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ABSTRACT

Context. The interval problem of mixed Boolean programming having numerous economic applications is considered. The
object of the study was a model of the integer programming.

Objective. Development of methods for constructing suboptimistic and subpessimistic solutions of the mixed Boolean
programming interval problem.

Two methods for constructing suboptimistic and subpessimistic solutions of mixed Boolean programming problems with interval
initial data are introduced. These methods are based on some economic interpretation of the model considered.

Method. Two methods for constructing suboptimistic and subpessimistic solutions of mixed Boolean programming problems
with interval initial data are introduced. These methods are based on some economic interpretation of the considered model. In the
first method a criterion of selecting unknowns for assigning values, which is based on the principle of profit maximum for each unit
of expenditure is introduced. Since the coefficients of the problem are intervals, two strategies are chosen: optimistic and pessimistic.
In the optimistic strategy, the idea of choosing unknowns is used, which corresponds to the maximum ratio of the corresponding
maximum profit to the minimum expenditure. And in the pessimistic strategy, the idea of maximum ratio of the minimum profit to
the maximum expenditure is used. In the second method, the concept of a non-linearly increasing penalty (price) for using a unit of
the remaining resources is introduced, that on the right side is bounded. Taking into account the principles of the above first and
second methods, using this concept of penalty (price), methods for constructing suboptimistic and subpessimistic solutions have been
developed.

Results. The algorithms for constructing suboptimistic and subpessimistic solutions to the interval problem of mixed Boolean
programming are developed.

Conclusions. A software package was developed for constructing suboptimistic and subpessimistic solutions to the interval prob-
lem of mixed Boolean programming. A number of computational experiments have been carried out over random problems of vari-
ous dimensions.

KEYWORDS: an interval problem of mixed Boolean programming, optimistic, pessimistic, sub-optimistic and sub-pessimistic
solutions, upper and lower bounds, errors, experiments.

NOMENCLATURE ri, r; — use of the i-th resource for the optimistic and
N -the number of all variables,

n — the number of boolean variables, . -
m — number of bounders, Q i’ Qj — the total penalty for using the remaining

I =[1,....,n] — set of indexes of variables, taking

pessimistic solutions, respectively;

resources for the unknowns x; for an optimistic and

boolean values; imistic solutions, respectively;
R=[n+1,n+2,...,N] — set of indexes of variables, PESSIMISHC SOIULons, respectively;

taking continuous values; fop> fp — upper bounds of the suboptimistic and sub-

¢j. Cj. & ,Tiij , b, , bi — given positive integers; pessmistic values of the objective function, respectively;
1 2 ¢l 2 1 2 1 2
j« — fixed item; fso» fsos fsosnt> fso.snts fspa fspa fsp.sht’ fsp.sht
Xj — j-th unknown; suboptimistic. and subpessimistic values of the objective
function obtained by the 1-st and 2-nd methods (non-linearly

X — N — dimensijnal vector; increasing penalty) corresponding to the 1-st and 2-nd ap-

X P _ an optimistic solution; proaches;
P _ an optimistic value; X %% — a suboptimistic solution;
X P — a pessimistic solution; £ — a suboptimistic value;
f P —a pessimistic value; X P _ a suppessimistic solution;
ai» g - a penalty (price) for using the i-th f* —a subpessimistic value;
resource for the optimistic and pessimistic solutions, 8150, 830, Slso.shts 8§O_Sht, Sép, Sgp, Sép.shts 8§p.5ht — rela-

respectively; tive errors of the suboptimistic and subpessimistic values of
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the objective function from the optimistic and pessi-
mistic values obtained by the 1-st and 2-nd methods
(non-linearly increasing penalty) corresponding to the
1-st and 2-nd approaches;

Kso> Kso.shts Ksps Ksp.she — the number of remaining

continuous variables after the application of the 1-st
and 2-nd methods (nonlinearly increasing penalty) with
the second approach for construction suboptimistic and
subpessimistic solutions, respectively.

INTRODUCTION

At the begining of the mixed Boolean programming
problems with interval data, we give some economic
interpretation.

Let there are many objects. Some of these objects
can be used or ignored, and the rest of the objects can
be used to some extent. Suppose for the use of these
objects, the resources belonging to a certain interval
were distinguished.

If a fixed object is selected for use (or partial use),
then the possible costs will be within the specified in-
terval.

In this case, the profit also belongs to a given other
interval. It is required to choose for use (or partial use)
such objects, the total costs of which do not exceed the
allocated resources included in the corresponding in-
tervals, and the total profit will be maximum. Taking
the corresponding variables, we obtain a mathematical
model of mixed-Boolean programming with the inter-
val initial data. Here the aim is to develop methods for
solving of the obtained problem, taking into account
the basic properties of the model. In addition, carry out
comparative computational experiments to identify the
quality of the developed methods.

1 PROBLEM STATEMENT
The following problem is considered:

Slepei]x+ 3 [epei]xomax
j=n+l1

j=1

Zn:[gij,éﬂ X; + Z [gij,éi,} X; < [Qi,BiJ,(i =1,m), )

0< xjﬁl,(jzl, ), 3)
X =1v0,(j=Ln),(n<N). )
Here it is assumed that

¢j >0, ¢j>0, a; >0, aj >0, b; >0,

ij
bi >0 (i= 1,m, j= I,_N) are given integers.

We note the following natural conditions for the
coefficients of the problem (1)—(4). First, for each

N _
conditions must be satisfied Z ajj > bi,(i=1,m).
j=1
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Conversely, if for all these conditions are not satisfied,
then the solution X =(1,11,...,1) will satisfy the system (2)—

(4) and it will be the optimal solution. On the other hand, if

N
for some fixed i, the condition ) ajj<h; ,(i=1,m) is
j=1
fulfilled then the inequality i, is not a restriction and it is
excluded from the system (2). We assume that the above
natural conditions are fulfilled for the problem (1)—(4).

This problem is called the problem of mixed-Boolean
programming with interval data or simply the interval
problem of mixed-Boolean programming. The considered
problem (1)—(4) is a generalization of the Boolean
programming  problems, interval Boolean programming
problems, and linear programming problems. In the case of
n=0 we obtain the linear programming problem with
interval data, in the case of n=N an interval Boolean
programming problem is obtained, in the case of

Cj =cCj.a; =aij, b; =bi, i =1,_m, j =1,_N) the well-known
Boolean or mixed-Boolean programming problem is
obtained.

In the beginning, for problems (1)—(4) we give some
economic interpretation. Let there are N objects. From each
object n(n < N) you can use or ignore, and for other objects
N—-n you can use to some extent. Assume that the

resources included in the interval [Qi,Ei](i :L_m) are

allocated to use these objects. If the j-th object (] = I,_N) is
selected for use (or partial use), then the possible costs enter
the interval [&j;.» aij J=1,m;j=1,N), while the profit

belongs to the interval [C; ,Ej 1(i=LN).

It is required to choose for use (or partial use) such ob-
jects, which total costs did not exceed the allocated re-
sources involved in the interval [Qi,Bi](i :I,_m) , and the
total profit was maximum. Obviously, taking variables
{l, if j-th object is taken

0, otherwise, (] = 1,_n),

Xj = and

0< x j< L(j=n+1,N), then the mathematical model of

the problem will be in the form (1)—(4).

To construct solutions for problem (1)—(4), we have in-
troduced two criteria for choosing the number of unknowns
and assigning specific values. Based on these criteria, two
methods for constructing solutions have been developed.

2 LITERATURE REVIEW

It should be noted that since all the particular cases of
problem (1)—(4) are in NP-complete class, this problem also
belongs to the class NP-complete; difficult-solvable [1-2].
As far as we know, the interval problem of mixed Boolean
programming has not yet been investigated. In spite of this,
some classes of interval integer-programming problems
were investigated in [3—6].

In this article, for the problem (1)—(4), the concepts of
admissible, optimistic, pessimistic, suboptimistic and sub-
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pessimistic solutions are introduced and methods for
their solution are developed. These concepts are an
extension of the concepts introduced in [7, 8]. It should
be noted that a number of approximate and exact
algorithms for solving the classical Boolean
programming problem are presented in [9, 10]. And in
[11] specific methods for construction of a suboptimal
(or approximate) solution of Boolean programming
problems were developed. The basic principles of in-
terval calculus are presented in [12]. It should be noted
that the concepts of a linearly-increasing penalty to
construct an approximate Boolean programming solu-
tion were introduced in [13]. And in this paper a more
powerful criterion is introduced, which we call a
nonlinearly-increasing penalty for a more general class
of problems.

3 MATERIALS AND METHODS

First we introduce an analog of the concepts intro-

duced by the authors in [7, 8] for a more general class
of mixed Boolean programming problems.

Definition 1. N -dimensional

X =(X{,...,Xy) satisfying the system of conditions
(2-(4) for Vajelay.aij] and Vb e[b;,bil,

(i=1,m; j=1,N) is called an admissible solution of
problem (1)—(4).

From this definition it immediately follows that the
concepts of the optimal solution and the optimal value
of the function (1) must have a different meaning, in
contrast to the known ones. Because it is necessary to
ensure that the sum of some intervals is not exceeded

vector

from a given specific interval [t_)i,Bi] and that the

maximum of some other intervals is reached. To this
end, we introduce a few more definitions.
Definition 2. An admissible

XOP — (xlop, Xgp X&p ), is called to be an optimistic

solution

solution of problem (1)—~(4) if that satisfies the ine-

qualities Z 3 X(J)p <b,, for vh; e[b;,bil,

(i=1,m;j= 1, N), and in this, the value of the function

N _

fOoP = z ijcj)p will be maximal.
j=1

Definition 3. An

admissible solution

XP= (le,xzp,...,x,f’l ) is called to be a pessimistic so-
lution of problem (1)—(4) if that satisfies the inequali-
ties

Zauxp<b for v, e[Qi,Bi],

(i=Lm

m;j=1, N) and in this, the value of the function
N
z ]p will be maximal.
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From these definitions it is clear that in order to find the
optimistic and pessimistic solutions of problem (1)—(4) it is
necessary to solve many problems of mixed-Boolean pro-
gramming, which is included in the class of NP-complete
ones. And this requires unreal time to find the solution of
large size problems. Therefore, we have introduced the fol-
lowing concepts of suboptimistic and subpessimistic i.e.
approximate solutions of problem (1)—~(4) and have devel-
oped algorithms for finding them.

Definition 4. An

XS0 _ (

solution of the problem (1)—(4) if that satisfies the conditions

admissible solution

X350, XSNO) is called to be a sub-optimistic

Zauxio <b forVh, e[bi,Ei] (i=1,m;j=1,N) and the
N _

value of the function f%° =3"c;j X?O will take a large value.
j=1

Definition 5. An admissible solution

X 5P —( PP X&p) is called to be a sub-pessimistic

solution of the problem (1)—(4) if that satisfies the conditions

N _ _ _ _
> aijx{® <bj for Vb e[bj.bil. (i=Lm:j=1N) and in
j=1

N
this, the value of the function f%° = Zg J-X?p will take a
j=1
large value.
Theoretical justification of the 1st method.
Using the above economic interpretation of problem (1)—
(4) introduced in paragraph 1, we derive the criterion of
choosing unknowns for assigning specific values. Let the j -
th object (j = I,_N) be selected for use (or partial use). Then,
the necessary expenses should be included in the interval
['E‘ij ,aij](i=1,m; j=1,N) . In this case, the obtained profit is
included in the given interval [C Cj il=1, N) Obviously,
the profit per unit of consumption included in the interval
[gij ,aijJ(i=1,m; j=1,N) will be at least
[ej.cil  [ejejl
min— = =GN,
i [a,aij] max[a;,aij]
I

From here it is directly visible that it is necessary to choose a
number j, , which is determined from the following condi-

tions:

X, =1v0,(j=1Ln),(n<N). 4)

[QJ,CJ] [gj*’cj*]
max == = (5)
J max[ay,ajj] max[a; ,aij,]
i i
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Using the formula (5) and taking into account the
above definitions 4 and 5, we obtain the following cri-
teria for choosing the number j, of unknowns X i. for

construction of suboptimistic and subpessimistic solu-
tions, respectively:

. Cj
= arg max .
Jx g | max QU (6)
|
J» = argmax - 7)
i max ajj
I

Thus, to construct a suboptimistic solution, one can
use criterion (6), and for a sub-pessimistic solution, (7).
In this case, it is necessary to take into account the case
in what interval is j« ie. j«€[l,..,n]=1 or

jse[n+L,n+2,..,N]=R .

Theoretical justification of the 2nd method
(nonlinearly-increasing penalty method). We write
the problem (1)—(4) in the following equivalent form

for fixed b, , by e[b;,bi], (i =1m):

Ylepa ]+ Y [e,6]x omx )

j=1 j=n+l1

i[gij,aiijjJr_z [gij,aidxj < L=Lm), (9

0< X, <L(j=LN), (10)

X, =1v0,(j=1Ln),(n<N). (11)
Here ajj = ajj /by, &ij :Eij /b, bj=1,
(i:r;jzl,_N). It is obvious, that oF >0, Ej >0,

0<oj <1, 0<aij <lay 20, ajj 20,(i=1m, j=1N).
Proceeding from problem (8)—(11), we construct
the following problem (12)—(15) and (16)—(19) which

we call optimistic and pessimistic, respectively.
n N

ZEij-i- > c_;jxj — max, (12)
j=1 j=n+1
n N L —
20 X+ 2 g Xj < Li=1m), (13)
j=1 j=n+1
0< x;<L(j=LN), (14)
X =1v0,(j=Ln),(n<N). (15)
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n N
20X+ D € X - max, (16)
j=1 j=n+1
n _ N _ L —
D aiiXj+ Y aijxj < L3 =1,m), (17)
j=1 j=n+1
0< x, <L(j=1N), (18)
X, =1v0,(j=Ln),(n<N). (19)

For optimistic problems (12)—(15) below, a method for
constructing  suboptimistic solutions was developed.
Similarly, it is possible to develop a method for constructing
subpessimistic of solutions of problems (16)—(19).

The process of constructing of a suboptimistic solution

begins from an admissible solution X*° =(0,0,...,0) . Then
we accept ©o=¢ and ;= O,(i =1,_m) Let some

coordinate X 5_10 -1.

J J
Then on the right-hand side of the system (13) there are

(i = I,_m) . Obviously, these

f take the value of unit, for example X

resources for further use 1— ij,

resources are different. With a view of constructing a final
solution containing a larger number of units, i.e. in order to
uniform use of the remaining resources, it is necessary to
assign a penalty (price) for the use of each resource. It is
clear that the penalty (price) should have such property, that
at reduction of the remaining resources, the penalty for their
use should increase.

If Xi) =1 is selected, then on the right side of the system
(13) l—gijl —Qj, (i :I,_m) remains. In the general case,
1-r; (i :L_m) is on the where

=Y o (i=1,m), o={j[x{° =1}.

jeo

right  side,

We note that in [13] a penalty is imposed, which
increases linearly (proportional to) with decreasing right-

hand sides, ie. t;=r; (i :L_m) is accepted . And in this
work as a penalty t; (i :I,_m), t=1/0-r)( :L_m) is
acCObviously, with increasing used resources r; (i =1,m),

the penalty for using the remaining resources increases
nonlinearly, i.e. faster than linear. Therefore, this method
will be called the method of non-linearly increasing fine. In

other words lim t; =co. This ; (i =l,_m) provides a high
I -1

price (penalty) for the use of scarce resources.

Note that the penalty in the form t; :L (@ :F)

was first introduced in the work for Boolean programming
problems [11]. In this paper, these concepts were extended
for a more general problem of partial Boolean programming
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with interval data. It should be noted that in order to
fewer use of the remaining smaller resources (right-
hand parts of the system (13)), it is possible to increase

the penalty t G :I,_m) as follows:
t; :;k (i :L_m), here k is a fixed natural
(-r;)

number. Computational experiments have shown that
the best results are obtained mainly for k =2 . Then the

total 0 will be

penalty  Xj for acceptance

At the same time, the profit per unit of the total
penalty for constructing of a suboptimistic solution to

take xj?" =1 will be QJ. :cj/gj (j=LN).
Obviously, it is necessary to choose xf° =1, where the

number J, is determined from the following criterion:
_ ¢ci Cci —

max Q ; :—J:i:Q- or
; J Ji

J 95 9

J» = argmax Q; (20)

J
To construct a suboptimistic solution using criterion
(20), it is necessary to take into account the

circumstances j, €l or j,e€R. The use of these
circumstances in the construction of solutions are given

below. To construct a subpessimistic solution, the
process is carried out similarly as mentioned above,

using the following criterion:
g &
maxg :m?lx—_Z_—':gj .
Heére a5 aj ’
L TR NP
qj =2 aijti (=LN), ti=—= (i=1m),
i=1 1—rj
ri= 2 aij (i=1m), o={j|x; =1} o
jeo

At the beginning of the constructing process of a
sub-pessimistic solution o ={J} and

ri=0, (i=L,m), ie. XSP = (0,0,...,0) are accepted.
Using the criteria (20) or (21) to construct a
suboptimistic ~ or  subpessimistic  solution two
approaches were developed, respectively. These
approaches to the construct of a suboptimistic solution
was presented as follows.

I approach: In the case when for the first time it is

impossible to assign to an unknown xi°, (jeR) a

unit , then for this unknown we take the possible
fractional values, and for the remaining variables we
assign zero.
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In other words, if j, €l , then on can take the values
either 0 or 1. If % <I-r; (i=l,_m), then xj?" =1,

rp=r+o;, (@ :L_m), I :=1\{j.}, is accepted, and if at

Zij, >

least for one 1 (i :I,_m), @jj, > I-r; (i :L_m), X?O =0,

I :=1\{j,} is accepted. If J, € R, then the unknown X?O
must take any values from the interval [0,1]. In this case, if

o, < 1-r; ,forall i (i :L_m), then we accept ng =1,

Ni= 4+, (i :I,_m), R:=R\{j.}. And if at least for
one i (i=Lm) oy >1-r; (i =1,m), then we accept
1-r; .
x° =min—=", R:=R\{j.}, Ij=rj+o; x°. And for
) i Ol:: )« Jx

the rest j itis accepted x° =0, (je | UR).

(i=1Lm,
of constructing a

Obviously, in this case, at least for one I

ry=1 is obtained, the process

suboptimistic solution is completed.
To continue the construction process of a suboptimistic

solution X%° = (x{°,x3°,...,x3"), we find the next number
j. from the criteria (6) or (20). Construction process of this

solution is completed, if | =& and R=O.
Note that it is possible to construct a subpessimistic

XP =P, %P ,...x ) of problem (16)~(19)

similarly to the above, only using criteria (7) or (21).

solution

II approach: Here, in the case of |, € | , the first part
of the I approach still stands, and in the case of J, € R, i.e.

When the unknown Xio should take any values from the

interval [0,1], we proceed as follows: if &,

SO
=1
J« ’

(i :L_m) R:=R\{j.}. And if it is impossible to assign a

<I-r; forall

i (i=1,_m), then we accept X Ni= i+,

unit to an unknown X?O, i.e. at least for onei (i :I,_m)

the condition oy >1-r; (i=1m) is fulfilled, then for

jel weaccept X;:=0.And for the rest XJS-0 (jeR) we

construct a linear programming problem and solve it by
some well-known method. Obviously, the dimension of the
obtained problem will be much smaller. These
circumstances are confirmed once again in computational
experiments.

Finally, we will write an algorithm for constructing of a
suboptimistic solution by the nonlinearly increasing penalty
method (The algorithm for constructing of a subpessimistic
solution is compiled similarly).
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Algorithm of the non-linearly increasing penalty
method (I approach)

Step 1. Input

N n:a”aa'])C]:C]:bpb"(l m J 15 )
_ A _ 5
Step2. Accept by =bi,q; :b—”, o :b_”’
i i
b :=L(Gi=1m;j=1N).
Step 3. Accept
X°,(j=LN),o={@},r;:=0,(i=1,m)  and sets

I={2,...,
Step 4.

n},R={n+1Ln+2,.N}.
t=1/(1-r)(i=1m),

Compute

Zocu t;, jelUR.
Step 5. Compute Q _cj /g (jeluUR) and find
=i
j* from relation j, =arg maxaj .
j

Step 6.1f j, el andforall i (i =1,m) the relation

o; <1-r. is fulfilled, then X% =1
b

oy < accept

ri=r; +oc” ,

Step 7. If j, el and at least for one i (i :l,_m)
is fulfilled, then accept

I :=1\{],} and pass to step 4.

the relation o;; >1-T;

1)
x;?:=0, 1:=1\{],} and pass to step 4.
Step 8. .

the relation

(i=1,m)

then accept

If j, €R and at least for any |

o;i <1-r; is fulfilled,

Y&, =
x; =1, rj=rj+o; , R=R\{j,} and pass to step

Step 9. If j, R and at least for one i (i= I,_m),

relation  a;; >1-1; is fulfilled, then

i,

I-r;
X3 =min—=", rp=rp oy X3

BT g, i

accept

, R=R\{j,} and
x7’=0, jel UR.

Step 10. Compute

N _
SO .__ SO
=20
j=t

Step 11. Print %, x% =(x,X5°,...,Xy) -

Step12. Stop.

Note that, a suboptimistic solution of the problem
(1)~(4)is found by the application of the above algo-
rithm . And to construct sub-pessimistic solution, you
can use the same algorithm completely, but instead of
using the criterion (20), you need to use criterion (21).

It is important to note that the algorithm for con-
structing suboptimistic and sub-pessimistic solutions
by the second method, one can use this algorithm, but
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in the case of j, el and at least for one 1 (i= I,_m), the

relation o;; > bi is satisfied, then we take for X; = 0, and

1«
for je | butfor all other non-fixed variables j, jeR we

compose and solve a linear programming problem of smaller
dimension. Then we add the obtained solution to the fixed
coordinates of the solution.

To estimate errors of the obtained suboptimistic and
suboptimistic values from the optimistic and pessimistic
values, the original problem is solved as a linear

programming problem and corresponding values Top and

Tp are obtained, respectively. Then the relative errors are

estimated as follows:

Top — fs fop — fo
1 op~ 'S0 .2 op ~ 'so
Bgo < T 2950 < T ’
op op
fo fop— fea
1 op ~ 'sosht o op ~ 'so.sht
Bdso.sht < 3 s O50.sht < i >
op op
r3 1 3 2
5! <fp_f5p 52 < o= T
sp=" ¢ > Op-= ?—v
p p
3 1 3 2
f p fsp.sht 2 f p fsp.sht
8sp sht = ?—, sp.sht ﬁ?—-
p p

It must be noted, that in development of methods for
solving problems (1)—(4), the ideas of work [9-12] were
used.

4 EXPERIMENTS
To identify the quality of the developed algorithms in
this paper, the programs of these algorithms are compiled
and a number of computational experiments were carried out
on problems of large dimension. Using the work [11], the
coefficients of these problems are chosen as randomly two-
digit or three-digit numbers as follows:

LO<a; <99,1<ay; <99, 1<c; <99,
1<c;<99,(i=1,m; j=1,N).
1L 0<a; <999,1<a; <999,1<¢; <999,
1<¢;<999,(i=1,m; j=1,N).

135 |l el i e =i,
b, ._[32%}, b [312_;&.,},0 1,m)

j=1

Here [z] denotes the integer part of the number z.

The results of the computational experiments are
presented in the following tables, where for each dimension,
5 different problems were calculated.
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5 RESULTS
Table 1 — Experiments with two-digit coefficients (N =500;n =300;m =10)
No 1 2 3 4 5
? 22948.176 | 22737.032 22307.446 | 22490.986 | 21982.270
op
f 1 22458.800 | 22234.909 21877.868 | 21908.750 | 21598.278
—S0
f2 22499.599 | 22244.156 21885.093 | 21916.256 | 21607.766

1 22867.500 | 22646.917 | 22175.650 | 22419.818 | 21853.667

2 22875.682 | 22700.419 22223.520 | 22438.152 | 21878.973
—so.sht
sl 0.021 0.022 0.019 0.026 0.017
SO
82 0.020 0.022 0.019 0.026 0.017
SO
51 0.004 0.004 0.006 0.003 0.006
so.sht
82 0.003 0.002 0.004 0.002 0.005
s0.sht

119 109 97 102 103
S0
k 108 97 93 102 100
so.sht
? 14039.384 | 14183.660 13947.478 | 13755.646 | 13584.626
p
fl 13949.091 | 14082.000 13809.471 | 13609.842 | 13466.579
—sp
fz 13949.091 | 14103.551 13824.456 | 13611.735 | 13487.778
—sp
1 13973.145 | 14121.324 13877.356 | 13696.894 | 13502.867
—sp.sht
2 13980.549 | 14133.362 13887.259 | 13716.408 | 13507.457
—sp.sht
5l 0.006 0.007 0.010 0.011 0.009
Sp
52 0.006 0.006 0.009 0.010 0.007
sp
81 0.005 0.004 0.005 0.004 0.006
sp.sht
82 0.004 0.004 0.004 0.003 0.006
sp.sht
k 140 139 128 136 139
sp
k 143 138 129 136 135
sp.sht

Table 2 — Experiments with two-digit coefficients (N =1000;n = 600; m = 10)

No 1 2 3 4 5
T 45911.804 | 45296.379 | 44437.319 | 45092.610 | 44435.775
op
f 1 44627.593 | 44136.731 | 43596.684 | 44301.667 | 43647.305
—s0
fz 44679.811 | 44198.527 | 43610.339 | 44358.495 | 43675.640
—s0
1 45828.458 | 45178.727 | 44385.097 | 45017.759 | 44376.333
—so.sht
2 45896.308 | 45217.426 | 44394.583 | 45021.415 | 44397.888
—so.sht
81 0.028 0.026 0.019 0.018 0.018
SO
82 0.027 0.024 0.019 0.016 0.017
SO
81 0.002 0.003 0.001 0.002 0.001
so.sht
62 0.000 0.002 0.001 0.002 0.001
s0.sht
k 199 225 211 213 220
S0
k 183 211 193 196 25
s0.sht
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Table 2 continuation

? 27827.451 | 28181.955 | 28069.358 | 27822.487 | 27432.328
p

fl 27642.257 | 27889.179 | 27762.000 | 27613.937 | 27139.276
—sp

fz 27642.720 | 27903.243 | 27762.000 | 27630.092 | 27153.737
—sp

1 27775.275 | 28094.640 | 28007.694 | 27751.538 | 27359.500
—sp.sht

2 27780.474 | 28127.185 | 28019.607 | 27768.076 | 27362.182
—sp.sht

5l 0.007 0.010 0.011 0.007 0.011
Sp

82 0.007 0.010 0.011 0.007 0.010
Sp

81 0.002 0.003 0.002 0.003 0.003
sp.sht

52 0.002 0.002 0.002 0.002 0.003
sp.sht

k 266 271 269 276 280

Sp

k 264 269 260 277 275
sp.sht

Table 3 — Experiments with three-digit coefficients (N =500;n =300;m =10)

Ne 1 2 3 4 5
T 207813.440 | 204799.686 | 201112.681 | 203689.588 | 199601.713
op
f 1 203492.135 | 198601.718 | 196161.118 | 197544.935 | 193740.212
—s0
f 2 204080.969 | 198679.476 | 196336.007 | 197629.799 | 194101.881
—s0
1 207116.555 | 204110.132 | 200646.886 | 202920.037 | 198132.469
—so.sht
2 207142.991 | 204348.405 | 200734.420 | 202993.009 | 198240.447
—so.sht
sl 0.021 0.030 0.025 0.030 0.029
SO
52 0.018 0.030 0.024 0.030 0.028
SO
81 0.003 0.003 0.002 0.004 0.007
50.sht
62 0.003 0.002 0.002 0.003 0.007
50.sht
120 115 105 110 112
so
k 112 106 95 108 105
s0.sht
? 141571.166 | 142834.086 | 139843.917 | 138310.900 | 136465.802
p
f 1 140092.684 | 141415.095 | 138470.466 | 136071.083 | 134879.129
—sp
§2 140104.789 | 141629.340 | 138705.641 | 136149.312 | 134982.791
—sp
1 140808.383 | 142269.891 | 139219.236 | 137639.519 | 135628.630
—sp.sht
2 140849.800 | 142344.442 | 139375.527 | 137692.414 | 135778.228
—sp.sht
5l 0.010 0.010 0.010 0.016 0.012
sp
52 0.010 0.008 0.008 0.016 0.011
sp
61 0.005 0.004 0.004 0.005 0.006
sp.sht
52 0.005 0.003 0.003 0.004 0.005
sp.sht
k 139 136 133 135 139
sp
k 141 135 131 133 137
sp.sht
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Table 4 — Experiments with three-digit coefficients (N =1000; n = 600; m =10)

No 1 2 3 4 5
? 416772.431 | 407262.286 | 400559.019 | 410320.331 | 402729.978
op
fl 403111.858 | 396721.293 | 390388.890 | 401217.913 | 392177.833
—S0
f2 403492.387 | 396912.010 | 390687.146 | 401814.400 | 392573.481
—S0
1 416005.141 | 406270.986 | 399687.804 | 409494.837 | 401871.992
—s0.sht
2 416238.934 | 406405.856 | 399782.798 | 410041.511 | 402047.775
—s0.sht
81 0.033 0.026 0.025 0.022 0.026
o)
62 0.032 0.025 0.025 0.021 0.025
o)
61 0.002 0.002 0.002 0.002 0.002
so.sht
62 0.001 0.002 0.002 0.001 0.002
so.sht
218 237 214 226 232
SO
k 195 223 204 214 210
so.sht
? 280754.495 | 284249.634 | 282822.257 | 280536.958 | 277027.700
p
fl 278290.868 | 280818.009 | 279785.821 | 278534.584 | 274033.651
—sp
fz 278305.366 | 280972.875 | 279895.739 | 278678.161 | 274132.534
—sp
1 279728.741 | 283343.339 | 282041.765 | 279638.956 | 276478.038
—sp.sht
fz 280001.797 | 283362.542 | 282256.459 | 279670.043 | 276552.316
—sp.sht
81 0.009 0.012 0.011 0.007 0.011
sp
62 0.009 0.012 0.010 0.007 0.010
sp
61 0.004 0.003 0.003 0.003 0.002
sp.sht
62 0.003 0.003 0.002 0.003 0.002
sp.sht
k 265 274 265 279 279
sp
k 263 269 261 278 273
sp.sht
6 DISCUSSION 0.002-0.006 respectively. And this means that using the

As will be seen from the above tables it is clear
that the suboptimistic and subpessimistic values ob-
tained by 1 and 2 methods of the objective function
differ from each other (non-linearly increasing
penalty). Taking into account that in the second
approach the apparatus of the linear programming
method is being used, which gives the best result both
for the 1-st and the 2-nd methods. The more practical
method can be considered the 2-nd method
corresponding to the 2nd approach. Because this
algorithm works faster than the application of linear
programming apparatus. The above experiments of the
I-st method show that the relative errors of the
suboptimistic and sub-pessimistic values of the
objective function from the upper and lower bounds of
the suboptimistic and pessimistic values for the Ist
method vary within the limits of 0.016-0.033 and
0.006-0.016, and for the 2-nd method 0.000-0.007 and
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methods developed in this article, the relative errors are not
greater than 3.3%. On the other hand, in order to apply the
2-nd approach for constructing of suboptimistic and sub-
pessimistic  solutions for problems with two-digit
coefficients, for the 1-st method on the average remains 106
and 136 variables out of 500 respectively, 214 and 272 out
of 1000 wvariables respectively, and to construct
suboptimistic and subpessimistic solutions for the 2nd
method, the remaining number of variables is 100 and 136
of 500, 198 and 269 of 1000 variables. The above
experiments once again confirm the efficiency and
practicality of the developed methods in this work.

CONCLUSIONS
Proceeding from the above, the following conclusions
may be drawn. In this article effective methods for solving
problems of mixed Boolean programming with interval data
have been developed. As far as we know, the problem of
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JBA METOJIA JIJIA HIOCTPOEHUSA CYBONITUMUCTHYECKOI'O U CYBIIECCUMHACTUYECKOT'O PEINIEHAI
HHTEPBAJBHOMN 3ATAYA YACTHYHO-BYJEBOT'O TIPOTPAMMMHPOBAHUSA

Mawmenos K. L. — 1-p ¢us.-mat. Hayk, npodeccop bakunckoro 'ocynapcTBeHnoro Yuusepcutera u 3aB. otaenoM WHCTHTYTa
Cucrem Ynpasienust HAH Aszep0aiimkana, AzepOaiimxan, baky.
Mawmenin H. O. — noxropant Mucturyra Cucremusix Yupasiennii HAH AzepOaitmkana, AzepOaiimkan, baky.

AHHOTAIUSA

AKTyalbHOCTb. PaccMoTpeHa MHTepBaJIbHas 3ajavya 4acTHYHO-ByieBOro mporpaMMHpoBaHMs, WMEIOIasi MHOTOYHCIICHHBIC
9KOHOMHYECKHE TpuMeHeHusl. OGbEKTOM UCCIIeI0BAHMS SIBIISIACh MOJEINb LIEIOYHCICHHOTO TPOrPaMMHUPOBAHUSL.

Heab padorsl. PazpaboTka METONOB HOCTPOEHHS CYOONTUMHCTHUYECKOTO U CyONECCHMHCTHYECKOTO PELIEHUH HMHTEpBAIbHON
3a/1a4M 4aCTUYHO-ByJIeBOro nporpaMMHpOBaHHMSI.

Mertoa. BeeneHsl aBa METOJa U MOCTPOCHHUS CyOONTHMHUCTHYECKOTO U CyOIIECCHMUCTHYECKOTO PEIICHHH 3a/iad 4aCTHYHO-
ByseBoro mporpaMMHpOBaHHUSI C MHTEPBAIBHBIMHA HMCXOJHBIMU IaHHBIMH. DTH METOZBI OCHOBAaHBI Ha HEKOTOPOW KOHOMHYECKON
HHTEpIPETalNH PACCMOTPEHHOI MOZENN.

B nepBoM MeToze BBEIEH KpuUTepHil BEIOOPAa HEM3BECTHBIX JJISI IPUCBOCHHS 3HAUCHUI, KOTOPHIH OCHOBAH MO NPHHIUITY MaKCH-
MaJIbHOCTH NPUOBLIM Ha KOKAYI0 SOUHHIY pacxona. [1ockoibKy Kod(Q@UIMEHTH 3afaun sBISIOTCS WHTEpBajaMU, BBIOPAHEI JIBE
CTpPaTEerHy: ONTUMHUCTHYECKOE M IECCUMHUCTHYECKOE. B ONTHMHCTHYECKON CTpaTerHy MCIOJB3YeTCsl Wiaesl BHIOOpa HEM3BECTHBIX,
KOTOpasi COOTBETCTBYET MAKCHUMAIBHOCTH OTHOLIEGHMS COOTBETCTBYIONIEH MAKCUMaJIbHON NPUOBLIM HA MUHUMAIIbHBIA pacxon. A B
MECCUMUCTHYECKON CTPATEerny MCIOJIb30BaHa UJIE] MaKCUMaJbHOCTH OTHOIICHHS MHHUMAJIbHOWH NMPUOBUIM HAa MakCHMMaJbHbIA pac-
XO0[.

Bo BTOpOM MeTo/Ie BBECHO NMOHATHE HETMHEHHO-BO3pacTatoniero mrpada (LeHsl) 32 HCIIONB30BAHUE SANHHUIIBI OCTABLINXCS Pe-
CYPCOB T.€. B IPaBOi YaCTH OrpaHHIECHHBIN.

Y4uTHIBas IPUHIOUIIEI BHIIIEYKa3aHHBIX IEPBOTO M BTOPOT0 METOMOB C MCIIOIb30BAHMEM TOTO MOHATHUS mTpada (LeHs), pa3pa-
00TaHbI METO/IbI IOCTPOCHUSI CYOONITHMUCTHIECKOTO U CyOIIeCCUMUCTHYECKOTO PEILICHHUH.

Pe3yabTaTthl. PazpaboTaHbl alrOpuTMbI TOCTPOCHUSI CyOONTUMUCTHYECKOTO ¥ CyOIIeCCUMUCTUYECKOTO PEICHNH HHTepBaIbHON
3a/1a4M 4aCTUYHO-by/IeBOro nporpaMMHpoOBaHHUSI.
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BeiBoabl. CocTaBlieH MPOTpaMMHBIM KOMIIIEKC JUIsl MTOCTPOCHUSI CyOONTHMHUCTHYECKOTO U CyONECCHMUCTHUECKOTO pELIeHHUH
HMHTEpPBaIBHON 3a/1aun acTHIHO-byneBoro mporpammuposanus. [IpoBeaeH psi BEIMHUCIUTENBHBIX SKCIIEPUMEHTOB HaJ| CITyJaif HBIMU
3a7a9aMy Pa3IuIHOH Pa3MEPHOCTH.

KJ/IFIOYEBBIE CJIOBA: unTepBanbpHas 3a/aua 4acTUYHO-ByrneBoro mporpaMMupoBaHusi, ONTUMUCTHYECKOE, ECCUMHUCTHYC-
CKOe, CyOONTHMHUCTHYECKOE U CyOIIECCUMHUCTUYECKOE PEIICHMS, BEPXHSS M HIDKHSS TPAHMIIBI, MOTPEIIHOCTH, BBHIYMCIUTENBHBIH
9KCIIEPHMEHT.

YK 519. 852.6
JABA METOAY JUIA NOBYJOBU CYBOINTIMICTIHECKOI'O I CYBIIECCIMICTIYECKOI'O PIIIEHb
IHTEPBAJIBHOTI'O 3ABJAHHSI YACTKOBO-BYJIEBOT'O TIPOT'PAMYBAHHSI

Mawmenos K. III. — 1-p ¢i3.-mar. Hayk, npodecop bakuHcbka JlepxaBHOr0 YHIBEpCUTETY Ta 3aB. Big-minoM [HeTuTyTy CHcTeM
VYupasninas HAH Asep6aiimpkany, Azep0Oaiimxan, baxy.

Mamenai H. O. — tokropanr [ncturyty cucremuoro Ynpasnine HAH Azep6aiimxany, AsepOaiimpkan, baky.

AHOTAIIA

AKTyanbHicTh. Po3riisiHyTa nHTEpBaIbHA 337a4a YacTKOBO-ByneBoro nporpamyBaHHs, 110 Ma€ YUCICHHI €KOHOMIYHI 3aCTOCY-
BanHs. O6’€KTOM J0CHTIPKEHHsI OyJ1a MOZIENb LIIOYHCEIBHOTO IPOrpaMyBaHHS.

Merta podorn. Po3pobka mMeToniB o0y 10BH CyOONTUMICTHYHOTO i CyONeCCHMICTHYHOTO PillieHb iHTEPBAILHOTO 3aB/IAHHS Yac-
TKOBO-ByJ1eBOro nporpamyBaHHsI.

Meton. Breneno nBa meroau misi moOynoBH CyOONTHMICTHYHOTO 1 CyONEecCHMiCTHYHOTO pillleHb 3a7ad 4acTKOBO-ByieBoro
IIporpaMyBaHHs 3 IHTEPBAIFHUMH BHXITHUMHU maHuMH. Lli MeToxu 3acHOBaHI Ha JesKii €KOHOMIYHIN iHTeprperanii po3TIIHYyTOI
MOJIETi.

VY mepuiomy MeToi BBEICHUH KpUTepiit BUOOPY HEBITOMUX IJIsl IPUCBOEHHS 3HAUCHB, SIKMI 3aCHOBAHUI 3a MPUHLUIIOM MaKCH-
MaJIbHOCTI IPUOYTKY Ha KOXKHY OAMHHMII0 BUTpAT. OCKUIbKH Koe(illieHTH 3aBJIaHHs € iHTepBaJaMM, o0paHi JBi cTpaTerii: onTuMic-
TUYHHH 1 TecuMicTHYHMI. B onTUMICTHYHIN cTpaTerii BAKOPHCTOBYEThCA iZiesi BUOOPY HEBiIOMHX, siKa BiINOBia€ MaKCUMAaIbHOCTI
BIZIHOCHHH BiJITOBiJIHOT MAKCUMAJILHOTO MPUOYTKY Ha MiHIMaJIbHY BUTPATy. A B MECUMICTHYHIN cTpaTerii BUKOPUCTaHA i/1esl MaKCH-
MaJIbHOCTI BiTHOCHHHU MiHIMaIBHOTO MPUOYTKY Ha MAaKCUMAJIbHIH BUTpATi.

VY apyromy MeToi BBEACHO MOHATTS HENiHIHHO-3pocTarouoro mrpady (LiHM) 32 BUKOPHCTAHHS OJUHUII PecypciB, IO 3aJTUIIH-
JHcst TOOTO B IPaBiil 9acTHHI OOMEKEHUI.

3 oAy Ha NMPHHIMITK BUIIEBKA3aHUX IMEPIIOTO 1 JPYroro METOMAIB 3 BUKOPUCTAHHIM IIOTO NOHATTA mtpady (IiHK), po3poo-
JICHI METO/IU MO0y TOBU CYOONTUMICTUYHOIO 1 CyOIIECCUMICTHYHOTO PillicHb.

PesyabTaTn. Po3pobieHo anroputmu moOynoBH CyOONTUMICTHYHOIO i CyOIECCUMICTIYHOTO pillleHb iHTEPBAIBLHOIO 3aBIAHHS
4acTKOBO-ByieBoro nporpamyBaHHs.

BucHoBku. CkjaeHo MporpaMHUN KOMILIEKC [Uisl TOOYZI0BH CYOONTHMICTUYHOTO i CyOIIeCCHMICTUYHOTO PillleHb IHTEePBaIbHO-
T0 3aBJIaHHA YaCTKOBO-ByneBoro nporpamyBanHs. [IpoBeneHo psa 00YMCITIOBAIbHUX €KCIEPUMEHTIB HaJl BUIIAAKOBUMH 3aBJIaHHAMU
Ppi3HOI PO3MIPHOCTI.

KJIFOYOBI CJIOBA: inTepBanpHa 3a/1a4a 4acTKOBO-ByreBoro mporpaMyBaHHS, ONTUMICTHYHE, TIECUMICTHYHE, CyOONTHMIC-
THYHE 1 CyOIecCUMICTUYHE PillIeHHs, BEPXH 1 HIDKHS MEXi, TOXHOKH, 00UHCITIOBAIbHIN €KCIIEPHMEHT.
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