ABSTRACT

Context. A relevant problem of an approach development used to reduce system or random errors which occur during business process models design is solved. The object of the research includes graphical and mathematical models which describe business process structure.

Objective. Minimization of systematic or random errors based on the development of an approach to formation and analysis of a business process structure in IDEF0 notation.

Method. The approach to formation and analysis of a business processes structure in IDEF0 notation is proposed. Balancing coefficient, which was modified and augmented, considering weight coefficients of arcs of various types, is used for IDEF0 diagrams analysis. Cohesion types defined in the ISO/IEC/IEEE 2476 standard, which weight coefficients are calculated using their values normalization, are used to define values of arc weight coefficients.

Results. The approach to IDEF0 diagrams analysis, which allows defining structural changes of diagrams to satisfy balancing requirements, has been developed. Recommendations obtained as a result of IDEF0 diagrams analysis, which describe product purchase and software release processes, and also recommendations of DevOps concept and SCOR supply chain reference model have been used to transform the source diagrams according to the balancing requirements. Further research may consider using of expert judgments for making decisions on recommendations development.

Conclusions. The proposed approach can be used to support activities of collecting, storing, and sharing organizational knowledge allowing to analyze and improve business process models before they are added into an enterprise repository for future reuse to design new solutions. Next studies will consider various approaches to business process models representation in an enterprise repository, corresponding to Archimate, ARIS, and other notations.

KEYWORDS: business process, modeling, IDEF0 diagram, business process model analysis, balancing, cohesion.

ABBREVIATIONS

ARIS is an Architecture of Integrated Information Systems;
DFD is a Data Flow Diagram;
RUP is a Rational Unified Process;
SCOR is a Supply Chain Operations Reference.

NOMENCLATURE

Ai is a number of arcs related to the i-th block of IDEF0 diagram, $i = 1, n$;
B is an optimization criterion that represents balancing coefficient that considers weights of arcs of various types, as well as tunneled arcs usage;

D is a matrix of $n \times m$ size, which elements d_{ij} represent a number of arcs of the j-th type related to the i-th block of diagram, $i = 1, n, j = 1, m$;

ΔD is a matrix of $n \times m$ size, which elements Δd_{ij} represent changes within a number of arcs of the j-th type related to the i-th block of diagram, $i = 1, n, j = 1, m$;

ΔD_{min} is a matrix of $n \times m$ size, which elements represent lower boundaries of elements of the matrix ΔD;

ΔD_{max} is a matrix of $n \times m$ size, which elements represent upper boundaries of elements of the matrix ΔD;

K_b is a balancing coefficient.
m is a number of arc types (input, output, control, mechanism, and call), \(m = 5 \);
\(n \) is a number of blocks on the IDEF0 diagram;
\(T \) is a matrix of \(n \times (m-1) \) size, which elements \(t_{ij} \)
represent a number of tunneled arcs of the \(j \)-th type related to the \(i \)-th block of diagram, \(i = 1, n \), \(j = 1, m - 1 \);
\(w_{ij} \) is a weight coefficient of the arc of \(j \)-th type, which is related to the \(i \)-th block of diagram, \(w_{ij} \in [0,1] \), \(i = 1, n \), \(j = 1, m \);
\(\lambda \) is a tunneling coefficient, \(\lambda \in [0,1] \);
\(\mu_{jl} \) is a weight coefficient of the \(l \)-th cohesion type, \(l = 0,6 \).

INTRODUCTION

Today process approach is extremely popular management approach. It assumes considering an organization as a set of business processes that produce value for customers. Business process might be described as a set of activities that takes one or several types of resources at the “input” and produce a product that is valuable for a customer at the “output” [1].

Graphical models of business processes were widely disseminated in the modern practice of organizational management. There were developed and successfully used various notations and modeling tools intended to create business process models. This paper considers the methodology of functional modeling and graphical notation IDEF0 [2]. It is focused on the development, analysis, reengineering, and integration of information systems as well as supported business processes. Business modeling is one of the core processes of the RUP software development methodology [3, 4].

Business process modeling, including usage of the IDEF0 notation, is a subjective activity that might cause random or systematic errors related to the analyst’s individual perception, the lack of domain research, etc. At the same time, modeling tools provide only formal validation of developed diagrams especially by checking only the syntax compliance according to the certain modeling notation.

The object of study includes graphical and mathematical models that describe business process structure.

The subject of study is development of an approach to decrease a number of random or systematic errors occurred during business process modeling.

The purpose of the work is minimization of a number of systematic or random errors which are based on the development of an approach to formation and analysis of a business process structure in IDEF0 notation.

1 PROBLEM STATEMENT

The considered problem assumes business process models described using IDEF0 diagrams as the input data. IDEF0 shows logical relations between functional blocks (business processes, sub-processes, tasks) which are represented by arcs of five types: input, output, control, mechanism, and call (fig. 1). Particularly, the call arc illustrates relations between blocks (or even between parts of models) across different models and provides connection between models or different parts of the same model.

![Figure 1 - Connection of arcs to blocks on IDEF0 diagrams](image)

The earlier known balancing coefficient is used to analyze structure of IDEF0 diagrams [5, 6]:

\[K_b = \frac{1}{n} \sum_{i=1}^{n} A_i - \max_{i=1}^{n} A_i \]

However using of the balancing coefficient provides only common estimation of IDEF0 diagrams but does not allow analyzing their balancing in terms of various impacts (input, output, control, mechanism, and call) on diagram’s blocks. This might be considered as the significant shortcoming of the approach.

Hence, it’s important to develop criterion and restrictions that allow forming recommendations in order to design optimal structure of business process models using the IDEF0 notation.

2 REVIEW OF THE LITERATURE

Besides graphical business process models widely used in the modern practice of the organizational management, the well-known and powerful analytical tool has existed for a long time. Petri nets are used in the area of discrete systems research. Since business processes belong to this class of systems, it is possible to analyze those using Petri nets [7].

In order to apply modeling features of Petri nets, business process models should be transformed into the corresponding nets [8]. Earlier Petri nets were used to analyze business process models in the IDEF0 notation [9]. But analysis of business process models in the IDEF0 notation requires transformation of these models into Petri nets which causes difficulties related to the various types of IDEF0 diagrams arcs related to the diagrams blocks according to the certain rules (fig. 1).

Proper design of IDEF0 diagrams requires achieving the value of balancing coefficient which is close to 0 and decreasing when the decomposition level is increasing [5]. IDEF0 diagrams should be balanced which means that situations when numbers of arcs connected to various blocks are significantly different are not allowed [6]. These situations usually indicate errors related to the design and execution of business process [5].

Thus, balancing analysis of IDEF0 diagram should consider cohesion types of functional blocks [10, 11].

© Godlevskyi M. D., Orlovskyi D. L., Kopp A. M, 2018
DOI 10.15588/1607-3274-2018-3-6
Hence, the weight coefficients of arcs w_{ij} of the IDEF0 diagram will take various values μ_i according to the chosen cohesion type (tab. 1). This study does not consider problems related to selection and explanation of expert judgment methods (e.g., Saaty’s pairwise comparison) used to de-fine weights of cohesion types. This might be a subject of future research.

The integer matrix D represents the number of arcs of various types, which are related to the IDEF0 diagram blocks. The matrix AD represents structural changes that allow obtaining the IDEF0 diagram suitable for balancing requirements. The elements ΔD_i of this matrix are also integer values. The upper and lower boundaries of values that represent changes within numbers of arcs of various types, which related to the IDEF0 diagram blocks, are represented using matrices ΔD_{\min} and ΔD_{\max}. Moreover, there are restrictions that each IDEF0 diagram block might be connected to at least one arc of each type except call.
The following optimization problem allows obtaining required structural changes ΔD that will provide the minimum value of balancing coefficient:

$$B = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m-1} w_{ij} \cdot (d_{ij} + \Delta d_{ij} - \lambda \cdot t_{ij}) +$$

$$+ w_{im} \cdot (d_{im} + \Delta d_{im}) -$$

$$- \max_{i=1,n} \sum_{j=1}^{m-1} w_{ij} \cdot (d_{ij} + \Delta d_{ij} - \lambda \cdot t_{ij}) +$$

$$+ w_{im} \cdot (d_{im} + \Delta d_{im}) \right) \to \min_{\{\Delta d_{ij}\}}$$

$$d_{ij} + \Delta d_{ij} > 0, i = 1, n, j = 1, m,$$

$$\Delta D_{\text{min}} \leq \Delta D \leq \Delta D_{\text{max}}.$$

The optimization criterion B represents the balancing coefficient that considers weight coefficients of arcs of various types, which are related to the IDEF0 diagram blocks, as well as possibility of tunneled arcs usage. The tuning coefficient λ might be defined using the following equation:

$$\lambda = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m-1} t_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{m-1} (d_{ij} + \Delta d_{ij})}.$$

The value $\lambda = 1$ indicates that the IDEF0 diagram does not contain tunneled arcs, while value $\lambda = 0$ indicates that the IDEF0 diagram contains only tunneled arcs.

5 RESULTS

Calculated for the considered IDEF0 diagrams values $K_1 = 1$ and $K_5 = 2$ do not correspond to balancing requirements. It is necessary to define structural changes that will provide minimum values of the balancing coefficient K_b and optimization criterion B based on the solution of proposed optimization problem.

The weights μ that were calculated using the cohesion types levels (tab. 1) [10] are shown in table 2.

<table>
<thead>
<tr>
<th>μ_i</th>
<th>0</th>
<th>0,17</th>
<th>0,33</th>
<th>0,5</th>
<th>0,67</th>
<th>0,83</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{ij}</td>
<td>0</td>
<td>0,17</td>
<td>0,33</td>
<td>0,5</td>
<td>0,67</td>
<td>0,83</td>
<td>1</td>
</tr>
</tbody>
</table>

The weight coefficients of arcs w_{ij}, w_{ij} related to blocks of the considered IDEF0 diagrams were selected from the set of the obtained weights μ_i based on the considered cohesion types (tab. 1):

1) input and output arcs correspond to the sequential cohesion (they connect output of the preceding block with the input of the subsequent):

$$w_{ij}^1 = w_{ij}^2 = \mu_5 = 0,83, i = 1, n^1;$$

$$w_{ij}^3 = w_{ij}^4 = \mu_5 = 0,83, j = 1, n^2;$$

2) control arcs correspond to the procedural cohesion (they impact on the blocks of the same diagram):

$$w_{ij}^3 = \mu_3 = 0,5, i = 1, n^1; w_{ij}^2 = \mu_3 = 0,5, j = 1, n^2;$$

$$\Delta D_{\text{min}} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$
Figure 3 – Original diagram that describes software release processes

Figure 4 – Original diagram that describes product purchase processes

© Godlevskyi M. D., Orlovskiyi D. L., Kopp A. M, 2018
DOI 10.15588/1607-3274-2018-3-6
3) mechanism arcs correspond to the communicational cohesion (they are common for the blocks):

$$w^1_{4i} = \mu_4 = 0.67, \ i = 1,n^1, \ w^2_{4j} = \mu_4 = 0.67, \ j = 1,n^2;$$

4) call arcs correspond to the logical cohesion (they are related to the blocks of different model):

$$w^2_{5j} = \mu_1 = 0.17, \ j = 1,n^2.$$

As the result of optimization problem solution, the following values of balancing coefficients of the considered IDEF0 diagrams were obtained (tabl. 3).

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Description</th>
<th>Diagram 1</th>
<th>Diagram 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing coefficient K_B</td>
<td>Before transformation</td>
<td>0.83</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>After transformation</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Optimization criterion B</td>
<td>Before transformation</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>After transformation</td>
<td>0.17</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Calculations were performed using Microsoft Excel tool “Solver”. Since a number of blocks on the diagrams according to the IDEF0 standard might be from 3 to 6, the size of proposed optimization problem allows performing calculations using Microsoft Excel.

The matrix of structural changes and the matrix of numbers of arcs connected to the blocks of IDEF0 diagram that describes software release processes are the following:

$$\Delta D^1 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}, \ D^1 + \Delta D^1 = \begin{pmatrix} 2 & 1 & 2 & 4 & 0 \\ 1 & 2 & 3 & 1 & 0 \\ 1 & 2 & 3 & 2 & 0 \\ 1 & 2 & 3 & 3 & 0 \\ 1 & 2 & 3 & 2 & 0 \end{pmatrix}$$

$$\Delta D^2 = \begin{pmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{pmatrix}, \ D^2 + \Delta D^2 = \begin{pmatrix} 3 & 1 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 & 0 \\ 1 & 2 & 3 & 2 & 0 \end{pmatrix}$$

The obtained recommendations related to the structural changes ΔD^2 as well as the recommendations of the supply-chain reference model SCOR (processes, best practices, metrics, etc.) allowed obtaining the following IDEF0 diagram (fig. 6) [16].

The sample calculations required to check the validity of the proposed approach were performed for the IDEF0 diagrams that describe business processes of various domains – software release and product purchase. The considered IDEF0 diagrams were developed using the trial-version of Erwin Process Modeler.

The practical significance of the achieved outcomes is that the recommendations obtained as the result of analysis of IDEF0 diagrams, which describe product purchase and software release processes, as well as the recommendations of the DevOps concept and supply-chain operations reference model SCOR, allowed transforming original IDEF0 diagrams according to the balancing requirements.

For example, the original IDEF0 diagram (fig. 3) contains planning, development, and assembly processes that were related to the deployment process only because they were executed during the same software release iteration which corresponds to the procedural cohesion. Now the transformed diagram (fig. 5) contains these processes related because they are executed by the same resources (DevOps team) which corresponds to the communicational cohesion. This improvement eliminates functional areas called “silos” that are typical for the functional management approach.

The practical significance of the achieved outcomes is that the recommendations obtained as the result of analysis of IDEF0 diagrams, which describe product purchase and software release processes, as well as the recommendations of the DevOps concept and supply-chain operations reference model SCOR, allowed transforming original IDEF0 diagrams according to the balancing requirements.

6 DISCUSSION

The practical significance of the achieved outcomes is that the recommendations obtained as the result of analysis of IDEF0 diagrams, which describe product purchase and software release processes, as well as the recommendations of the DevOps concept and supply-chain operations reference model SCOR, allowed transforming original IDEF0 diagrams according to the balancing requirements.

CONCLUSIONS

In this paper we proposed an approach to formation and analysis of a business process structure in IDEF0 notation.

The scientific novelty of the obtained results is that the earlier known approach based on the use of the balancing coefficient of IDEF0 diagrams was modified and augmented with considering the weights coefficients of arcs of various types. In order to calculate the values of these coefficients the cohesion types defined in the ISO/IEC/IEEE 24765 standard are used. The weights of these types are calculated using normalization of theirs levels. The approach to analysis of IDEF0 diagrams allows defining structural changes in which diagrams will fulfill balancing requirements.

The practical significance of the achieved outcomes is that the recommendations obtained as the result of analysis of IDEF0 diagrams, which describe product purchase and software release processes, as well as the recommendations of the DevOps concept and supply-chain operations reference model SCOR, allowed transforming original IDEF0 diagrams according to the balancing requirements.
The proposed approach might be used to support activities related to storing and sharing of the organizational knowledge by supporting analysis and enhancement of business process models before they are stored into the enterprise repository for their future reusing to create new solutions.
Prospects for further research include considering the use of expert judgments related to the selection and explanation of the cohesion types scale, as well as to the definition of arc weight coefficients for making decisions on recommendations development. Various approaches to presentation of business process models within the enterprise repository using Archimate, ARIS, and other notations will be also considered in future work.

ACKNOWLEDGEMENTS
This work is performed during the dissertational research “Models and information technologies of the process approach to management of business structures of an enterprise” in the post-graduate course at National Technical University “Kharkiv Polytechnic Institute” in the 122 “Computer science” specialty. The research results are also used within the training process in “Design of information systems” course for bachelor students in 122 “Computer science” specialty.

REFERENCES

Article was submitted 25.05.2018. After revision 12.06.2018.
КЛЮЧОВЫЕ СЛОВА: бизнес-процесс, моделирование, диаграмма IDEF0, анализ моделей бизнес-процессов, сбалансированность, связь.

УДК 004.042:004.94

СТРУКТУРНЫЙ АНАЛИЗ И ОПТИМИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ IDEF0-МОДЕЛЕЙ БИЗНЕС-ПРОЦЕССОВ

Голдевский М. Д. – д-р техн. наук, профессор, заведующий кафедрой программной инженерии и информационных технологий управления Национального технического университета «Харьковский политехнический институт», Харьков, Украина.

Орловский Д. Л. – канд. техн. наук, доцент, доцент кафедры программной инженерии и информационных технологий управления Национального технического университета «Харьковский политехнический институт», Харьков, Украина.

Копп А. М. – аспирант кафедры программной инженерии и информационных технологий управления Национального технического университета «Харьковский политехнический институт», Харьков, Украина.

АННОТАЦИЯ

Актуальность. Решина актуальная задача разработки методов, позволяющего снизить количество системных или случайных ошибок при построении моделей бизнес-процессов. Объектом исследования являются графические и математические модели, отображающие структуру бизнес-процессов. Цель работы – минимизация системных или случайных ошибок на основе разработки метода моделирования и анализа структуры бизнес-процессов в нотации IDEF0.

Метод. Предложен метод формирования и анализа структуры бизнес-процессов в нотации IDEF0. Для анализа диаграмм IDEF0 используется коэффициент сбалансированности, который был модифицирован и дополнен с учетом весовых коэффициентов, вычисленных для определения значений коэффициентов, используемых в стандарте ISO/IEC/IEEE 24765:2010. Новые весовые коэффициенты, рассчитанные в рамках данной работы, позволяют отнести диаграммы IDEF0 к балансированным, при которых коэффициенты сбалансированности равны 1.

Результаты. Разработан метод анализа диаграмм IDEF0, позволяющий определить структурные изменения, при которых диаграммы будут удовлетворять требованиям сбалансированности. Рекомендации, полученные в результате анализа диаграмм IDEF0, описывающих процессы закупки продукции и выпуска ПО, а также рекомендации концепции UML, позволили предложить и тестировать исходные диаграммы в соответствии с требованиями сбалансированности. В дальнейшем, при принятии решений о выработке рекомендаций могут быть использованы экспертные суждения.

Выводы. Предложенный метод может быть использован для поддержки деятельности по накоплению и распространению организационных знаний, позволяя анализировать и совершенствовать модели бизнес-процессов, прежде чем они будут добавлены в корпоративный репозиторий для их повторного использования при создании новых решений. В дальнейшем будут рассмотрены различные способы представления моделей бизнес-процессов в корпоративном репозитории, соответствующих разработанным нотациям Archimate, ARIS и dr.