rκ .

Our results point out that it is possible to control the
Schottky barrier by tuning the metal film thickness (in the
metal-insulator-semiconductor devices the thickness of gate
insulating film is a tool to control the current in the channel
[40]). For the evaluation of Fowler-Nordheim tunneling current
[41], it is necessary to know a spatial profile of the effective
potential, which should be added to the external electrostatic

potential ext ( )zϕ , starting from points at rZz ,l= .
Let us compare our results with experimental data. The

calculated work function for the interface Al(111)/vacuum
is 4,12 eV; the experimental one )(3.11,4.26∈  eV [42]; and
4,28 eV for polycrystalline Al [43]. Recommended χ = 3,03
and 3,3 eV in [44], corresponding for SiO2 and Al2O3 , differfer
from data in Table 1. The measured Schottky barrier height [44]
for Au/Al2O3 equals 3,5 0,1±  eV. .  Note that experimental values
of work function for Au and Al in Ref. [42] are close to each
other, while they differ by almost 1 eV, according to Ref. [43].

On the other hand, the measured Schottky barrier heights
in Ref. [45] for Al, Ag and Cu, placed on thick (by thickness 35
nm) film of Al2O3, equal 1,66; 1,72 and 1,80 eV, respectively. It
is in accordance with 1,5 eV for Al/Al2O3 [39] and the results
from Table 2. As we see, experimental data are rather diverse.

An important question is under which conditions our
approach becomes questionable. When l,r

F| ε | χ≤ , our
model does not work. In accordance with Fig. 5 and Table 1,
values d (0,4;0,75)W ∈  eV for Al/Si, Pb/Si [39] and

d (0,49;0,6)W ∈  eV for thick films of Ti ( (50,90)∈L  nm) on
the Si-substrate [46] should correspond to the regime

l,r
F| ε | χ≤ . The efficient approach in this case is the local

density formalism pseudopotential method [47, 48, 49, 50].
In our approach, it is also not possible to take into account
the role of virtual gap states and defects in metal-dielectric
contacts [51]. Nevertheless, we expect that our method
provides a correct estimate for the size dependence of

It turned out that all approaches give the same potential
well depth as well as its profile near the bottom. Dependences

( )xcv z  at the left side of the film (in vacuum) are essentially
the same according to approaches (i) and (ii), while for the
right side of the plane they differ due to the presence of the
conductivity band (χ 0≠ ) in the dielectric.

It should be noted that the use of nonlocal exchange-
correlation potential in the iterative procedure leads to the
essential disappearance of the potential hump in the
effective potential (but not in the electrostatic one), which
appears at the left side of the film, see Fig. 4.

In Table 2, we decided to present our data, which
correspond to the scheme (ii) only. In all the approaches (i)
and (ii), Fε  and surface energies differ from each other by

The unexpectable result of self-consistent calculations
is a coincidence of dependencies )(LW  for sandwiches
{1 | Me |12} and {6,5 | Me | 6,5}. Computations for
{1| Me | 5} and {3 | Me | 3} give a similar result. This means
that the electron work function for asymmetric sandwiches

l r{κ | Me | κ } coincides with high accuracy with the work
function for symmetric sandwiches { κ | Me | κ }〈 〉 〈 〉  with the

averaged value l r
1κ = (κ κ )
2

〈 〉 + .

Work function has both the bulk and surface
contributions. Because bulk metal contributions )(LW  for
sandwiches {1| Me |12}L  (like to vacuum/metal/Si) and
{6,5 | Me | 6,5}L  are the same by definition, also the same
are contributions of dipole surface barriers. We here imply
the total contribution of both sides of a sandwich, since the
work function is an «isotropic» characteristics [37].
A coincidence of work functions is most likely a geometric
effect. This feature will be addressed elsewhere.

For surface energies, such a coincidence does not exist.
It is not difficult to perform calculations according to
formulas (21) and (22), if γ are known.

The results obtained by using the developed iteration
procedure enable us to draw a conclusion about its
efficiency. Moreover, one can follow the behavior of electron
spatial profiles and potentials, as well as calculate a
spectrum. The results in χ = 0 and LDA approximation the
provide reference data for simplified treatments.

(ii) Let us apply this approach (χ 0≠ ) to study an energetics
of three samples with «ideal» interfaces: the film Al(111) on
SiO2 and on 2 3Al O , and the sandwich SiO2/Al/ 2 3Al O . For
such a structure we use values  from Table 1.  lχ = 0 and

lκ = 1 and l,rχ   for vacuum/metal interface. For illustrative
purposes, in Fig. 6 we present results of self-consistent
calculations of potential profiles.

less than 1 percent, while values of matching parameters
can be rather different: for instance, r

0 = 5,95z  and
rλ = 0,998 for ML = 1 the film Al(111) on SiO2 of the

method (i). As a result, we conclude that our manipulations
with the exchange-correlation potential did not lead to any
noticeable changes of the Fermi level position, i.e.

l,r l,r
F Fε ( κ ,χ = 0) ε ( κ ,χ 0)〈 〉 ≈ 〈 〉 ≠ .
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characteristics of films in contact with dielectrics, for which
κ and χ  are not large.

The effect of temperature was studied earlier in Ref. [26]
when determining ionization potential of metallic cluster. It
turns out that the effect is not significant at room
temperatures, as it can be expected. For the film-dielectric
contact, of importance is the ratio of rχ−  and the Fermi
energy. If these quantities are comparable, the result should
be sensitive to the system temperature.

Fig. 8. The self-consistent profiles of electrostatic, exchange-
correlation and effective potentials for the sandwiches vacuum/
Al(111)/Al2O3 and SiO2/Al(111)/Al2O3. The thickness of film

L=3ML. 1ML=4,4 0a

L , ML l
0z , 0a  

r
0z , 0a  lλ , 0a  rλ , 0a  l

dW , eV 
r

dW , eV γ , erg/cm 2  

1,05 3,35 0,977 0,706 3,43 2,33 821 
1,00 4,25 0,962 0,518 3,01 1,66 760 

 
1 

3,30 4,15 0,707 0,519 1,79 1,54 607 
0,95 2,85 0,946 0,643 3,26 2,16 755 
0,95 3,60 0,945 0,474 2,84 1,49 704 

 
2 

2,85 3,60 0,640 0,479 1,62 1,37 548 
0,85 2,60 0,921 0,606 2,94 1,84 734 
0,85 3,50 0,919 0,476 2,63 1,28 696 

 
3 

2,95 3,80 0,672 0,512 1,56 1,31 562 
0,90 3,05 0,933 0,683 3,23 2,13 779 
0,95 4,05 0,948 0,531 2,86 1,51 735 

 
4 

3,10 4,05 0,688 0,535 1,69 1,44 578 
0,90 2,95 0,932 0,661 3,23 2,13 764 
0,95 3,85 0,948 0,507 2,84 1,49 716 

 
5 

3,00 3,85 0,671 0,512 1,65 1,40 556 
0,90 2,85 0,934 0,651 3,13 2,03 751 
0,90 3,65 0,933 0,489 2,73 1,38 705 

 
6 

2,85 3,65 0,645 0,491 1,54 1,29 550 
0,90 2,95 0,934 0,669 3,17 2,07 770 
0,90 3,90 0,933 0,520 2,80 1,45 726 

 
7 

3,05 3,95 0,684 0,527 1,65 1,40 569 

Table 2. Calculated values for film Al(111) of thickness L (in monolayers) on SiO2 (upper numbers), Al2O3
 (middle numbers), and the sandwiche SiO2/Al2O3 (lower numbers)

4. SUMMARY AND CONCLUSIONS

We proposed a method for  the self-consistent
calculations of spectra, electron work function, and surface
energy of metal films placed into passive dielectrics. As
typical examples, we considered Na, Al, and Pb films.

The effective force acting on the film from the outside is
due to the inhomogeneous electron distribution. This force
should lead to film stressing in a transverse direction. The
effect of the stressing generally becomes more significant
with the increase of the film thickness.

In contrast to the surface energy, size dependencies of
work function have deep and strongly pronounced minima.
The smaller sr  the more difficult the problem of numerical
analysis of size dependencies in the vicinities of these minima.

With the increase of film thickness up to few Fλ , size
variations of both the work function and surface energy
occur near their average values (for symmetric sandwiches,
these values correspond to 3D metals and do not contain
significant monotonous size contributions). Dielectric
environment generally leads to the decrease of electron work
function and surface energy.
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We also considered asymmetric metal-dielectric sandwiches
characterized by different dielectrics at both sides of the film. One
of the examples of such systems is a film on the dielectric substrate.
We found that the presence of a dielectric from one side of the film
leads to such a «deformation» of electron distribution that there
appears a «hump» above the vacuum level both in the electrostatic
and effective potentials. The asymmetry of potential profile should
lead to an anisotropy of the field emission. In addition to size
dependencies, the shift of the work function is generally determined
by the average dielectric constants of environments.

We introduced the position of a conductivity band in
the dielectric as a parameter in the self-consistency
procedure and performed calculations for the aluminum film
on SiO 2  and Al2O3,  using a nonlocal exchange-correlation
potential. As a result, profiles of electron concentration,
effective potential, and energy spectrum were calculated.

Finally, let us formulate some methodological
conclusions:

(i) An introduction of nonlocal potential, as well as the
position of conductivity band in dielectric material does not
lead to significant changes of Fermi level of a metal film
contacting with a dielectric.

(ii) Accounting for the conductivity band in a dielectric
and self-consistency condition for the potential well shape,
one changes the spectrum (subbands number), as well as
the density of states. Therefore, matrix elements of optical
transitions are also changed, which leads to the modification
of optical absorption coefficient [14]. Equilibrium profile of
electrons and electrostatic potential is needed to calculate
the field emission of electrons as well as annihilation
characteristics of positrons in nanostructures.

We thank W. V. Pogosov for reading the manuscript.

APPENIX: SELF-CONSISTENCY PROCEDURE
The initial approximation )(zn  is chosen for solving the

Kohn-Sham equations in the form of a one-parametric trial

function )(=)((0) zfnzn , where

( /2)/λ ( /2)/λ

( /2)/λ ( /2)/λ

( /2)/λ ( /2)/λ

1 1 , < / 2,
2 2

1 11 , | |< / 2,
( ) = 2 2

1 1 , > / 2.
2 2

z L z L

z L z L

z L z L

e e z L

e e z L
f z

e e z L

− +

− − +

− + − −

⎧− + −⎪
⎪
⎪ − −⎪
⎨
⎪

− +⎪
⎪
⎪⎩

under the condition of continuity of functions
left 0 right 0ψ ( ) = ψ ( )z z , as well as of their  derivatives
left 0 right 0ψ ( ) = ψ ( )z z′ ′ . 0z  is an arbitrary point in the

interval /2]/2;[ LLz +−∈ , while leftψ ( )z  and rightψ ( )z  are
functions, which are found by a numerical solution of Eq.
(7) by the Numerov’s method from −zz =  to 0= zz  and
from +zz =  to 0= zz , respectively. It is sufficient to take
values 020)(= aLz +∓∓ .  In these points, the potential
profile eff ( )v z   is cut off. The boundary conditions (7) here
are determined by the behavior of the wave function ψ   under

the barrier from the left ( |ε |z ie ) and right ( | |z ie
− ε ) sides

from the slab ( |||| ∓zz ≥ ) respectively. Boundary
conditions provide wave function, as well as its derivative
at ∓zz = .  This peculiarity of our computations is due to
the fact that errors of the numerical method for the wave
function  rightψ ( )z  and leftψ ( )z  near the right and left
boundaries of the interval grow, since the round-off errors
also increase and lead to the instability of the algorithm
under the motion towards the exponential damping.

In order to solve the system of equations (7), (9) and (15)
self-consistently, with relatively small number of iteration
steps, the Poisson equation (9) should be modified, in
particular, by introducing a perturbation [52].

Equation (9) is solved by the Lagrange method in the
form

( ) 2 ( 1) ( ) 2 ( 1)4π= ρ
κ( )

j j j jq n q
z

− −⎡ ⎤′′φ − φ φ − − − φ⎣ ⎦  (27)

with the boundary conditions

( ) ( ) ( ) ( )
l oout i i

( ) ( ) ( ) ( )
o r oi i

( ) ( )
o o

( ) = ( ), ( ) = ( ); = / 2,

( ) = ( ), ( ) = ( ); = / 2,

( ) = 0, ( ) = 0; = .

j j j j
utn n

j j j j
ut utn n

j j
ut ut

z z z z z L

z z z z z L

z z z

′ ′φ φ κ φ φ −

′ ′φ φ φ κ φ

′φ φ ∞∓
 (28)

 The term 2q φ was introduced as a small perturbation;
out ( )zφ  and in ( )zφ  are potentials outside and inside the film,

respectively. In equation (27), at each step of the iteration
...3,2,1,=j , electrostatic potential profile depends not only

on the electronic concentration profile, but also on its own
profile at the previous iteration. It is convenient to take q
equal to electron wave number at the Fermi sphere

2 1/3
F = (3π )k n  of homogeneous electron liquid.

In view of the multimolecular thicknesses of dielectric
coatings on the metal film surfaces and rapid fall of the
electron distribution outside of a film (approximately at a
distance of 10–15 0a ), we formally neglected the effect of a
thickness of the coatings, whose minimum thicknesses must
be much greater than that of a monatomic (molecular) layer
of a dielectric. The solution of equation (27) for Λ → ∞ has
the simple form

λ is the variational parameter, which is found through the
minimization of surface energy. Solution by a direct variational
method is an independent problem, which is not addressed in
this paper (for simple metals λ is closed to 01a ). As a result of
integration of equation (9), within the initial approximation,
we obtain (0) 2( ) = 4π λ ( )z n f zφ − .

Each wave function )(zψ  is constructed as

left 0

right 0

ψ ( ), < ,
ψ( ) =

ψ ( ), > ,
z z z

z
z z z

⎧⎪
⎨
⎪⎩
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' '

1 1 1 1

' '
( )

2 2 2 2
/2 /2

' '

3 3 3

' ' , < / 2,
2 2

( ) = ' ' ,| | / 2,
2 2

' '
2 2

z zqz qz
qz qz

z zqz qz
j qz qz

L L

qz qz
qz

z z

e ef dz A e f dz B e z L
q q

e ez f dz A e f dz B e z L
q q

e ef dz A e f dz B
q q

−
−

−∞ −∞

−
−

− −

∞ ∞−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ + − + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟φ + + − + ≤
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟− + + +
⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

∫ ∫ 3 , > / 2,qze z L−

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪

⎛ ⎞⎪
⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

(29)

where 2 ( 1)( ') = 4π[ ( ') ρ( ')] ( ')j
m mf z n z z D q z−− − − φ  and

=mD  1 1
l r,1,− −κ κ  for 1,2,3=m , respectively. The choice of

values 0=1B  and 0=3A  immediately follows from the
condition of finiteness of potentials far away from the film.

Values of other coefficients A and B are found from the
solution of the system of equations (28):

/2 /2( ' ) '
2 l

1 1 1
l l

2 1= ' ',
1 1 2 2

L Lq z L qzA e eA f dz f dz
q q

− −+ −

−∞ −∞

− κ
+ −

+ κ + κ ∫ ∫

/2 '
2

3 2
r r /2

2 1= '
1 1

L qz

L

B eB f dz
q−

− +
+ κ + κ ∫

( ' ) '
r

3 3
r /2 /2

1 ' '.
1 2 2

q z L qz

L L

e ef dz f dz
q q

∞ ∞− −− κ
+ −

+ κ ∫ ∫

Let’s introduce notation

/2
'

( ) 0 1 l r 1 2 l r= 2 (1 ) ' (1 )(1 )
L

qzJ Y Y dz e f Y
−

±
−∞

⎡
κ κ + ± κ + κ ×⎢

⎢⎣
∫∓

/2
'

2 3 l r
/2

' (1 )(1 )
L

qz

L
dz e f Y−

−

× + ± κ − κ ×∫

/2
' '

2 4 r l 3
/2 /2

' 2 (1 ) ' ,
L

qz qz

L L
dz e f Y dz e f

∞
−

−

⎤
× + κ ± κ ⎥

⎥⎦
∫ ∫ (30)

where

 1
0 l r l r= {2 [(1 )(1 ) (1 )(1 ) ]}qL qLY q e e− −− κ − κ − + κ + κ .

Then )(2 = +JA  for qLeYY =1,= 2,41,3  and )(2 = −JB
for 1

312,4 ==1,= −YeYY qL .
In the case of the symmetric sandwich l r=κ κ  the

accurateness of calculations is verified by examination the
stationarity conditions 0=)(zn′  and ( )

iφ '( ) = 0i
n z  in the

center of the slab ( 0=z ).
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САМОСОГЛАСОВАННЫЕ РАСЧЕТЫ РАБОТЫ ВЫХОДА, ВЫСОТЫ БАРЬЕРА ШОТТКИ И ПОВЕРХНОСТНОЙ

ЭНЕРГИИ МАТАЛЛИЧЕСКИХ НАНОПЛЕНОК В ДИЭЛЕКТРИЧЕСКОМ ОКРУЖЕНИИ
Предложен метод самосогласованных вычислений характеристик металлической пленки в диэлектриках.  В рамках модифици-

рованного метода Кона-Шэма и модели стабильного желе рассчитан наиболее интересный (асимметричный) случай металл-
диэлектрических сандвичей: разных диэлектриков по обе стороны пленки. На примере Al и Na впервые вычислены спектр,
работа выхода электронов и поверхностная энергия поликристаллических пленок, помещенных в пассивные изоляторы. Диэлек-
трическое окружение в целом приводит к отрицательному изменению работы выхода электронов и поверхностной энергии.
Помимо размерных изменений сдвиг работы выхода определяется среднеарифметическим значением  диэлектрических констант
окружающих сред. С учетом сил изображения и зоны проводимости диэлектрика выполнены самосогласованные вычисления
профилей потенциалов, работ выхода и барьеров Шоттки для нанопленок алюминия с идеальными интерфейсами вакуум/
Al(111)/SiO2, вакуум/ Al(111)/Al2O3  и сандвича SiO2/Al(111)/Al2O3.

Ключевые слова: металлические нанопленки, диэлектрик, работа выхода, поверхностная энергия, высота барьера Шоттки.
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САМОУЗГОДЖЕНІ РОЗРАХУНКИ РОБОТИ ВИХОДУ, ВИСОТИ БАР’ЄРУ ШОТТКІ І ПОВЕРХНЕВОЇ ЕНЕРГІЇ

МЕТАЛЕВИХ НАНОПЛІВОК В ДІЕЛЕКТРИЧНОМУ ОТОЧЕННІ
Запропоновано метод самоузгоджених обчислень характеристик металевої плівки в діелектриках. В рамках модифікованого

методу Кона-Шема і моделі стабільного желе розрахований найбільш цікавий (асиметричний) випадок метал-діелектричних
сендвічів: різних діелектриків по обидві сторони плівки. На прикладі Al і Na вперше розраховані спектр, робота виходу елект-
ронів і поверхнева енергія полікристалічних плівок, поміщених в пасивні ізолятори. Діелектричне оточення в цілому призводить
до негативної зміни роботи виходу електронів і поверхневої енергії. Крім розмірних змін зсув роботи виходу визначається
середньоарифметичним значенням діелектричних констант навколишніх середовищ. З урахуванням сил зображення та зони
провідності діелектрика виконані самоузгоджені обчислення профілів потенціалів, робіт виходу і бар’єрів Шотткі для наноплі-

вок алюмінію з ідеальними інтерфейсами вакуум Al(111)/SiO 2 , вакуум/ Al(111)/AlO і сандвіча SiO/Al(111)/AlO.

Ключові слова: металеві наноплівки, діелектрик, робота виходу, поверхнева енергія, висота бар’єру Шотткі.
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