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ABSTRACT

Context. The problem of deriving a solution for the average waiting time in a closed form queue for an ordinary system with
second-order hyper-Erlang and hyperexponential input distributions and a system with shifted hyper-Erlang and hyperexponential
input distributions is considered.

Objective. Obtaining a solution for the main characteristic of the system — the average waiting time for requirements in the
queue for a queuing system of type G/G/1 with conventional and shifted second-order hyper-Erlang and hyperexponential input
distributions.

Method. To solve this problem, we used the classical method of spectral decomposition of the solution of the Lindley integral
equation, which allows us to obtain a solution for the average waiting time for the systems in question in a closed form. The spectral
decomposition method for solving the Lindley integral equation occupies an important part of the theory of G/G/1 systems. For the
practical application of the results obtained, the well-known method of moments of probability theory is used.

Results. For the first time, spectral decompositions of the solution of the Lindley integral equation for both systems were
obtained, with the help of which calculation formulas for the average waiting time in the queue for the above systems in closed form
are derived. This approach allows you to calculate the average waiting time for these systems in mathematical packages for a wide
range of traffic parameters. All other system characteristics are derived from the average waiting time.

Conclusions. It is shown that the hypererlang second-order distribution law, as well as the hyperexponential one, which is three-
parameter, can be determined by both the first two moments and the first three moments. The choice of this law of probability
distribution is because its coefficient of variation covers a wider range than for hyperexponential distribution. For shifted hypererlang
and hyperexponential distribution laws, the coefficients of variation decrease and cover an even wider range than for conventional
distributions. The introduction of time-shifted distributions expands the scope of QS taking into account the well-known fact from
the queuing theory that the average waiting time is associated with the coefficients of variation of the intervals of arrivals and the
service time by a quadratic dependence. The spectral decomposition method for solving the Lindley integral equation for a queuing
system with second-order hyper-Erlang and hyperexponential input distributions allows us to obtain a solution in a closed form and
this solution is published for the first time. The resulting solution complements and extends the well-known queuing theory formula
for the average queue waiting time for queuing systems of type G/G/1.

KEYWORDS: hypererlangian and hyperexponential distribution laws, Lindley integral equation, spectral decomposition
method, Laplace transform.

ABBREVIATIONS Du 1S a service time variance;
LIE is a Lindley integral equation;

. . ) . M is an exponential distribution law;
. G/G/1 is a QS Wlth. arbitrary l%WS of d1str1but1on.of H, is a hyperexponential distribution law of the second
intervals between receipt of requirements and service

time: order;
dS is a queuing system; H; is a shifted hyperexponential distribution law of
PDF is a probability distribution function. the second order;
HE, is a hypererlangian distribution law of the second
NOMENCLATURE order:

a(t) is a density function of the distribution of time

between arrivals; HE, is a shifted hypererlangian distribution law of

the second order;

| is an average idle time;
12

A"(s) is a Laplace transform of the function a(t);

b(t) is a density function of the distribution of service
time; is a second initial moment of the idle period;
p is a parameter of the hyper-Erlang law;

* . . .
B"(s) is a Laplace transform of the function b(t); q is a parameter of the hyperexponential law;

C, is a coefficient of variation of time between W(y) is a PDF of the waiting time in the queue;
arrivals; W is an average waiting time in the queue;
c,, 1s a coefficient of variation of service time;

(0 W*(S) is a Laplace transform of waiting time density
D, is a variance of a random interval between  fynction;

arrivals; Z is an any number from the interval (-1, 1);
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A is an input flow rate;

A,Ay are parameters of the hypererlangian
distribution law of the input flow;

W is a service intensity;

Hy,u, are parameters of the hyperexponential

distribution law of service time;
p is a system load factor;

T, is an average time between arrivals;

?f is a second initial moment of time between

arrivals;

T, 1s an average service time;

%
®_ (s) is a Laplace transform of the PDF of waiting

is a second initial moment of service time;

time;

v,.(s) is a first component of spectral
decomposition;

y_(s) is a second component of spectral
decomposition;

x(t) is a characteristic function of a random variable

INTRODUCTION

The article is devoted to the analysis of QS of type
G/G/1 with arbitrary laws of the distribution of the input
flow of requirements and the time of their servicing, for
which, in the general case, a solution cannot be found for
the main characteristic — the average waiting time of the
requirements in the queue. Therefore, systems of the type
G/G/1 can be studied only with specific laws of the
distributions of the input flow of service time [1-3]. As is
known, for example, from [1], for the G/G/1 system, the
average waiting time is determined by the expression

D +D, +(1-p2 /22 |2
21-p)/ A 21

Since expression (1) is associated with the coefficients
of variation of the intervals of receipt and service by a
quadratic dependence, the role of the latter for the value
of the average waiting time is significant. The second
term on the right-hand side of (1) remains unknown and it
is likely that it may depend on the moments of the arrival
intervals and the service time of a higher order than the
first two. Because of this, formula (1) will be considered
incomplete so far. In teletraffic theory, using average
waiting time, packet delays in packet switching networks
are estimated. In this paper, we restrict ourselves to the
second-order hyper-Erlang distribution of the intervals
between the input flow requirements and the second-order
hyperexponential distribution of the service time because,
when the order is higher than two are, further calculations
become extremely time-consuming.

The object of study is the queueing systems type
G/G/1.
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The subject of study is the average waiting time in
systems HE»/H,/1 and HE, /H, /1.

The purpose of the work is obtaining a solution for
the average waiting time of requirements in the queue in
closed form for the above-mentioned systems.

In the queueing theory, the studies of G/G/1 systems
are relevant because they are actively used in modern
teletraffic theory, moreover, one cannot obtain solutions
for such systems in the final form for the general case.
The laws of the Weibull or Gamma distributions of the
most general form, which provide the range of variation
of the coefficients of variation from 0 to co depending on
the value of their parameters, are not applicable in the
spectral decomposition method. This is because the
Laplace transform of the density function for these
distributions cannot be expressed in elementary functions.
Therefore, it is necessary to use other private laws of
distributions.

In the study of G/G/1 systems, an important role is
played by the method of spectral decomposition of the
solution of the Lindley integral equation and most of the
results in the theory of mass service are obtained using
this method.

1 PROBLEM STATEMENT

The article poses the problem of finding a solution for
the waiting time of requirements in a queue in QS
HE,/H,/1 with ordinary and shifted with distributions and
constructing a mechanism for approximating arbitrary
distribution laws with hyper-Erlang and hyperexponential
ones. To study the G/G/1 systems, as is known, for
example, from [1-4], the Lindley integral equation is
used. One form of the Lindley integral equation (LIE)
looks like this:

)= }/W(y—u)dc(u), y>0;

W (y
0, y <0.

Here is C(u) is PDF of the random variable 0= X-1,
where, in turn, X is the random service time and the
random variable f is the interval between arrivals.

When applying the method for solving the LIE, we
will adhere to the author’s approach and symbolism [1],
as was done in the author’s early works. For this, by
A"(s) and B*(s) we denote the Laplace transforms of the

density functions of the distribution of intervals between
arrivals and service time, respectively.

We need to find the law of waiting time distribution in
the system through the spectral decomposition of the

form: A*(=s)-B*(s)-1=y,(s)/y_(s),  where
v, (s) and y_(s) are some rational functions of s that

can be factorized. Functions y, (s) and y_(s) must

satisfy the following conditions according to [1]. To solve
the problem, it is necessary first to construct for these
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systems  spectral decompositions of the form

A*(=s)-B*(s)-1=wy, (s)/y_(s).

2 REVIEW OF THE LITERATURE

The method of spectral decomposition of the solution
of the Lindley integral equation was first presented in
detail in the classic queucing theory [1], and was
subsequently used in many papers, including [2,3]. A
different approach to solving Lindley’s equation has been
used in [4]. That work used factorization instead of the
term “spectral decomposition” and instead of the

functions y, (s) and w_(s) it used factorization

components ®, (z,t) and _(zt) of the function

1—z-y(t), where y(t) is the characteristic function of a

random variable & with an arbitrary distribution function
C(1), and z is any number from the interval (—1, 1).

In the scientific literature, including the web resources
of specialized queue theory journals, the author was not
able to find the results on the waiting time for QS with
hyper-Erlang and hyperexponential input distributions of
the 2nd order of the general form.

In the field of systems with delay in time, the authors
published the following works. In [5] the results on
systems with delay Hy/H,/1, Hy/M/1, M/H,/1 are given, in
[6] — on system with delay HE,/HE,/1, in [7] — on systems
with a delay based on the QS Ey/E»/1, Ey/M/1, M/E)/1,
and in [8] — on systems with a delay based on the QS
HE,/M/1. Article [9] presents the results for a system with
a delay M/HE,/1, and article [10] summarizes the results
for eight systems with a delay in time.

In [11] presents the results of the approach of queues
to the Internet and mobile services as queues with a delay
in time. Approximate methods with respect to the laws of
distributions are described in detail in [3, 13-15], and
similar studies in queuing theory have recently been
carried out in [16-24].

3 MATERIALS AND METHODS
For the HE,/H,/1 system, the distribution laws of the
input flow intervals and the service time are given by the
density functions of the form:

a(t)=4 pAdte 2Mt 4 4(1-p) Adte At )

b(t)=que ™™ +(1-q)pe ™" 3)

Distributions (2) and (3) in the scientific literature are
denoted by HE, and H,. They contain three parameters
0<p<l, A{,A, >0 and 0<g<l, py,p, >0 respectively,
therefore, they allow you to approximate arbitrary input
distributions at the level of the first three moments using
the well-known method of moments. It was shown in [6]
that the distribution of HE, as well as H, can be
unambiguously described using both the two and three
first moments.

We write the Laplace transform functions (2) and (3):
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B™(s)=q——+(1-

q)“_z
S+

S+

The expression A*(—s)-B*(s)—1=wy, (s)/y_(s)
for the spectral decomposition of the solution of the LIE
for the HE,/H,/1 system takes the form:

V-9 p[zxzfij“l‘p)(zxzj—isﬂx

ot st
M t+s Mo +8

The first factor in (4) on the right side in square
brackets is:

2 2
20 2),
+(1- =
p[le—s] ( p)[nz—sJ

p(16k12x§ —16x%x2s+4x%sz)
- 2

. (s) _

(224 =)’ (222 -5)

(1- p)(16x%x§ —16x1x§s+4x§s2)
+ =
(24 —5)* (24, —5)

8y — &S +a,s°

(20 -s) (20, -s)

intermediate  parameters used here a, = 161743,
a =160 o[ pA; +(1- p) Ay, @ =4[pAf +(1- p)A3].

Similarly, imagine the second factor:

L_{_ _ :H1H2+[QH1+(1—Q)H215:
{qws (1 } (s +5) (1, +5)

H,
) W, +S
b, +b;s
(1, +5)(p, +s)’
intermediate ~ parameters

by = au; + (1=, -
Continuing the decomposition, we obtain:

va(s) _ (a-as+astbyths)
v-(5) (20 —5)* (24 —5)* (1 +5)(s +9)
(M =8) (22 =) ( +S)up +9)

(20 =) (245 = 5) (y +5)(y +9)

M T

used  here

bo =,

(&)

—s(s” 48
(24 =5)* (215 = 5) (1 +5)(y +9)

_ S(S+81)(S+8,)(S ~S3)(S ~54)(S —S5)

(20 =) (205 —5)2 (g +S)(1a +5)
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The polynomial in the numerator on the right-hand
side of expansion (5) usually always has one zero S=0
[1]. In this case, the free term of the expansion is also
equal to 0: aghy —16A7A31, 1, =0. In the numerator, the

fractions on the right side of the expansion obtained a
polynomial of the sixth degree

—5(5° —cy8* —c38° —¢,8%2 —¢;5-¢y), whose coefficients
are equal to:

Co =2l —ayby —ag(y +10) +16A Ak (A +25),
¢ =—ajby +ahy —ag +16A A (A +25)(wy +1p) -
Ao [ +20)% + 20251,
Cy =gy +4(h; +Ap)(4h Ao + ppy) — (6)
~A[(hy +20)7 + 2005 11y + 1)
Cy = 400 + 20y +1p) — 4] +23) 16344 — pyps,
Cq =4 +Ap)—p —Hy-

These coefficients are obtained by performing
symbolic operations of the Mathcad mathematical
package on the decomposition numerator (5), because in
the numerator of the decomposition, 42 terms are
obtained, and it is rather problematic to manually process
and bring such terms. Perhaps that is why this problem
was solved for the first time. Next, we select the
polynomial in the decomposition numerator (5)

s° —c4$4 —0353 —czs2 —CiS—Cy, (7

because determination of its roots and work with them is
an important point in the method of spectral
decomposition of the solution of LIE.

The study of polynomial (7) with coefficients (6)
using the Vietta formulas confirms the presence of two
negative real roots as well as three positive real roots or
one positive and two complex conjugate roots with
positive real parts. The study of the sign of the least
coefficient ¢y >0 of the polynomial (9) shows that it is
always in the case of a stable system when
0<p=7,/m <1. In the general case, the presence of

such roots follows from the existence and uniqueness of
the spectral decomposition [1] or factorization [4].
Denoting the roots of the polynomial (7) with negative

real parts, for convenience, by -S;,—S,, and with
positive real parts, through S;,S,,Ss, the relation
v, (s)/w_(s) can finally be decomposed into the

following factors:

Vo (8) oS5 +8)(s+8,)(5-8)6=8)(6-8)
Ve (S) (27"1 _5)2 (2}"2_5)2 (1 +8)(u, +9) ®
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Therefore, taking into account conditions [1], we take
S(s+s;)(s+5Sy)

(g +8)(Hp +5)
zeros of the polynomial (7): s=0, S=-5,S=-S, , and

for the function y_(s)= , because the

the poles s=—p,, s=-p, lie in the region Re(s)<0,
(24 =5)* (20, - s)’

(5=53)(s—54)(s—55)
because its zeros and poles lie in the region Re(s)<D

defined by condition [1].

The fulfillment of conditions for the constructed
functions also confirms the figure 1 where the zeros and
poles of the relation are displayed on the complex s -
plane to eliminate errors in constructing the spectral
decomposition. In Figure 1, the poles are marked with
crosses, and zeros are indicated by circles.

and for the function y_(s)=-

S3 S84 Sy 2;\1212

“Hi-Hz -51-S2 Re(s)

Figure 1 — Zeros and poles of the function v, (s)/w_(s) for the
system HE,/H,/1

Next, by the method of spectral decomposition, we

Vi (s) s

Hiko

are the absolute values of the negative roots

determine the constant K = lim , Where

s=>0 S
St 52
—S;,—S,. The constant K determines the probability that
the demand entering the system finds it free.
Using the function y, (s) and constant K, we define

the Laplace transform of the PDF waiting time W (y):
K sisy(stm)(s+p)
@, (S) - - :
vi(s) s(s+sp)(s+s2)mmy
From here, the Laplace transform of the waiting time
density function W' (s) =s-®, (s) is
W*(S): 3152 (S+H1)(S+M2) '
(s+51)(S+5y )y

(€))

To find the average waiting time, we find the
derivative of the function W (s) with a minus sign at

the point s=0:

_dW*(s)| :_slsz(s+p1)(s+p2) _
ds 0 (s+5)(s+5))my 0
1 1 1 1
=t ————

Finally, the average wait time for the HE»/H,/1 system
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(10)

where S;, S, the absolute values of the negative roots are
—8;,—S, of the polynomial (9) with the coefficients given
above, and p;, p, — the distribution parameters (3).

Thus, for the average waiting time in the QS HE,/H,/1,
the solution in closed form (10) is obtained.

From the expression (9), if necessary, you can also
determine the moments of higher orders of the waiting
time, for example, the second derivative of the
transformation (9) at the point s=0 gives the second
initial moment of the waiting time

W2 =20 s s = s sy il
which allows you to determine the dispersion of the
waiting time. Given the definition of jitter in
telecommunications as the spread of the waiting time
around its average value [12], we will thereby be able to
determine jitter through dispersion. This is an important
result for delay-sensitive traffic analysis.

The problem of approximating the distribution law (2)
using both the first two moments and the first three
moments is considered in detail in [6]. To do this, we use
the initial moments up to the third order found for the
distribution (2) found based on the Laplace transform
property of the moment reproductions:

_ I-p) 5 3 1-p
-2l g2 e )
b Moh (11)
3 _3p 3(1-p)
Tx——3+ 3 .
A %)

When approximating using the first two moments, the
unknown distribution parameters (2) are determined using
the following expressions:

2
M =2p/ T, Ay =201-p)/T, pods PGS
2\ 8(+cd)

In this case, for the probability p you can take any of
these values. It follows that the coefficient of variation of

time between arrivals ¢, >1/+2. When approximating

using the first three moments to find the distribution
parameters (2), it is necessary to solve the system of three
equations of the method of moments (11) in the Mathcad
package. Moreover, a necessary and sufficient condition
for the existence of a solution is the fulfillment of the

condition: ‘Ei a > r% . From (11) it follows that the
square of coefficient of variation of time between arrivals

A =2Ph (= 29) + PA=2P)(y ~hp)”
2[(1- p)A; + P, I

=

(12)

© Tarasov V. N., Bakhareva N. F., 2020
DOI 10.15588/1607-3274-2020-4-8

78

The same problem for distribution law (3) using both
the first two moments and the first three moments was
considered in detail by the author in [5]. To do this, we

write the expressions for the initial moments of
distribution (3):
1- > 2(1-
s -9, (-9 5 2 2(0-q)
u TR 2
b M 1 15 (13)
= _6a, 6=
" .
TR

In this case, to determine the unknown parameters, the
following expressions are obtained

1
=20/ % 1y =20-0) %, G=[1%4(G 1)/ (6 +D].

In this case, for the probability g you can take any of
these values. It follows that the coefficient of variation of
the service time ¢, >1.

From (13) it follows that the square of the coefficient
of variation of the service time will be equal to

2 _ (=0P)uf —24(1- Qpypy +42 - Qw3

c (14)
! [(1- )y +qu, 1

When approximating using the first three moments, in
order to find the distribution parameters (3), it is
necessary in the Mathcad package to solve the system of
three equations (13) obtained by the method of moments.
In this case, a necessary and sufficient condition for the
existence of a solution is the fulfillment of the condition:

ri a > 1,51:;2L [13]. Due to the simplicity of calculations,

we will dwell on the approximation of the laws of
distributions using the first two initial moments.

Thus, the hypererlang law, as well as the
hyperexponential distribution law, can be determined
completely by the first two moments and cover the entire
range of variation of the coefficient of variation from
1/~/2 to o, which is wider than for the hyperexponential
distribution from 1 to co.

Next, we consider a system that is fundamentally
different from the QS studied. For the HE,/H,/1 system
with shifted laws of distributions of input flow intervals
and service time, these laws are defined by density
functions of the form:

apadt—ty)e M) L 4(1- p)3t—ty)e P2,

a(t)=<t>ty,

1
0, 0<t<t,, (1s)
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b(t)= {q“le_“l(’_’(’) +(1-g)ppe 2070 1>, (16)

0, 0<t <1

The density functions (15) and (16) are shifted to the
right from the zero point by the value of #;, >0 . Thus, we

have a QS with a time delay of #, > 0. Such a QS, unlike

the conventional system, is denoted as HE, /H, /1. We

are interested in the average wait time for the

HE, /H; /1 system.
Statement. The spectral expansions
A*(=s)-B*(s)=1=wy_ (s)/y_(s) of the LIE solution

for systems HE, /H, /1 and HE,/H,/1 completely

coincide and have the form (10). Consequently, the
Laplace transforms of the waiting time density function
for them also coincide.

Proof. The Laplace transforms of functions (15) and
(16) will be respectively:

2 2
27"1 27‘2 —tys
A*(s)= +(1- i S U PP (L
(S) [p[S‘Fz}\.lJ ( p)[s-!—Zij ] ¢
B (s)z[qL+(l— M—Z]e_tos.
S+ S+Ha
The spectral decomposition

A*(=s)-B*(s)-1=wy, (s)/y_(s) of the LIE solution
for the HE, /Hj; /1 system will be:

2 2
2 2 V| s
+(1- 0% x
p[”‘l_s] ( p)[nz—sj }

><|:qu1+(l—q) Ha :|e_t0s -1=
Kyt Mo +s

2 2
2, 20,
= — | +(1- - &
[p[ZXI—SJ ( p)[zkz—sj :|><
x{q H +(1—q)“2:|—1,
Hy+s Mo +s

Here, the exponential functions due to the opposite
signs of the exponents are zeroed out and thus the shift
operation is leveled. We thereby obtained the same
expression (8). Therefore, the spectral expansions for the

HE, /H, /1 and HE,/H,/1 systems completely coincide

and have the form (8). Thus, all the above considerations
for the HE,/H,/1 system are also valid for the system, but
already with the changed numerical characteristics of the
shifted distributions (15) and (16). The statement is

proved. Now we can use for the new HE, /H, /1 system
the results for the ordinary HE,/H,/1 system, but with the
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changed distributions parameters (15) and (16) due to the
introduction of the shift parameter 7, >0 into them.

We define the numerical characteristics of the
interval between the arrivals of requirements and service
time for the new HE; /H, /1 system. To do this, we use
the Laplace transforms of functions (15) and (16). The
value of the first derivative of the function 4*(s) with a

minus sign at the point s=0 is equal to
dA* (s)

= phy + (1= pIA; +1,-
dS s=0

Hence, the average value of the intervals between
adjacent requirements of the input flow will be equal to

T, =pA (- A+, (17)
The value of the second derivative of the function at
s=0 gives the second initial moment of the arrival interval

2_2 p (=p) 3. p (A=p

Ty =ty +2t)[—+——=]+=[F+ 1-

A=ty 202 2 (18)
Define the square of the coefficient of variation

A —2phy (M —hy) + p(1=2p) Ay —Ay)?
P ) 2 (M =2) + p(A=2p)(M —ho)” (19)

Atghiky +(1= p)hy + pho T

Similarly, we determine the average service time
through the Laplace transform B (s) of function (16)

- -1 -1
T =g +(A-qny +1p. (20)

The value of the second derivative of the function
B (s) at s=0 gives the second initial moment of service
time

=1 +2t0[i+7(1_q)]+2[%+7(1 _zq)] .
M

21)
2 Hi K2 ¢

From here we define the square of the coefficient of
variation of the service time:

2 0T = 2ag( =9 +gC- ]

2
(oo + (A =q@)uy +qu;]

Note that the coefficients of variation ¢, ¢, >0 for

the shift parameter ¢, > 0.

Now we estimate the effect of the shift parameter
fo >0 on the numerical characteristics of distributions
(15) and (16). We are primarily interested in the square of
the coefficient of variation, since the average waiting time
in the G/G/1 system is related to the variation coefficients
by the quadratic dependence (1).
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Comparing expressions (12) and (19), we see that the
time shift operation reduces the coefficient of variation of
the intervals of receipts by a factor of

oMy

—————=—— Comparing (14) and (22) we get a
(M- p)+i;yp]

oK

[ (1=q) +129]
delayed system provides shorter waiting times than a
conventional system with the same load p . This is the

decrease in 1+ times. Consequently, a

essence of introducing a delay parameter ¢, >0 to reduce

the coefficients of variation of intervals in the input
stream and service time, and because of reducing the
waiting time for requests in the queue.

Also in this lies the quantitative and qualitative
difference between a delayed system and a conventional
system. The results of computational experiments
unequivocally confirm these facts.

Considering expressions (17)—(19) as a record of the
method of moments, we find the unknown distribution
parameters (15) by doing the same with the usual
distribution (2), setting

M=2p/ (G 1) A =21=p)/ (G ~1p)-

and demanding the fulfillment of condition (19).
Substituting expressions (23) into (19) and solving the
obtained fourth-degree equation with respect to the
parameter p and taking into account the condition

- 2
0<p<l, we find p:li\/l_ 3(%_;0) —
48T —1)” + 6T ]

2
then we determine the parameters 2, and &, from (23).

(23)

and

By doing the same with expressions (20)—(22), setting

W =2q/(t,—19), np =2(-q)/ (7, %)) . (24)

and substituting (24) into (22) we obtain an equation of
the fourth degree with respect to the parameter g. Having
solved it taking into account the conditions 0 < g <1, we

the
- 2
1 (1)
T - 2, 222
2 \4 2, — )" + ey ]
expression for ¢ in (24), we find the unknown distribution
parameters (16) L, 1, . Moreover, as p and ¢, you can

determine parameter

Substituting  the

choose any of two values.

Note. The range of applicability of the HE, /H, /1
system will be determined by the no negativity of the
expressions under the square root for parameters p and g.

Thus, the algorithm for calculating the average
waiting time for given input parameters T, T, ¢y, ¢ lo
is reduced to a sequential solution of these equations.
Next, we determine the coefficients of the polynomial (9)
from the above expressions (8) and find the necessary
roots with negative real parts —s;, —s,. Substituting the

© Tarasov V. N., Bakhareva N. F., 2020
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absolute values of these roots in expression (10), we
determine the average waiting time. The presence of such
roots is due to the existence and uniqueness of spectral
decomposition. Numerous experiments carried out only
confirm this fact.

4 EXPERIMENTS
Below in the table. 1 shows the calculation data in
Mathcad package for the HE,/H,/1 system for the cases of
low, medium and high loads p=0,1;0,5;0,9. Note that

the HE,/H,/1 system is applicable for ¢, >1/ V2, 21
The load factor p in all tables is determined by the ratio
of average intervals p =T, /T, . The calculations given in
all tables are carried out for the normalized service time

Ty =1. Moreover, for comparison, the known results for

H,/H,/1 QS were used [5]. Due to the fact that the
Hy/H,/1 system is not applicable in the case ¢, <1, in

table 1 dashes are given.

Table 1 — Results of experiments for QS HE,/H,/1 and

H,/H,/1
Input parameters Average waiting time
For QS For QS
P (€,¢,) HE,/H,/1 Hy/Hy/1
(0.75:1) 0.030 -
ol (2.2) 0.335 0.445
: (4.4) 1.666 1.779
(8.8) 7.10 7112
0.75;1) 0.620 -
05 2.2) 3.974 4.044
' (4.4) 16.392 16.129
(8.8) 65.967 64.178
0.71;1) 6.607 —
00 22) 36.271 36.20
: (4.4) 145.465 144.833
(8.8) 580.822 577.861
Table 2 shows the calculation results for the

HE; /H; /1 system. For comparison, table 2 on the right
shows the results for the conventional HE,/H,/1 system.

Table 2 — Results of experiments for QS HE, /H, /1 and

HE,/Hy/1
Input parameters Average waiting time
. For QS HE; /H; /1 For QS
P @ia) HEZ/I%/l
t=0.9 t=0.5 t=0.01

(0.71;0.71) 0.021 0.023 - 0.030

01 (2;2) 0.282 0.321 0.334 0.335

’ (4:4) 1.200 1.528 1.663 1.666

(8:8) 4.875 6.400 7.088 7.100

(0.71;0.71) 0.270 0.313 - 0.620

05 (2;2) 2311 3.118 3.957 3.974
’ 4:4) 9.322 12.794 16.323 16.392
(8:8) 37.366 51.497 65.692 65.967

(0.71;0.71) 3.052 4.125 - 6.607

0.9 (2;2) 24.313 33.405 36.241 36.271
’ 44 97.284 133.291 | 145.327 145.465
(8;8) 389.166 | 532.177 | 580.254 580.822
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5 RESULTS
With a decrease in the parameter value #;, the average

waiting time in the system tends to the average waiting
time in the HE,/Hy/l system, which confirms the
complete adequacy and reliability of the results. In some
cases, with #,=0.01, the system with delay is not defined

and there are dashes in the table. This is due to the note
made above.

In the work, spectral expansions of the solution of the
Lindley integral equation for two systems HE,/H,/1,

HE; /H, /1 are obtained, and it is proved that they

completely coincide. Using the spectral decomposition, a
formula is derived for the average waiting time in the
queue for these systems in closed form. These formula
complement and extend the well-known incomplete
formula (1) for the average waiting time for G/G/1
systems.

As can be seen from tables 1, the results in both cases
are quite close, and the difference is explained by the fact
that the distributions of HE, and H, are still different. The
data in table 2 confirm the adequacy and reliability of the
above mathematical calculations.

6 DISCUSSION
The article presents an analytical solution for the
average waiting time in the queue for the HE,/H,/1
system using the symbolic operations of the Mathcad
package. The same solution allows it to be used for a

HE,; /H, /1 system with delay. Using the proposed

approach, in addition to the average waiting time, one can
determine the variance and moments of higher orders of
waiting time. The result obtained, on the one hand,
supplements the HE,/H»/1 system, and, on the other hand,
expands the range of variation of the coefficients of
variation of the intervals of arrivals and service time from
1/+2 to o. To be convincing, the calculation data for the
HE,/H,/1 system are compared with the results for the
Hy/Hy/1 system, which demonstrates their sufficient
proximity.

The time shift operation reduces the variation
coefficients of the interval between arrivals and the
service time of requirements. Because the average waiting
time in the G/G/1 system is related to the coefficients of
variation of the arrival intervals and service time by the
quadratic dependence, the average waiting time in the
delayed system will be less than in a conventional system
with the same load factor.

CONCLUSIONS
The article presents the solution to the problem of
determining the average waiting time for two queuing

systems HE,/H,/1 and HE, /H, /1 by the classical
method of spectral decomposition.
The scientific novelty of the results is that spectral

decompositions of the solution of the Lindley integral
equation for the systems under consideration were

© Tarasov V. N., Bakhareva N. F., 2020
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obtained for the first time and, wusing spectral
decompositions, formulas were derived for the average
queue waiting time for these systems in closed form.
These formulas expand and supplement formula (1) for
the average waiting time for G/G/1 systems with arbitrary
laws of the distributions of the input stream and service
time.

The practical significance of the work lies in the fact
that the obtained results can be successfully applied in the
modern theory of teletraffic, where the delays of
incoming traffic packets play a primary role. For this, it is
necessary to know the numerical characteristics of the
incoming traffic intervals and the service time at the level
of the first two moments, which does not cause
difficulties when using modern traffic analyzers.

Prospects for further research are seen in the
continuation of the study of systems of type G/G/1 with
other common input distributions and in expanding and
supplementing the formulas for average waiting time.
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YK 621.391.1: 621.395

Tapacos B. H. — 1-p TexH. Hayk, mpodecop, 3aBimxyBad Kadeapu IporpamHOro 3abe3ledeHHs Ta YNPaBIiHHA B TEXHIYHHX
cuctemax [10BOJI3BKOrO AepKaBHOIO YHIBEPCUTETY TeJIeKOMYHIKaliil Ta inpopmaruky, Pocilicbka @enepartis.

Baxapesa H. ®. — n1-p TexH. Hayk, npodecop, 3aBiayBau kadeapu iHGopMaTHKUA Ta 0OUUCIIOBAILHOI TeXHIKH [10BOI3BKOTO
JIep)KaBHOTO YHIBEPCHUTETY TeleKoMyHikauiit Ta inpopmatrku, Pocificexa denepartis.

MOJIEJIb TEJIETPA®IKA HA OCHOBI CUCTEM HE,/H,/1 31 3BBUMAMTHUMM TA 3CYHYTHUMMU BXITHUMHU
PO3MOAIVIAMHA

AxTyanbHicTh. PO3MIsHYTO 3amady BHBEICHHS DIMICHHS IUISI CEPEAHBOTO Yacy OYIKYBaHHS B 4ep3i y 3aMKHYTIH Gopmi mis
3BHYAIfHOI CHCTEMH 3 TillepeplIaHTiBCBKUMH 1 TiNEpeKCHOHEIIHHIMHI BXiIHUMH PO3IOAUIAMH JAPYroro IMOPSAKY 1 cucreMu 3i
3CYHYTHMH T TillepepIaHTiBCbKUMH 1 TiIePEeKCIIOHeiHHUMH BX1THUMH PO3IOALIAMH.

Meta podotn. OTprMaHHs PillIeHHs U OCHOBHOI XapaKTePUCTUKH CHCTEMH — CEPeHBOr0 4acy OUiKyBaHHS BUMOT y 4ep3i I
JIBOX CHCTEM MacoBoro obciyroByBanus tuy G/G/1.

Mertopn. [Ins1 BUpILICHHSI IOCTaBJICHOTO 3aBAaHHs OyB BUKOPHUCTAHHMI KJIACHYHUI METOJ CIIEKTPAJIbHOrO PO3KIIAJAHHS PilllCHHS
iHTerpansHoro piBHsHHA JliHmm. Llelt MeTon mo3BONIsiE OTPUMATH PIMICHHS IS CEPEIHBOTO Yacy OWIKYBaHHS ISl PO3TISTHYTHX
CHCTEM Y 3aMKHYTii (opMi. MeToJ CEKTPaTbHOTO PO3KIAJIaHHA PIICHHS 1HTErpajdbHOTO PiBHAHHS JIIHIUII Tpae BaKIUBY PONb B
teopii cucrem G/G/1. [ MPakTUIHOTO 3aCTOCYBAaHHA OTPHMAHHX PE3yJIbTaTiB OyJI0 BUKOPUCTAHO BiIOMHI METOJ MOMEHTIB TeOpii
HMOBiIpHOCTEH.

Pe3yasTaTn. Briepie oTpuMaHO cneKkTpalbHe pPO3KJIAJaHHS PIICHHS iHTETpaJbHOro PIiBHSHHS JIMHIM IS JBOX CHCTEM, 3a
JIOTIOMOTOI0 SIKOTO BUBEJECHO PO3paxyHKOBHH BHpa3 VISl CEPeIHbOr0 4acy OYiKyBaHHS B uep3i y 3aMkHyTiH ¢opmi. Takuil minxin
JI03BOJISIE PO3paxyBaTH CEpPeAHiil 4ac OUiKyBaHH ISl 3a3HAYCHUX CUCTEM Yy MaTeMaTUYHHX HAaKeTaxX Il IMPOKOTO Jiarna3oHy 3MiHU
napaMeTpiB Tpadiky. Yci iHIIi XapaKTepUCTUKU CHCTEM € TOXIIHUMH Bijl CEPEAHBOIO Yacy O4iKyBaHHSI.

BucHoBkn. IlokazaHo, HI0 TrinmepepiaHriBCbKUN 3aKOH PO3MOALTY [OPYroro IMOPSIIKY, SK 1 TilepeKcroHeuiiiHui €
TPUNapaMEeTPUYHHM, MOXKE BH3HAYaTHCS SIK JBOMA NEPIIMMHM MOMEHTaMHM, TaK i TphOMa INEpPIIMMH MOMEHTaMH. Bubip Takoro
3aKOHY PO3IOALTY MMOBIpHOCTEH OOyMOBIEHHMI THM, IO HOro KoedimieHT Bapiallii oXOoIuIoe OLTBII HIMPOKWH [iamazoH, HiXK Y
rinepexcroHeniiinero posnoxiny. Ui 3CyHyTHX TillepepiaHriBCBKOTO 1 TiNepeKCHOHEifHeT0 3aKOHIB PO3MOAUIIB Koe(ilieHTH
Bapiamiif 3MEHIIYIOThCSA 1 OXOIIIOIOTH IIe OLIBII MIMPOKHH [iana3oH, HDK y 3BHYAHUX po3NOALTIB. BBe#eHHS 3CyHyTHX B 9aci
PO3MOLIIB PO3LIMPIOE chepy 3aCTOCYBaHHS CUCTEM MacOBOro 00CIyroByBaHHs 3 ypaxXyBaHHSAM BinoMoro dakxry 3 Teopii MacoBoro
oOCIIyroByBaHHs, IO CEpeAHill Yac OdYiKyBaHHs IIOB’si3aHWi 3 KoedilieHTaMu Bapialiifi iHTepBaJliB HAJXOJDKEHb 1 dacy
00CITyroByBaHHS KBaJPaTHYHOIO 3AJICHKHICTIO. MeTO/ CHEeKTPaIbHOrO PO3KJIAaJAaHHS PIlCHHS iHTerpalnbHOro piBHAHHA JliHUH s
CHCTEeMH MacoOBOTO OOCIyroBYyBaHHsI 3 TilepepiaHTiBCHKUMH 1 TIHEPEKCHOHEIIHHUMH BXiJHUMH DPO3MOIIIAMU PYTOro MOPSAKY
JIO3BOJISIE OTPUMATH PIlICHHS B 3aMKHYTIX (opmi i e pimeHHs myOuikyeTsest Brepme. OTpuMaHe pillieHHs JOMOBHIOE 1 PO3IMINPIOE
BiTOMy (opMyny Teopii MacoBoro OOCIyroByBaHHS IJISl CEPENHBOTO Yacy OYIKYBaHHS BHMOT B Uep3i IS CHCTEMH MacOBOTO
obcmyrosyBanus tTuy G/G/1.
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KJIIOYOBI CJIOBA: runepepiaHTiBChKU 1 TiNEpeKCIIOHSNiHHNI 3aKOHH PO3MOALTY, iHTerpansHe piBHSHHS JIiHI, MeTOxR
CIIEKTPAJIbHOTO PO3KJIa/laHHs, epeTBopeHHs Jlamnaca.

YK 621.391.1: 621.395

MOJEJIb TEJIETPA®UKA HA OCHOBE CUCTEM HE,/H,/1 C OBBIYHBIMHA U CO CIBUHYTBIMH BXOJHbIMH
PACITIPEAEJIEHUAMMU

Tapacos B. H. — n-p texn. Hayk, mpodeccop, 3aBemyromuil kadexpoi NporpaMMHOTO OOECIIEUeHHS U YIpaBICHUS B
TEXHUYECKHX cHCTeMax IIOBOJKCKOrO TIOCYyIapCTBEHHOTO YHHBEPCHTETa TeleKOMMYHHKaMid u uHpopmaTtuku, Poccuiickas
Denepanus.

Baxapea H. ®. — 71-p TexH. Hayk, mpodeccop, 3aBeayromas kadenpoidl HHOOPMATUKH U BBIYUCIUTEIBHON TEXHHKU
TTOBOJIKCKOTO TOCY JapCTBEHHOTO YHHBEPCHTETA TeICKOMMYHHKAIM 1 HHbopMaTukH, Poccuiickas deneparusi.

AHHOTAIUA

AxTyanbHOCTh. PaccMoTpena 3aaua BBIBOA pEIIeHHs ISl CPEJHETO0 BPEMEHH OKHIAHHS B OYEpelr B 3aMKHYTOH (hopMe I
OOBIYHOI CHCTEMBI C THIEPIPIAHTOBCKUMHU M THUIEPIKCIIOHCHIMANGHBIMA BXOAHBIMU PAcCIpeleleHHIMH BTOPOTO IOpSAKA U
CHCTEMBI CO CABUHYTHIMH THIIEPIPIIaHTOBCKUMU U THIIEPIKCIIOHEHINAIBHBIMH BXOJHBIMH PACIIPEACICHUIMH.

Leab padotel. [TonyyeHnue pemeHus A1 OCHOBHOW XapaKTEPUCTHKH CHCTEMBI — CPEJHEr0 BPEMEHH OXHAAHHS TpeOOBaHUH B
ouepequ Ui CUCTeMbl MaccoBoro obcmyxuBanust Tuna G/G/1 ¢ OOBIYHBIMH W CO CABHHYTBIMH C THOEPIPIAHTOBCKUMH M
THIEPIKCIIOHEHIINAIBHBIMH BXOJHBIMH PACIPEeIeHUIMH BTOPOTro MOPSIKa.

Mertoa. [lns pemieHuss NMOCTaBICHHOM 3ajaud MCIOJB30BaH KJIACCMUYECKMH METOJ| CIEKTPAIBbHOTO Ppa3IOXKEHHUs pEIIeHUs
HMHTETPANbHOTO ypaBHEHUS JIMHIIM, KOTOPBIH IO3BOMSIET IONYYWTh pEIICHWE JUIT CPEJHET0 BPEMEHH OXKUJIAHUS UL
paccMaTpHBaeMBIX CHCTEM B 3aMKHYTOH (opme. MeTo CIEKTPanbHOTO Pa3IoKEHHs PENICHHS HHTErPATbHOTO ypaBHEHHS JInHAmM
3aHMMaeT BaxHyl0 4acTb Teopun cucreM G/G/1. Jng NpakTHYECKOTO HPUMEHEHHs IOJTYyYCHHBIX PE3yJIbTaTOB HCIIOIH30BAH
H3BECTHBIH METOX MOMEHTOB TEOPHHU BEPOSITHOCTEH.

Pe3yabTaThl. BriepBbie nosy4eHbl CLIEKTPAIBHBIE PA3JIOKEHHS PEIICHUsI THTETPAIBHOTO YpaBHeHHs JIMHAIM 1 00enX cucteM,
C TIOMOIIBIO0 KOTOPBIX BBIBEACHBI pacYeTHBIC (POPMYJIBI IS CPETHEr0 BPEMEHU OXKUJIAHUS B OYEPEIH JJIsl BEIIICYKa3aHHBIX CHCTEM B
3aMKHyTOH (hopme. Takoil MOAXOJ MO3BONAET PacCUUTATh CPEAHEE BPEMS OXKMAAHMSA ISl YKA3aHHBIX CHCTEM B MaTEMAaTHUYECKUX
MaKeTax Ul IIUPOKOrO IMana3oHa HM3MEHEHMs IapaMeTpoB Tpaduka. Bce ocTanbHBIE XapaKTEPHCTHKU CHCTEM SIBIISTIOTCS
TIPONU3BOJHBIMH OT CPEIHETO BPEMEHH OXKUAAHHSI.

BoiBoasbl. [lokazaHo, 4TO THMIEPIPIAHTOBCKUH 3aKOH PACHpefeleHHs BTOPOTO IOpsIKa, KaK M THIEPIKCIOHEHIUAIbHBIH,
SIBISTIOIINICS TpeXmapaMeTpUIecKUM, MOXKET ONPENEINAThCS KaK JBYMsI IepBEIMH MOMEHTAMH, TaK U TPeMsI HEPBEIMH MOMEHTAMH.
Br16op Takoro 3akoHa paclpeneNeHHs BEpOSTHOCTEH 00yCIIOBIEH TeM, YTO ero Kod((UIMEHT BapHanuM OXBaThIBaeT Ooiee
LNIMPOKMH  JHMama3oH, 4YeM y THIepPIKCIOHEHINAIBHOTO pacnpeneiaeHus. [  CABUHYTBIX — THIEPIPIAHTOBCKOTO U
THIIEPIKCIIOHEHIINATIBHOTO 3aKOHOB pacnpesiefeHnid K03 GUIUEeHThl BapHalii yMEHBIIAIOTCS U OXBATHIBAIOT ellle 0oJiee MIMPOKHI
JMaTa30H, YeM Yy OOBIYHBIX pacnpeneneHuil. BBeneHne cABUHYTBIX BO BPEMEHH PaclpeneieHHil paciupseT 001acTh TPUMEHEHUS
CHCTEM MAacCOBOTO OOCTY>KHBaHHMS C Y4YeTOM H3BECTHOTO (hakTa M3 TEOPUH MacCOBOTO OOCIY’KMBAHHUs, UTO CPEAHEE BpeMs
OXHJAHUS CBA3aHO C KOd(p(UIMEHTaMH BapHalWii HHTEPBANIOB IIOCTYIUICHHH M BPEMEHH OOCITyXXHMBAaHHS KBaJpaTHIHOMN
3aBUCHMOCTBIO. METOJ CHEKTPAIbHOTO Pa3lIOKEHHs PEIIeHHs HHTETPaIbHOTO ypaBHEHUS JIMHIIM AT CHCTEMBI MacCOBOTO
00CITy>KUBaHHS C THIEPIPIAHTOBCKUMHU U TUIIEPIKCIIOHEHIIMAIBHBIMU BXOJHBIMH pacIpe/ie/ICHUsIMH BTOPOTO IOPSAKA MO3BOJISET
MIOJTyYUTh PEIICHUE B 3aMKHYTOH (hopMe U ITO pelIeHHe ITyOJIHKyeTcsl BIepBble [loaydeHHOe peleHne JOIONHIET U PacIIupsieT
U3BECTHYIO (POPMYJy TEOPHH MAcCOBOTO OOCITY>KMBaHMS JJIsI CPEAHETO BPEMEHH OXXHMIaHWs TpeOOBaHHWIT B ouepequ IUIsi CHCTEMBI
MaccoBoro obciyxusanus Trna G/G/1.

KJIFOYEBBIE CJIOBA: runep3piaHroBCKUil U THIEPIKCIOHEHINATIBHBIA 3aKOHBI PACIpEIeNeHHs, HHTETPaJbHOE YpaBHEHNE
JIvHM, METO CIIEKTPAIBHOTO pa3ioKeHus, mpeodpazopanue Jlamaca.
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