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ABSTRACT

Contex. Fast method of rational interpolation of the transfer function of linear dynamical systems with distributed parameters is
described, the values of which can be found by numerical methods or by calculating the transcendental functions of the Laplace
integral transform variable. The method makes it possible to determine explicitly the transfer function and, in particular, the
characteristic equation of such a degree, which is sufficient to meet the accuracy requirements when calculating the root quality
criteria for the dynamics of automatic control systems.

Objective. According to the proposed method, rational interpolation is reduced to solving a system of linear equations, the order
of which is much lower (more than twice) the order of similar systems used for rational interpolation of functions by known methods.
The properties of this system are such that its solution can be obtained by special fast methods of the quadratic order of complexity.

Method. An iterative algorithm for calculating the transfer function coefficients of a linear dynamic system with distributed
parameters is carried out using the methods of complex variable functions theory using the discrete Laplace transform. The proposed
approach made it possible to significantly speed up the calculations by decomposing the system of linear equations with respect to
the coefficients of the transfer function to a system of approximately half the order, which allows a quick solution by the methods of
Trench, Berlekamp-Massey, or Euclid.

Results. An example of the practical use of an iterative algorithm for rational interpolation and calculation with a given accuracy
of the root quality criteria for the dynamics of a support with gas lubrication is considered.

Conclusions. The method allows to define explicitly the characteristic equation of such a degree, which is sufficient to meet the
accuracy requirements when calculating the root quality criteria for the dynamics of automatic control systems. Rational interpolation
is reduced to solving a system of linear equations, the order of which is much lower (more than twice) the order of similar systems
used for rational interpolation of functions by known methods. The properties of the system are such that its solution can be obtained
by special fast methods of the quadratic order of complexity.

KEYWORDS: rational interpolation, linear dynamic system, transmission function, distributed parameter system, discrete
Fourier transform.

ABBREVIATIONS nv 2 m
AYo Dby+bs+bys+...+bys
TF — transfer function; ®(s) = _(.J =0 b 22 m - 1
HP — characteristic polynomial. AYi  l+as+ays” +..++a,S

where AYj,AY, are the Laplace transformants of the
deviation of the dynamic functions of the input action and
the objective output function from the stationary
equilibrium position of the systems, n >0, m >0, n > m,
s is the variable of the Laplace transform [2, 17].

The determination of the coefficients (1) for systems
with lumped parameters is usually straightforward.
However, there are devices whose dynamics are described
by distributed parameter systems. Examples of these
systems are a variety of electronic devices, tubular heat

NOMENCLATURE

D, F, K, M are matrixes;

a;, bj are transfer function polynomial coefficients;

f(x) is an objective function;

n, m are orders of the polynomials of the numerator
and denominator of the transfer function;

k is a sum of the sum of n and m;

p is a difference of the orders of the polynomials of
the denominator and the numerator of the transfer

function; f the di Fouri p exchangers, gas-static and gas-dynamic sliding bearings
tsi are components of the discrete Fourier transform g o007 e 0o [3-6].
vector,

d, I, z are vectors,

I'(s), A(s) are complex functions,

d(s) is a transfer function,

n, & are criteria for assessing the quality of the
dynamics of linear dynamic systems.

1 PROBLEM STATEMENT

For such systems, TF is formulated based on the use
of one or more boundary value problems for differential
equations, the analytical solution of which is given by
transcendental functions, or they can be obtained only by
INTRODUCTION numerical methods [7]. To obtain the TF of these systems,
it is necessary to use methods that would provide their
representation in the form (1) based on calculating the
criteria for the stability margin and speed of devices with
a predetermined accuracy.

The representation of the TF in the form (1) falls
under the classical problem of rational interpolation [21],
the solution of which, however, does not give an

When designing automatic control and regulation
systems, methods for studying the quality of dynamics are
used, based on determining its stability margin and speed
of response by the roots of the characteristic equation [1,
17]. The latter is determined by the polynomial of the
denominator of the transfer function (TF)
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exhaustive answer to the question of the accuracy of the
stability criteria of the system obtained by root methods
using the characteristic equation, because the value of the
degree n of the characteristic polynomial (HP) is
unknown in advance. Consequently, the rational
interpolation of the TF is only a local procedure in the
general algorithm for determining the quality criteria for
the dynamics of systems.

2 REVIEW OF THE LITERATURE

Often, when calculating the above criteria, it is
required to determine only the vector a of the HP
coefficients and its length n in order to be able to
determine the root criteria with the required accuracy. In
this case, the problem is somewhat simplified, since it is
necessary to find only the polynomial of the denominator
(1), that is, the HP.

The main task in calculating the quality criteria for the
dynamics of systems with distributed parameters at fixed
values of n and m is rational interpolation. The existing
methods are based on the solution of a linear system of
equations for the coefficients (1), which contains n + m
equations [4]. Such systems can be solved by general
methods, for example, the Gauss-Jordan method, which
has a cubic order of complexity (n + m)® (hereinafter, the
order of complexity of a computational method means the
time complexity of the algorithm that implements it [1,
6]). For large n and m, this can entail significant
expenditures of computer time in the process of
multiparameter optimization of dynamic systems.

This article proposes a fast method for finding the
coefficients (1). It is based on solving systems of linear
equations of a special form of a significantly smaller
order, which allows finding their solution by fast methods
with a quadratic order of complexity m(n+m), which
significantly accelerates the optimization procedure for
dynamical systems. If it is required to find only the HP
coefficients, then the order of complexity of the method is
equal to n”.

3 MATERIALS AND METHODS

When performing rational interpolation by the method
described below, the degrees n and m of polynomials (1)
must be known. However, their acceptable values can be
obtained only on the basis of a satisfactory accuracy in
determining the quality criteria for the dynamics of the
system.

If it is impossible to determine the values of these
parameters without calculating the mentioned criteria,
then finding their difference is not difficult.

Indeed, if a, # 0 and by, # 0, then the infinite limit

sPd(s) - Z—m 0, )
where p = n-m.
Usually the difference p is calculated in several units,
more often p = 1-2, therefore, this limit and p can be
found rather quickly.
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Let’s set the value m, define n = m + p and find the
coefficient

b, = ®(0).

We rewrite (1) in the form

a+as+..+as"" +
3)
_AEB)

+(s) (b +b,5+...+,s™) <

where I'(s)=—®7'(s), A(s)=-b, —T(s).
Equation (3) contains k = n + m unknown coefficients.

Let’s calculate e:exp(—z—nijs where i is the
k

imaginary unit.
Let us s =1 and we find s, =es; |, j=2,3,..k,
W =0(s;), T;=T(s;), A;=A(s)), i=12,...k.

Note that s, :5;+|_p i=12,..k, therefore

CI)(SK,,-H):CD*(S,-), which allows us to shorten the
calculations and find LA, in [(k + 1) / 2] the appeal to

the TF.
Substituting s =s;, (j = 1, 2, ..., k) in (3), we obtain a
system of linear equations for unknown coefficients (1)

Mx =y, “)
where
[ sl S1 S1 1—‘lsl )
S, S, S, r,s, ..
M=| s S, Ss rs .|
L sl 5k S1 stl i
[ a | [ A /s,
A, /s,
X=| .. |, y=
bm—l Ak—l /Sk—l
L b, | | A/s |

We represent the matrix of system (4) in the form
M = FK, 5)

where K is the matrix, F is the matrix of the discrete
Fourier transform [9, 10]

F=3S3.J)

S, 1) =Siqqinjys 1 =52,k =1 ]=1,2,..,k -1,
g(x) = x mod k.
Its inverse matrix is defined by the formula

o = .
I:i,jl :ESU)J)'
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Multiplying F' by (4), we bring the system to the
form
Kx =z,
where K=F'M, z=F'y.

For m > 0, the matrix K has a cellular structure of the

form
E C
K= .
o o)

where E and O are the identity and zero matrices of size
nxn and mxn, C and D are Toeplitz matrices of size
nxm and mxm, respectively.

Indeed, the blocks of matrices F' and M of cells
1x1...nxnare mutually inverse matrices of the discrete

(6)

Fourier transform, therefore, their product will give the
identity matrix E. The elements of the block of cells
m+1,k...1xn are obtained by multiplying the rows of the

matrix F' and the columns of the matrix M, which are
also elements of the direct and inverse matrices of Fourier
transform. The sums of their products, which give the off-
diagonal elements of the identity matrix, will be zeros by
analogy with how it is for the zero elements of the block
E located above them.

The nature of the matrices C and D is explained by the
fact that the elements of the columns of the matrix M for
j > n are formed by the sums of the products of the shifted
elements of the matrices F and the elements of the vector
I', which are different from unity. In such cases, their
scalar products give Toeplitz matrices [8].

Similarly, one can show that the matrix

c
L= ™)
D
nxm
is a rectangular circulant of the form
Il Ik In+3 In+2
IZ Il In+4 InH
’ 8
L=| .. e |- ®
Ik—l Ik—z In+1 In
Ik Ik—l In+2 In+1

and C and D are persymmetric Toeplitz matrices

Il Ik n+3 n+2
|2 Il n+4 n+3
Cow=| o . ,
In—l In—2 IZ Il
LIS N Lo
In+1 In Im+1 Im
In+2 In+l Im+2 Im+1
D, =
Ik—z Ik—3 In+l In
L Ik—l Ik—2 n+2 In+1 n
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Vector | coincides with n + 1 columns of matrix K
k 1 Kk -
-1
L= FiM :EZFJ.S(I, i,
j=1 j=1
i=1,2,..,k.

Similarly, one can show that the first kK — 1 elements of
the vector z

2, ==l =12, k-1

]
and the last element

k
2, =3, ©
k j=1
Thus, vectors | and z, matrices C and D can be
obtained using vectors S and ¥ without using matrices K,
F'and M.
In the case m = 0, system (4) takes the form

Fa=y,

therefore, & = z and the problem of rational interpolation
of the TF is solved.

It follows from (5)—~(8) that for m > 0 the vector b of
the TF coefficients (1) satisfies the system of equations

(10)

where d is a vector composed of the last m elements of the
vector Z

In comparison with the original equation (3), which
has the order k =n + m, equation (10) has a much smaller
order m < k/2. Consequently, his solution can be obtained
much faster.

Equation (10) is a standard problem with an
asymmetric Toeplitz matrix of a special type [13, 14, 22],
which can be solved both by general methods, for
example, the Gauss-Jordan method [11], the complexity
of which is proportional to m®, and by special fast
methods taking into account the features of Eq. (10) and
having a complexity proportional to m2. The latter
include the methods of Trench, Berlekamp-Massey,
Euclid [10 — 15, 22].

Elements of the matrix C can be expressed in terms of
the vector |

C =l i=1,2,.,n; j=L2,...m.

i T laGke-)
Taking this into account, one can do without matrix C
and, using the solution to system (10), quickly find the

HP coefficients using the complexity formula nm

m

== by Bys

j=1

i=12,..n (11)

Taking this into account, the total order of complexity
of this method for finding the coefficients (1) is m(n + m).
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In those cases when s = s; is the zero of the TF or it is
necessary to find only the HP coefficients, another
approach can be applied.

Let us rewrite equation (3) in the form

by +b,5 +...+ b, s™! —@(s)(al +ayS+..+aps" ! ) =

_D(s)-by
——

Following the above method, the procedure for
finding the HP coefficients can be reduced to solving a
system of equations of a lower order n <k

Da=d, (12)
where
Im—l Im—2 I2m+1 I2m
Im Imfl I2m+2 I2m+1
Dpsn =—| - e s
ks lka In1 Imo
L Ik—2 Ik—3 Im Im—l i

1 S
L :Ejz:‘itb(sj)S(l,J), i=12,..,k.

L =1 —b,
i=12,..
d, =I.

In comparison with (10), system (12), as a rule, has a
slightly higher order n > m, but its solution allows one to
immediately find the HP coefficients, bypassing the
procedure for finding the polynomial of the TF

numerator. System (12) can also be solved by the
mentioned fast methods with order of complexity n’.

d, =1

i m+i-1°

9n_19

4 EXPERIMENTS

To assess the quality of the dynamics of linear
automatic control systems, root criteria are often used [16,
17]:

— the degree of stability n = Max Re{si}, where si are
the zeros of the -characteristic polynomial of the
dynamical system, which is the denominator polynomial
of the TF (1),

— damping of oscillations for a period
& =100[1- Exp(-|2ap/m[]%, where B is the imaginary part of
the root of the characteristic equation with the largest real
part.

The degree of stability n characterizes the speed of the
system, that is, the speed of damping of its free
oscillations.

The criterion & of damping of oscillations over a
period can be applied to the assessment of the stability
margin of the system. The smaller &, the more oscillation
the transient response will have, and the system will have
a smaller stability margin. It is believed that a dynamic
system is well damped if &> 90% [17].
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At the beginning, using the algorithm for calculating
the values of the transfer function, it is necessary to
determine the power difference by the TF polynomial p =
n—m based on (2).

Further calculations are performed using the following
iterative process.

StepI.Puti=1land m=1, m=1, ny =inf, & = inf,
where inf is a large number (for example, inf = 10'°),
specify the accuracy of determining the degree of stability
€, and damping of oscillations over the period ;.

Step 2. Calculate n = p + m and, performing rational
interpolation by formula (11), find the vector a of the HP
coefficients.

Step 3. Determine the roots of the characteristic
equation, find the root with the largest real part among
them and calculate the criteria n; and &;.

Step 4. Check the conditions for convergence of the
iterative process to the solution

(12)

Step 5. If conditions (12) are met, then the quality
criteria of the system dynamics are determined with the
required accuracy, otherwise the process should be
continued. To do this, it is necessary to increase the
values of the iteration counter i and degree m by one and
go to the step 2.

i —ica| <eq |G —&io| <ee-

5 RESULTS

As a test problem for determining the quality criteria
of the dynamics of a system with distributed parameters, a
model of unsteady motion of an axial support with gas
lubrication was considered [18].

After linearization and application of the integral
Laplace transform to a linear model, a transfer function
necessary for calculations was obtained, the calculation of
the value of which includes the numerical solution of
several boundary value problems for the Reynolds
differential equation [19] of the form

—}:G—SR(HUHxP),

dir
dR{ drR H3

u(rb,S)ZUb, u(reﬂs):ues

d(Pu)
(13)

where U(R,S) is the required function,

P(R) = \/( P2 - pr)M+ B2

In(Re /Ry)

is function of static gas pressure in the lubricating layer;
o, o, H, ry, r,, Py, Pe are constants, S is the Laplace
transform variable.

Problem (13) does not have an exact analytical
solution; therefore, a numerical finite-difference sweep
method was applied to it, where the variable s played the
role of a complex parameter [20].

The numerical solution of problems (13) gives a result
of high accuracy, but this approach does not allow
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explicitly obtaining the transfer function and, in
particular, the HP.

The solution was found in sequential iterative rational
interpolation, the results of which were used to calculate
the quality criteria for the support dynamics with a given
accuracy.

The calculation algorithm is as follows. For the
accepted variant, the combination of the values of the
input parameters was first calculated

b, = ®(0) = 0.15934, then the difference in the degrees of
the TF polynomials p = n — m was determined. The result
is shown in Table 1.

From Table 1 it follows that the smallest p > 0, at
which sPd(s)converges to a nonzero limit, p = 2.

Taking &, = 10°, & = 0.1 and the order of the
polynomial of the numerator of the TF m = 0, we found
the initial order of the characteristic polynomial
n=p+m=2.

Table 1 — Determination of the difference p = n-m

N[ s | sD(S) | s*D(s)
1 1| 0.15934 | 0.15904
2| 10 | 0.09345 | 0.93415
3 | 100 | 0.00996 | 0.99926
4 [ 1000 | 0.00099 | 0.99999

Then, an iterative process was performed, at each step
of which m was increased by one, n = p + m was found,
the problem of rational interpolation of the TF was
solved, and the quality criteria of the system dynamics
were calculated.

6 DISCUSSION

The conditions (12) for the convergence of the
iterative process were fulfilled at the fourth iteration. This
means that for a sufficiently accurate representation of the
transfer function of the system from a practical point of
view, the order of the polynomial of its numerator is
n =5, and the order of the denominator is m = 3. In this
case, system (10) took the form

-0.026 0.057 —0.161 (b, —0.008
0.056 —0.026 0.057 || b, |=| 0.056
-0.405 0.056 —0.026 )\ b, -0.457
Her decision
b, 1.202
b, |=| 0.560 |. (14)
b, 0.055

With rational interpolation of the TF, the most time
consuming part of the procedure for finding eight
unknown coefficients ap, dp, A3, A4, as, bl, bz, b3 of the TF
was reduced to solving system (14) of the third order.
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Thus, with the help of rational interpolation, the
considered transfer function can be represented with an
accuracy sufficient for practice in the form

b, +b,s+b,s* +b,s’
l+as+a,s’+a,;s’ +b,s' +b;s’’

D(s) =

The criterion for the speed of the system
n = 0.233 > 0, the criterion for the damping of oscillations
over the period & = 100%. This means that the system is
stable and characterized by the absence of oscillation,
which indicates the high quality of its dynamics.

CONCLUSIONS

The paper proposes a fast method of rational
interpolation of the transfer function of linear systems
with distributed parameters, the values of which can be
found by numerical methods or in another way, for
example, by calculating the transcendental functions of
the Laplace integral transform variable. The method
allows to define explicitly the characteristic equation of
such a degree, which is sufficient to meet the accuracy
requirements when calculating the root quality criteria for
the dynamics of automatic control systems.

According to the proposed method, rational
interpolation is reduced to solving a system of linear
equations, the order of which is much lower (more than
twice) the order of similar systems used for rational
interpolation of functions by known methods. The
properties of this system are such that, if necessary, its
solution can be obtained by special fast methods of the
quadratic order of complexity.

A demonstration algorithm for calculating the root
quality criteria of an automatic control system is
considered on the example of assessing the quality of the
dynamics of a support with gas lubrication. The algorithm
made it possible to calculate the quality criteria with the
required accuracy in four iterations, at each of which a
rational interpolation of the transfer function obtained by
solving several problems for differential equations by the
high-precision finite-difference sweep method was
performed.
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IMIBUIKA PAIIIOHAJBHA THTEPIIOJISIIIA MEPEJATOYHUX & YHKIIA JTHIMHUX JTAHAMIYHAX
CUCTEM 3 PO3NOAIVIEHUMHU TAPAMETPAMHU
Koausauko B. A. — 1-p TexH. Hayk, mpodecop kadeapu craHmapTH3allii, METPOJIOTii Ta YIpaBiiHHSA sKicTIO. IlomiTexHIuHMIA
iHcTuTYT CHOipchKOTO (enepansHoro yHiBepcurery, KpacHosperk, Pocis.

AHOTAIIA

AKTyanbHicTh. Buknanaetbcss MBHAKKI METOA paliOHaJIbHOI IHTEPHOJALIl NepeaaBasbHOl (QyHKLIT JTIHIHHUX AWHAMIYHHX
CHCTEM 3 PO3IOJUICHUMHU IapaMeTpaMH, 3HAUCHHS SKOi MOXYTb OyTH 3HAiJeHI YHCEJIBHHMHM METOJaMH abo pPO3paxyHKOM
TPaHCLUEHAEGHTHUX (YHKIH 3MiHHOI iHTerpanpHOro neperBopenHs Jlaruaca. Meron N03BoJisie BU3HAYUTH B SBHOMY BHIVIAII
nepenaBaibHy (QyHKIIIO i, 30KpeMa, XapaKTepUCTUYHE PIBHIHHS Takol MipH, siKa IOCTaTHs ISl 330BOJICHHS] BUMOT TOYHOCTI IIPU
PO3paxyHKy KOPEHEBHX KPUTEPIiB IKOCTI AWHAMIKU CHCTEM aBTOMATHYHOTO YIPABIIiHHS.

Mera. BigmoBizHO [0 3alpOMOHOBAHOTO METOAY palliOHAIFHA IHTEPIOJALIs 3BOAUTHCS O BHUPIIICHHS CHUCTEMH JiHIHHX
PIBHSIHB, HOPSAAOK SKOI 3HAUHO HDKYE (OLTBII HIX y[Bidi) MOPSIAKY aHAIOTIYHUX CHCTEM, IO 3aCTOCOBYIOTHCS IUISl palliOHaJIbHOI
iHTepnoysii QyHKOii BimoMuMM MeromaMHu. BiactmBocTi miei cucremm € TakuMH, 1o ii pilleHHS MoOXe OyTH OTPHMAaHO
crewiaJbHIMH NIBUAKAMH METO/IaMH KBaPaTUYHOTO HOPSIKY CKJIQIHOCTI.

Metoa. IrepauiiiHuii anropuT™M po3paxyHKy Koe(illieHTIB mepenaBaibHOi (yHKUIT JiHIHOI AWHAMIYHOI CcHCTEMH 3
PO3MOAIICEHUMH IapaMeTpaMH IIPOBEACHO 3 BHKOPHCTAHHSIM METOJIB Teopil (QyHKIi KOMIIEKCHOT 3MIHHOI 3 BHKOPHCTaHHIM
JMCKpeTHoro mneperBopeHHs Jlamnaca. 3anponoHOBaHMM MiAXiZd JO3BOJIMB 3HAYHO HPHCKOPUTH PO3PAXyHKH 3a JIOMOMOTOIO
JEKOMIIO3HUII CHCTeMH JiHIMHUX PiBHSAHD IION0 KoeilieHTIB mepenaBaidbHOI (PyHKIII A0 CHCTEMH NMPHOIU3HO BABIYI MEHILIOTO
MOPSZIKY, sIKa JIOITyCKae IIBUAKE pilleHHs MeToaamu TpeHua, bepnexamma-Mecci abo EBkimizna.

PesyabraTu. PO3rIsHYTO NpHKIAL NPAaKTUYHOTO BHKOPUCTAHHS ITEpaLiiHOrO aJropuTMy palioHaJIBHOI iHTeprosmii i
0o0uHCIeHHS 13 33JaHOI0 TOYHICTIO KOPEHEBUX KPHUTEPIiB IKOCTI IMHAMIKH OIIOPH 3 Fa30BOI MaCTHIIOM.

BucHoBkn. MeTox 103BOJIS€ SIBHO BU3HAUUTH XapaKTEPUCTHYHE PIBHSIHHS Takoi MipH, siKa JOCTAaTHS Ul BUKOHAHHS BHMOT
TOYHOCTI IIPY OOYKCIICHHI KOPEHEBUX KPHUTEPIiB SKOCTI IMHAMIKA CHCTEM aBTOMATHYHOTO yHpaBiliHHs. ParioHansHa iHTeprosmis
3BOJUTHCS [0 BUPILICHHSI CUCTEMH JIIHIHHUX PIBHSHbD, HOPSIOK K0l HaGarato Hipk4e (OLbII HIX B JBa pa3u) HOPSAKY aHAJIOTIYHHX
CHCTEM, BHKOPHCTOBYBaHUX [UIsl pallioHambHOI iHTeprmossiuii GyHKUid BitoMuMu Meromamu. BractuBocTi cucTemu Taki, mo il
pillleHHS MOKe OyTH OTPUMAHO CrIeLiaIbHUMH IIBUAKUMH METOJAMH KBaJIPATUYHOTO MOPSAAKY CKIAIHOCTI.

KJIFOYOBI CJIOBA: pamioHanpHa iHTEPIONALis, JiHIMHHA JAWHAMIYHA CHCTEMa, IepeAaBanbHa (QYHKIISA, CHCTEMa 3
PO3NOAIIEHUMH apaMeTpaMH, JUCKpeTHE nepeTBopeHHst Dyp’e.

© Kodnyanko V. A., 2020
DOI 10.15588/1607-3274-2020-4-5

53



e-ISSN 1607-3274 Papioenexrponika, inpopmaruka, ynpasainsas. 2000. Ne 0
p-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2000. Ne 0

YK 519.67
BBbICTPASI PALIMOHAJIBHASI UHTEPIOJISILIUSA NEPEJATOUYHBIX ®YHKIUA JTUHERHBIX IMHAMWYECKUX
CHUCTEM C PACIIPEJAEJIEHHBIMU TAPAMETPAMU

Koaunsinko B. A. — n1-p TexH. Hayk, npoeccop kadeapbl CTaHAapTH3aLNN, METPOJIOTUHU U YIIPaBICHUS KauecTBOM. [loMMTeXHnuecKuit

uHcrutyT Cubnpcekoro denepanbpHoro ynusepeurera, KpacHosipek, Poccust.
AHHOTAIUA

AKTyaJbHOCTb. I3maraercst OBICTPBIA METOJ PAlOHAJIBHOW WHTEPIOJSIIMU TepeIaTOYHOr (GYHKIMU JIMHEHHBIX JHHAMHYECKUX
CHCTEM C paclpeleiCHHBIMH IapaMeTpaMH, 3HA4YCHUs KOTOPOW MOTYT OBITh HaWJEHBl YHCICHHBIMH METOJaMH JIHOO pacuyeToM
TPaHCUCH/ICHTHBIX (YHKIHMH NEPEeMEHHOW HHTEerpajbHOro mpeodpasoBanus Jlammaca. Merox MO3BOJSIET ONPENEIHUTh B SIBHOM BHIC
nepenaTouHyto (QYHKIHMIO U, B YAaCTHOCTH, XapaKTEPUCTHYECKOE ypaBHEHHE TAKOH CTENEHH, KOTOPOE JAOCTATOYHO VIS YIOBJIETBOPECHHS
TpeOOBaHMI TOYHOCTH IIPH pacyeTe KOPHEBBIX KPUTEPHEB KauecTBA TMHAMHUKH CHCTEM aBTOMAaTHYECKOTO YIPABIICHHUS.

Hean. CormacHo NpeIOKEHHOMY METOJYy palMOHAIbHAs WHTEPHONAIMS CBOIAWTCS K PEIICHHIO CHCTEMBI JIMHEWHBIX YPaBHCHHH,
MOPSOK KOTOPOi 3HAYMTENBHO HIKe (D0JIee ueM B/IBOE) MOPS/IKA aHAJOTHYHBIX CHCTEM, IPUMEHSEMBIX I PALMOHATIBHON HHTEPIIOISLUN
(byHKUMH n3BecTHRIMU MeToAaMu. CBOMCTBA JAHHOM CHCTEMBbI TAKOBBI, YTO €€ PEIICHUE MOXKET ObITh IOJY4YeHO CHELHAIbHBIMU OBICTPBIMU
METOJIaMH KBA/IPATHYHOTO MOPSIJIKa CII0KHOCTH.

Mertoa. lTepanuoHHBII anroput™M pacdera Kod(QGHUIMEHTOB MepeJaTouHON (YHKIMM IHMHEHHOH JMHAMHYECKOH CHCTEMBI C
pacrpeeneHHbIMU TTapaMeTpaMy TPOBEACH C MCIOJIb30BaHHEM METOJOB TEOPUH (YHKLHMH KOMIUIEKCHON NMEPEeMEHHOH C MCIIONIb30BaHUEM
JMCKpeTHOro npeodpazoBanus Jlamaca. [IpenyioxkeHHbIH OAXO0A MO3BOIMI 3HAYUTENILHO YCKOPUThH PAacyeThl OCPEACTBOM JEKOMIIO3HLIMH
CHCTEMBbI JINHEHHBIX YPAaBHEHUH OTHOCHTEIIHLHO KO3((GHINEHTOB IePEeAaTOYHOH (YHKINU K CHCTEME NPUMEPHO BIBOE MEHBILETO IOPsIKa,
KOTOpasi JI0MyCcKaeT ObIcTpoe pemenne Metonamu Tperda, bepnexkamna-Meccu nmn EBximna.

PesyabTaTbl. PaccMoTpeH mpumep MpakTHYECKOTO HCIONB30BAaHUS WTEPALMOHHOTO aJIrOPUTMa PAlMOHAIBHOW HHTEPIOIALHMU U
BBIUHMCIICHUS C 33JIaHHOW TOYHOCTHIO KOPHEBBIX KPUTEPUEB Ka4eCTBA JMHAMHUKH OIIOPHI C Ta30BOM CMa3KOH.

BbiBoabl. MeTo 1 IO3BOJISET SBHO ONPEACTUTh XapaKTEPUCTHIECKOE YPaBHEHHE TaKOM CTEIIEHH, KOTOpasi TOCTaTOYHA IS BBIIOTHEHHS
TpeOOBaHUIT TOYHOCTH MPU BBIYMCICHUH KOPHEBBIX KPUTEPHEB KauecTBa AUHAMUKH CHCTEM aBTOMAaTHYECKOrO yNpaBiieHUs. PannoHanbHas
HHTEPIOJISILUS CBOJUTCS K PEIICHUIO CHCTEMBI JINHEHHBIX ypaBHEHUH, NOPSIOK KOTOPOi HaMHOro Hipke (Oosiee ueM B JiBa pasa) Mmopsaka
AQHAJIOTMYHBIX CHCTEM, MCIHOJIB3YEMBIX JUIS PallMOHAJIbHOW WHTEPNOSIINYN (YHKIMH M3BECTHHIMUA MeTojgaMu. CBOMCTBA CHCTEMBI TaKOBBI,
YTO €€ pelIeHHEe MOXKET ObITh MOJIYYEHO CIELHAILHBIMH OBICTPHIMI METOIAMHU KBAJAPATHIHOTO MOPSIKA CIOKHOCTH.

KJIFOYEBBIE CJIOBA: panuonanbHash WHTEPIONSINS, JTHHEHHAS AWHAMUYECKAas CUCTEMa, MepeldarodyHas (GyHKIHs, CHCTeMa C
pacnpe/ereHHbIMH TapaMeTpaMu, JUCKpeTHoe peobpa3oBanue Dypee.
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