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ABSTRACT 

Context. Neural networks require a large amount of annotated data to learn. Meta-learning algorithms propose a way to decrease 
number of training samples to only a few. One of the most prominent optimization-based meta-learning algorithms is MAML. How-
ever, its adaptation to new tasks is quite slow. The object of study is the process of meta-learning and adaptation phase as defined by 
the MAML algorithm. 

Objective. The goal of this work is creation of an approach, which should make it possible to: 1) increase the execution speed of 
MAML adaptation phase; 2) improve MAML accuracy in certain cases. The testing results will be shown on a publicly available 
few-shot learning dataset CIFAR-FS. 

Method. In this work an improvement to MAML meta-learning algorithm is proposed. Meta-learning procedure is defined in 
terms of tasks. In case of image classification problem, each task is to try to learn to classify images of new classes given only a few 
training examples. MAML defines 2 stages for the learning procedure: 1) adaptation to the new task; 2) meta-weights update. The 
whole training procedure requires Hessian computation, which makes the method computationally expensive. After being trained, the 
network will typically be used for adaptation to new tasks and the subsequent prediction on them. Thus, improving adaptation time is 
an important problem, which we focus on in this work. We introduce Λ (lambda) pattern by which we restrict which weight we up-
date in the network during the adaptation phase. This approach allows us to skip certain gradient computations. The pattern is se-
lected given an allowed quality degradation threshold parameter. Among the pattern that fit the criteria, the fastest pattern is then 
selected. However, as it is discussed later, quality improvement is also possible is certain cases by a careful pattern selection. 

Results. The MAML algorithm with Λ pattern adaptation has been implemented, trained and tested on the open CIFAR-FS data-
set. This makes our results easily reproducible. 

Conclusions. The experiments conducted have shown that via Λ adaptation pattern selection, it is possible to significantly im-
prove the MAML method in the following areas: adaptation time has been decreased by a factor of 3 with minimal accuracy loss. 
Interestingly, accuracy for one-step adaptation has been substantially improved by using Λ patterns as well. Prospects for further 
research are to investigate a way of a more robust automatic pattern selection scheme. 

KEYWORDS: few-shot learning, meta-learning, Model-Agnostic Meta-Learning, MAML, adaptation time, adaptation speed, 
optimization-based meta-learning. 

 
ABBREVIATIONS 

MAML is Model-Agnostic Meta-Learning, a method 
of optimization-based few-shot learning; 

ResNet is a Residual Network, a particular architec-
ture of Convolutional Neural Networks; 

NLP is Natural Language Processing. 
 

NOMENCLATURE 
N is a number of images per class that are given for 

the network training. 
K is a number of classes the network is trained to dis-

tinguish between. 
X is a network input, in our case images. 
Φ(θ, X) is a neural network. 
θ is a matrix of network weights. 
B is a number of layers in the neural network. 
ρ(T) is a distribution of all tasks. 
Ti is one of the tasks, consisting of Support Set Si, 

Query Set Qi. 
P is a number of adaptation steps. 
θi

(j) is a matrix of adapted weights after j iterations that 
correspond to ith task. 

α is an adaptation step size, α > 0. 

β is a learning rate, β > 0. 
Λ is an adaptation template, which controls which 

neural network layers should be updated during the adap-
tation procedure to the current task T. 

 
INTRODUCTION 

The neural network accuracy for image classification 
has significantly improved thanks to deep convolutional 
neural networks. However, a very large number of images 
is required for such networks to train successfully. For 
instance, all of the ResNet [1] neural network configura-
tions from ResNet-18 to ResNet-152 (18 and 152 layers 
deep correspondingly) are trained on the ImageNet data-
set [2], which contains 1.281.167 images and 1.000 
classes (about 1.200 samples per class). Obviously, for 
many of the practically significant tasks it is impossible to 
collect and label a dataset that large. Thus, learning deep 
convolutional networks from scratch might yield poor 
results. Because-of that, on the smaller datasets typically 
an approach called transfer learning is used instead. That 
is, an ImageNet pretrained network of a particular archi-
tecture is taken and then further finetuned on the target 
(smaller) dataset [1; 3; 4]. However, training on few ex-
amples per class is still a challenge. This contrasts to how 
we, humans, learn, when even a single example given to a 
child might be enough. Also, it is hard to estimate the 
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quality of a certain ImageNet pretrained network on the 
target dataset. Hence, we get a model selection problem: 
if the model A is better than the model B on ImageNet, 
will it be better on our small dataset? A promising ap-
proach to resolving both of these problems is to use meta-
learning or its benchmark known as few-shot learning. 
Meta-learning trains the network on a set of different 
tasks, which are randomly sampled from the whole space 
of tasks. By learning the network in such a way, it is as-
sumed that the network will learn features that are rele-
vant to all of the tasks and not only to the single one, i.e., 
will learn more general features. 

In this work we focus on one of the most prominent 
optimization-based meta-learning methods, called 
MAML [5]. This method has become a keystone, and as it 
will be shown in the literature overview section, many of 
the newer method base on its ideas. Training of the 
MAML method is split into the so-called adaptation and 
meta-gradient update phases. 

The subject of study is the class of optimization-
based meta-learning algorithms. 

It has been shown that adaptation phase of the MAML 
is quite slow to perform [6], and in general, high neural 
network execution speed is a major problem for applica-
tions [7]. In this work we introduce gradient update pat-
terns, i.e., a selective update of the neural network 
weights during the adaptation phase.  

The purpose of this work is to show that by carefully 
selecting the newly-proposed gradient update pattern, it is 
possible to: 1) increase the execution speed of MAML 
adaptation phase; 2) significantly improve MAML per-
formance in case, when only 1 adaptation phase is used. 
The testing results will be shown on a publicly-available 
few-shot learning dataset CIFAR-FS [8]. 
 

1 PROBLEM STATEMENT 
The goal behind meta-learning is to train a neural net-

work Φ(θ), that is capable of adapting to the new previ-
ously unknown tasks given a small number of examples. 
Meta-learning is also said to be learning to learn problem. 
The training procedure is defined using a concept of tasks, 
that are sampled from the whole task space ρ(T) of the 
problem domain. The task is a tuple T = {S, Q}, consist-
ing of the so-called Support Set S = {XS, yS} and Query 
Set Q = {XQ, yQ} [5; 9–11]. In literature, the Query Set is 
also sometimes referred to as Target Set. Support Set 
{XS, yS} is used to adapt (or train) the network to the new 
task. The set S is small. XS are the network inputs, yS – the 
expected predictions. The number of examples per class is 
denoted as K and written as K-shot. K is typically in range 
from 1 to 20, although no hard upper-bound is defined. 
XQ, yQ are the query inputs and expected outputs corre-
spondingly. Number of classes N the network should dis-
tinguish between is denoted as N-way. 

We have given the general training procedure, next we 
define it in more detail for image classification optimiza-
tion-based meta-learning, which this paper is focused on. 
Optimization meta learning is defined in 2 steps: 1) adap-

tation step, which computes adaptation weights in a form 
of function θ’(θ), that minimize task-specific error 
L(ys, Φ(θ’, XS)); 2) meta-gradient update, which updates 
meta-weights θ. The idea behind such training procedure 
is that by finding good weights θ, it will be possible to 
adapt to new previously unseen tasks with few training 
examples in the adaptation procedure. For classification, 
the loss function used is typically cross-entropy (1): 

 
.),(log)),(,( ∑ θΦ−=θΦ

i
ii XyXyL  (1)

We define the algorithm-specific part in the Materials 
and Methods section. In this work we set a goal of im-
proving adaptation step execution time and accuracy. 

 
2 REVIEW OF THE LITERATURE 

The meta-learning approaches are mainly divided into 
3 broad categories [12]: metric-based, model-based and 
optimization-based. Representatives of each group differ 
in the neural network design and training procedure. In 
this work we focus on classification methods, yet applica-
tions exist in literally every field of machine learning [5; 
13–15], such as NLP, Reinforcement Learning, Face 
Verification, etc. 

Next, we describe each category of meta-learning 
methods. 1) In metric-based methods the goal is to define 
a neural network architecture that produces an embedding 
into a metric space and a similarity measure (metric), so 
that the distance between embeddings of the same class is 
smaller than that of different classes. Examples of such 
methods include Siamese Networks [16], Matching Net-
works [17], Prototypical Networks [9]. 2) In model-based 
methods the network architecture is designed, so that the 
model has explicit memory cells, which help the network 
to adapt quickly, for instance, Memory-Augmented Neu-
ral Networks [18]. 3) In optimization-based learning the 
network architecture is not changed, which means that 
conventional architectures for image classification can be 
used. One of the quintessential methods in this category is 
MAML [5], which defines the training procedure as  
a 2nd-order optimization problem. The method applicabil-
ity has been shown in regression, classification and rein-
forcement learning. Two popular datasets were consid-
ered for image classification: Omniglot [19] and miniI-
mageNet [10; 17], where MAML has beaten with a mar-
gin many of the previous methods. After MAML has been 
introduced, a lot of works have proposed its modifica-
tions. Reptile [20] has simplified MAML training scheme, 
MAML++ [11] has given practical recommendation on 
improving MAML training stability. In has been noted 
that while MAML++ has introduced more parameters to 
the network, total training time has decreased thanks to 
the performance optimizations proposed. Authors of 
Meta-SGD [21] note that by learning not only network 
weights, but also separate update coefficient for each of 
the weights, it is possible to achieve higher accuracies. 
However, the network training time and memory con-
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sumption has significantly increased as twice the number 
of the parameters should be optimized. 

In contrast to previous works, in this paper we focus 
on improving the network adaptation and not training 
time. We assume that after the initial training, the network 
can be adapted to multiple tasks in an online format. 
Thus, minimizing adaptation time is an important prob-
lem. The results obtained in the paper will be applicable 
to many of the optimization-based algorithms, including 
but not limited to the ones mentioned above. 

 
3 MATERIALS AND METHODS 

In this work we propose a modification to the MAML 
algorithm. As we have described in the problem statement 
section above, this class of algorithms is defined in terms 
of adaptation and meta-gradient update phases. 
The algorithm starts by randomly sampling a training task 
Ti~ρ(T). To sample a task Ti means to 1) randomly select 
N classes from all classes that are available in the dataset 
split (training, validation or test, based on which accuracy 
we want to compute); 2) randomly select K images per 
each of N classes for the Support Set and KQ images per 
each class N for the Query Set. The first phase of the al-
gorithm is adaptation, where MAML minimizes loss func-
tion (1) on the Support Set by performing several stochas-
tic gradient descent steps. To do that the algorithm itera-
tively builds model weights θi

(j)(θ) via formula (2), note 
that θi

(0) ≡ θ:  
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Having iteratively built the task specific weights θi

(j), 
the algorithm updates the meta-weights θ using formula 
(3): 
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In essence, in (3) the algorithm updates the meta-weights 
θ by averaging computed loss function (1) on the Query 
Set, for the neural networks Φ with weights θi

(P) on sev-
eral tasks Ti, i.e., in this step the algorithm backpropagates 
through the losses of all the task-specific adaptations. 
Throughout the paper we use 4 tasks for the meta-update 
step. Note, that in (2) task-specific weights θi

(j) are com-
puted on the Support Set, and in (3) Query Set is used for 
the loss computation. Also, in contrast to the conventional 
neural network training procedure the loss function is 
computed twice: first, to compute the adaptation weights 
θi

(P) in (2); second, to compute the resulting adaption loss 
in (3). Also, in (2) the gradient is taken by task-specific 
weights θi

(j–1) from previous step, and in (3) the gradient is 
taken by meta-weights θ.  Thus, as can be seen from for-
mulas (2), (3), the method requires Hessian computation 
during the meta-gradient update, hence, this is a second-

order optimization method. The whole training procedure 
can be seen in algorithm 1. A more detailed information 
can be found in the original paper [5]. 

 
Algorithm 1. MAML adaptation procedure 

1: Randomly sample task Τi from task space ρ(T)  
2: For each task Ti={Si, Qi}, where Si = {XS, yS}, Qi = {XQ, yQ} 
3: For iteration j = {1, …, P} 
4: Adapt the network via formula (2) using Si 
5: End for 
6: End for 
7: Update meta-weight θ via (3) using Qi and the task specific 

weights θi
(P)

 

 
Next, we define our modified adaptation procedure. 

Given a convolutional neural network that has B layers, 
we define an adaptation pattern (4), where Λj is an indica-
tive function as defined in (5), which indicates layers of 
the network that should be updated during backpropaga-
tion. 

 
{ },,...,, 21 BΛΛΛ=Λ  (4)
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updatedisllayerif
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We say that pattern is full if l∀ : Λl = 1. In this case 
our adaptation phase will be equivalent to the one pro-
posed in MAML. We consider all possible patterns Λ, 
except l∀ : Λl = 0, when no weights can be updated, thus, 
no adaptation is possible. We assume that updating only 
certain weights might be useful, because the neural net-
works tend to learn features that differ in complexity, the 
closer the layer is to the input the simple the features are 
[22]. Also, authors of Meta-SGD [21] have shown that by 
learning weight-specific learning rates the resulting qual-
ity was superior to the original MAML algorithm. How-
ever, Meta-SGD approach was much slower to train as 
both weights and learning rates have to be learned during 
the training procedure. Training time in our approach is 
intact. In contrast to previous works, we propose to up-
date only certain weights, thus, essentially freezing some 
layers. This allows us to decrease gradient computations 
required during the adaptation phase as is shown on Fig. 1 
for a convolutional network that contains 4 convolutional 
and a single fully-connected (linear) layer. 

In Fig. 1 the backpropagation pass goes in the direc-
tion opposite to arrows (forward pass). The architecture is 
taken as an example and can be arbitrary in practice. For 
the example pattern Λ = {0,1,0,1,1}, we can see that for 
the Convolutional Block 4 and the Linear layers both the 
gradient is computed and the weights are updated. For 
Convolutional Block 3 gradients are computed, but 
weights are not updated as Convolutional Block 2 re-
quires weight update. However, for Convolutional 
Block 1 no gradients computation or weight update are 
performed. 
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Figure 1 – Λ pattern backpropagation scheme. Backpropagation is performed in order reverse to the arrows. In red – gradients are 

computed, networks weights are updated; yellow – gradients are computed, no network weight update; green – both gradient 
computation and network weight update are skipped 

 
Given the above-described Λ pattern description, the 

updated adaptation formula will look as follows (6): 
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4 EXPERIMENTS 

To conduct the experiments, we have reimplemented 
the MAML algorithm. The following paragraph describes 
the details. 

The authors of MAML have defined convolutional neu-
ral network architecture and have used it for miniImageNet 
experiments. This network is commonly referred to as 
“CNN4” in the later meta-learning literature. It has 4 con-
volutional blocks, followed by a linear layer. Each of the 
blocks has a convolutional layer with kernel size of 3 and 
padding of 1, followed by the Batch Normalization [23], 
ReLU activation and Max Pooling with kernel size of 2. 
Number of filters in the convolutional layers is a configur-
able parameter, the authors have used 32, which we follow. 
Number of outputs in the linear layer is defined by K for K-
way classification problem. Training is performed via 
Adam [24] gradient descent method as meta-optimizer with 
learning rate of β = 10–3 and α = 0.01 as the adaptation step 
size. Each model has been trained for 600 epochs. While 
the authors used meta-batch size of 2 for 5-shot and 4 for  
2-shot experiment to reduce training memory consumption, 
we stick to 4 as it leads to slightly better performance on 
CIFAR-FS [8] dataset during our experiments. Also, the 
dataset memory footprint is small, so we don’t have to re-
duce memory consumption by using a smaller batch-size. 
Each epoch has 100 randomly sampled tasks. For the gra-
dient update KN ⋅  samples are taken for N-shot K-way 
classification problem for training and 15 samples per class 
for evaluation, thus following [10]. 

In addition, we have modified the network adaptation 
procedure, so that it updates only weights defined by pat-
tern Λ as defined in (4)–(6). 

For the experiments we have used the novel CIFAR-
FS [8] dataset. It has been constructed from a well-known 
classification dataset, called CIFAR-100 [25]. It has im-
ages of different kinds of mammals, reptiles, flowers, 
man-made things, etc. The images are in color and have a 
size 32x32. Originally, this dataset was not supposed to 
be used in a few-shot learning setting. In [8] it has been 
suggested to split 100 classes into train, validation and 

test sets. If it has been the non-few-shot neural network 
training, we would expect all of the 100 classes to be rep-
resented in each of the sets, only the images themselves 
would have been split. However, in few-shot learning 
case different disjoint classes are taken. Thus, 64 training, 
16 validation and 20 test set classes have been selected. 
The exact classes that go into each split are important for 
testing the resulting accuracy and are defined in [8]. By 
using different classes for training and testing, the adapta-
tion to the new classes can be better estimated. After such 
training the model is expected to quickly adapt to the 
new, unseen classes. We have taken the CIFAR-FS data-
set for our experiments as it hasn’t been analyzed by the 
MAML authors and is also faster to compute than miniI-
mageNet. 

All of the training procedures and time measurements 
were done on our own MAML implementation and tested 
on NVIDIA GTX 1050Ti GPU. 

 
5 RESULTS 

Given the network configuration as described in the 
experiments section, we have implemented the MAML 
algorithm. CIFAR-FS accuracy and adaptation timings 
are presented in Table 1. 

Table 1 – Accuracies and adaptation timings on 
CIFAR-FS dataset 

 1-shot 
2-way 

5-shot 
2-way 

1-shot 
5-way 

5-shot 
5-way 

Accuracy 77.2% 87.6% 51.7% 70.3% 
Time 38.43 ms 40.70 ms 41.67 ms 45.35 ms 
 

In (6) we have proposed a modified adaptation 
scheme, where only a part of weights is updated during 
the adaptation procedure. To begin with, we consider only 
trivial patterns Λ , where only one network layer is up-
dated during the adaptation procedure. We show the accu-
racy on the test set in Fig. 2, where in a and b we conduct 
the experiment for 1-shot 5-way and 5-shot 5-way con-
figurations correspondingly. To see the impact of the 
number of adaptation steps, we also show the accuracies 
for P = 10 (default) and 1, 3, 5 adaptation steps. As it can 
be seen, the model accuracy differs significantly between 
the configurations. For 1-shot 5-way, learning one of the 
three first convolutional layers only has no effect, the 
accuracy remains on the level of random guessing (20%). 
However, training either convolutional layer 4 or the last 
linear layer improves the model accuracy. Note, that the 
number of parameters in layers differs. In Table 2, we 
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show the number of parameters for each layer. Note that 
final layer has different number of parameters depending 
on N output classes. It can be seen that the first convolu-
tional layer and the final linear (fully-connected) layers 
have fewer parameter than inner convolutional blocks. 
This can explain the fact that learning only the linear layer 
has worse performance. For 5-shot 5-way we see that only 
convolutional layers 3 and 4 have a positive impact on the 
performance if adapted alone. Interestingly, number of 
adaptation steps has a significant impact on the perform-
ance with only convolutional layer #3 enabled. As we will 
see later, such an impact is higher, than when the full 
network is updated during the adaptation. 

In Fig. 3, a and b we depict a similar experiment for 1-
shot 2-way and 5-shot 2-way configurations correspond-
ingly. Note, that random guessing baseline for these con-

figurations is now at 50%, so the lower bound for accu-
racy is now higher than in Fig. 2. Here we see an opposite 
trend, where updating the first layers also has a positive 
impact on the resulting accuracy. Contrasting to previous 
experiment, updating the Convolutional Block 4 only 
doesn’t provide the best results in either case. 

 
Table 2 – Number of parameters for each layer 

Layer Name Number of Parameters 
Conv Block 1 960 
Conv Block 2 9.312 
Conv Block 3 9.312 
Conv Block 4 9.312 
Linear 1.602 (2-way) 

4.005 (5-way) 
Total 30.498 (2-way) 

32.901 (5-way) 
 

 

 
a b 

Figure 2 – Adaptation accuracy for trivial Λ patterns, i.e., only a single layer is updated during adaptation: 
a is 1-shot 5-way, b is 5-shot 5-way 

 

 
a b 

Figure 3 – Adaptation accuracy for trivial Λ patterns, i.e., only a single layer is updated during adaptation: 
a is 1-shot 2-way, b is 5-shot 2-way 
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As one of the goals in our work is to improve the 
model adaptation speed, we have timed experiments for 
trivial patterns Λ. On Fig. 4 and 5 we show the model 
adaptation time corresponding to all of the four configura-
tions depicted on Fig. 2 and 3. As we can see, in both 
cases we have a similar trend where the closer the layer 
we update to the end of the network, the smaller the adap-
tion time is. This follows our previous idea that by skip-
ping some gradient computations (as have been shown on 
Fig. 1), adaptation time can be reduced. 

As can be seen from Fig. 4 and 5, number of adapta-
tion steps has a significant impact on the adaptation 
speed. On Fig. 6 we show the model accuracy for each of 
the four scenarios and on Fig. 7 we depict the correspond-
ing timings, both shown with respect to the number of the 

adaptation steps. As before, the experiments have been 
conducted for P = 1, 3, 5 and 10 adaptation steps. The 
results between those reference points have been linearly 
interpolated. The presented accuracies and timings are the 
average taken for all 31 possible patterns Λ. Note, that 
throughout the article we exclude pattern l∀ : Λl = 0, as 
no weights can be changed for such pattern, therefore no 
adaptation is possible. As can be seen, while the adapta-
tion time grows linearly with the number of adaptation 
steps, the accuracy growth plateaus at around 5 adaptation 
steps. Actually, for the full pattern Λ increasing number 
of adaptation steps from 5 to 10 has less than 0.3% im-
provement in accuracy. In typical practical scenarios such 
an improvement is insignificant. Thus, we suggest that 
performing 10 adaptation steps is redundant. 

 

 
a b 

Figure 4 – Adaptation time for trivial Λ patterns: 
a is 1-shot 5-way, b is 5-shot 5-way 

 

 
a b 

Figure 5 – Adaptation time for trivial Λ patterns: 
a is 1-shot 2-way, b is 5-shot 2-way 
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Figure 6 – Accuracy averaged for all patterns Λ for different 

N-shot K-way problems with respect to the number of 
adaptation steps P 

 
Next, we try to search for such a pattern Λ and num-

ber of adaptation steps, so that the resulting accuracy 
drops no more than 0.07 times the full pattern accuracy. 
We see such a quality degradation threshold reasonable 
for practical applications. It should be noted that the ap-
proach we propose can be applied with an arbitrary qual-
ity degradation threshold.  We show such patterns in ta-
ble 3. Based on this table, we suggest using the 
Λ* = {1,0,1,1,1}, which offers factor of 3.0 speed im-
provement with an insignificant quality loss. It can be 
seen that pattern Λ = {0,1,1,1,1} also suits the specified 
criteria and also has a slightly higher (factor of 3.1) per-
formance improvement, however, it has a significantly 
lower performance for both of the 2-way configurations, 
degrading on 2.5% and 3.2% relative to the best selected 
pattern Λ*. We consider such a degradation not worth the 
speed up. The fact that enabling first CNN layer is sig-

nificant for the 2-way learning accuracy, closely follows 
the presented above description of Fig. 3. Also, not to be 
mistaken, in Fig. 2–5, we had only one layer updated dur-
ing the adaptation phase (thus Σl Λl = 1), however, the 
best selected pattern Λ* has all expect one layer updated. 

 

 
Figure 7 – Adaptation time averaged for all patterns Λ for 

different N-shot K-way problems with respect to the number 
of adaptation steps P 

 
Finally, we pose a question, whether updating only 

part of weights in the neural network can improve the 
method performance. We have discovered, that in ex-
treme case of learning with a single adaptation step 
(P = 1), we have significant improvement in 5-way adap-
tation performance by updating with a partial pattern Λ. 
The performance for the full pattern, as well as a partial, 
is shown in table 4.  

 
Table 3 – Adaptation speedup depending on pattern Λ and the number of adaptation steps. Patterns with loss degradation of less than 

7% (relative to full pattern Λ and 10 adaptation steps) are shown. 
Adaptation 

Steps 
Pattern Λ 1-shot 2-way 

(%) 
5-shot 2-way 

(%) 
1-shot 5-way 

(%) 
5-shot 5-way 

(%) 
Mean Adaptation 

Time (ms) 
Relative Speedup 

(times) 

3 0,1,1,1,1 74.7 83.2 49.3 69.7 13.3 3.1 

3 1,0,1,1,1 76.6 85.9 49.3 69.8 13.9 3.0 

3 1,1,1,1,1 76.6 87.2 49.3 70.0 15.0 2.8 

5 0,1,1,1,1 75.2 83.9 51.5 69.9 20.0 2.1 

5 1,0,1,1,1 76.9 86.2 51.4 70.1 21.1 2.0 

5 1,1,1,1,1 77.0 87.4 51.6 70.2 22.6 1.8 

10 0,1,1,1,1 75.4 84.6 51.7 70.1 36.1 1.2 

10 1,0,1,1,1 77.1 86.6 51.7 70.1 38.6 1.1 

10 1,1,1,1,1 77.2 87.6 51.7 70.3 41.5 1.0 
 
Table 4 – Accuracy improvement for P = 1 gradient step 

adaptation with pattern selection 
Accuracy 1-shot 

2-way 
5-shot 
2-way 

1-shot 
5-way 

5-shot 
5-way 

Λ = {1,1,1,1,1} 74.3% 
 

86.0% 
 

36.8% 
 

20.4% 
 

Λ = {1,1,0,1,1} 74.3% 
 

83.1% 
 

36.9% 53.1% 

We have also performed a search of all cases, when 
our approach gives better results than the original with 
P = 1. The results are shown in Table 5. 
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Table 5 – Accuracy improvement for P = 1 gradient step 
adaptation with pattern selection if pattern is selected 

per configuration 
 1-shot 

2-way 
5-shot 
2-way 

1-shot 
5-way 

5-shot 
5-way 

Accuracy on 
Λ = {1,1,1,1,1} 

74.3% 
 

86.0% 
 

36.8% 
 

20.4% 
 

Accuracy on 
selected Λ 

74.5% 
 

86.2% 
 

36.9% 54.8% 

Selected Pattern Λ 1,1,1,0,1 
 

1,1,1,0,1 
 

1,1,0,1,1 1,1,0,1,0 
 

 
6 DISCUSSION 

In [22] it has been shown that each trained neural net-
work’s convolutional layer has a different meaning. The 
first layer tends to learn simple features, like edges, lines 
or color gradients. The second layer increases its com-
plexity and understands simple shapes, e.g., circles, cor-
ners or stripes, while the last layers learn high-level fea-
tures, such as eyes, faces, text-like objects, etc. The exact 
features learned, obviously, depend on the training data-
set, however, such logic is retained. In the few-shot learn-
ing classification scenario the tasks differ by the types of 
objects that the model has to classify (e.g., horse, vehicle, 
frog, etc.). As we have described in the experiments sec-
tion, train and test sets have different disjoint classes pre-
sented. Thus, it might be reasonable to expect that only 
the last layers of the network should be changed to adapt 
to the new tasks and classes. This is exactly what we see 
in the case of 5-way classification as is shown on Fig. 2. 
However, such a statement contradicts to the experiment 
results from Fig. 3. By examining the original CIFAR-
100 dataset, we can see that image labels (classes) form 
larger coarse groups. For instance, coarse class (or super-
class) “aquatic mammals” contains “beaver”, “dolphin”, 
“otter”, “seal”, “whale”. Other examples of superclasses 
include “fish”, “large carnivores”, “household electrical 
devices”, etc. The training itself is performed on finer 
classes. From the examples we have picked, it becomes 
obvious that instances of different classes have a signifi-
cant variation in color. Images of aquatic mammals and 
fish typically contain blue and gray colors, while large 
carnivores might have more yellow and green. Thus, in 
case of 2-way classification it is more probable that both 
classes will be picked from a single or several similar 
superclasses than in case of 5-way classification. Conse-
quently, we suggest that updating the first layer of a neu-
ral network in a 2-way few-shot learning scenario adjusts 
the feature distribution to the one expected by the follow-
ing neural network layers. We see this as an analogy of 
how a human eye works: it adjusts the amount of light 
coming to the retina by expanding or contracting the pu-
pil, so that it becomes easier to see the details. 

From Table 3 we see that keeping the inner layers 
stale is the most fruitful way to improve the performance, 
with little to no quality loss. A substantial increase in ad-
aptation speed has been achieved with a target quality loss 
set to 7% relative to the original pattern Λ = {1,1,1,1,1} 
and P = 10 adaptation steps. The actual quality loss turns 
out to be even smaller as we have skipped slightly faster, 

but worse pattern Λ = {0,1,1,1,1}. Thereby, with the best 
Λ* = {1,0,1,1,1} and P = 3 adaptation steps, we achieve a 
factor of 3.0 speed improvement. Our quality losses are 
the following: 1-shot 2-way is 0.78%, 5-shot 2-way is 
1.97% 1-shot 5-way is 4.86% and 5-shot 5-way is 0.71%. 
Even smaller quality losses can be achieved by consulting 
table 3. Note, that these are relative quality losses. If the 
losses are computed in absolute terms, they become even 
more negligible. Thus, we state that have achieved a sig-
nificant adaptation time reduction with small-enough 
quality loss. 

We also discuss a way to improve algorithm quality 
by selecting a pattern Λ. In an extreme case of single ad-
aptation step, avoiding to update the inner layer has 
helped to improve the overall model quality as is shown 
in table 4. We have also been able to find such a pattern 
for each of the few-shot learning configurations such that 
it improves the model performance for P = 1 adaptation 
step in table 5. It is curious that no such behavior is ob-
served in cases when P > 1. To the best of our knowledge 
such behavior has not been previously observed and 
should be further investigated. 

 
CONCLUSIONS 

MAML is an optimization-based few-shot learning 
method that is able to learn an arbitrary neural network by 
using only a few samples per class. Many algorithms fol-
low the learning scheme proposed in MAML. In this work 
we solve the problems of 1) long adaptation time, and 2) 
poor performance in cases when a single adaptation step 
is used. 

The scientifical novelty of obtained results is that the 
method of reducing number of gradient computations 
during MAML adaptation phase has been introduced via 
the newly proposed Λ patterns. By selecting an appropri-
ate adaptation pattern, we have significantly improved the 
method in the following areas: 1) long MAML adaptation 
time has been decreased by the factor 3 with minimal 
accuracy loss; 2) accuracy for cases when only a single 
adaptation step is used has been substantially improved. 

The practical significance of obtained results is that 
an improvement of adaptation time of the widespread 
MAML algorithm will enable applicability of the algo-
rithm on less powerful devices and will in general de-
crease the time needed for the algorithm to adapt to new 
tasks. 

Prospects for further research are to investigate a 
way of a more robust automatic pattern selection scheme 
for an arbitrary training dataset and network configura-
tion. 
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ПРИСКОРЕННЯ ФАЗИ АДАПТАЦІЇ ОПТИМІЗАЦІЙНОГО МЕТА-НАВЧАННЯ 

Хабарлак К. С. – аспірант кафедри Системного аналізу та управління Національного технічного університету «Дніп-
ровська політехніка», Дніпро, Україна. 

 

AНОТАЦІЯ 
Актуальність. Нейронні мережі потребують багато розмічених даних для навчання. Алгоритми мета-навчання пропо-

нують спосіб навчатися лише за декількома прикладами. Один з найзначніших алгоритмів оптимізаційного мета-навчання – 
це MAML. Однак, його процедура адаптації до нових задач є досить повільною. Об’єктом дослідження є процес мета-
навчання та фаза адаптації в тому вигляді, як її визначено в алгоритмі MAML. 

Мета. Метою даної роботи є створення підходу, що дозволить: 1) зменшити час виконання адаптації алгоритму MAML; 
2) покращити якість алгоритму в ряді випадків. Показати результати тестування на публічно доступному наборі даних для 
мета-навчання CIFAR-FS.  

Метод. В даній роботі запропоновано покращення алгоритму мета-навчання MAML. Процедура мета-навчання визнача-
ється через так звані «задачі». В разі класифікації зображень кожна задача є спробою навчитися класифікувати зображення 
нових класів лише за декількома навчальними прикладами. В алгоритмі MAML визначено 2 кроки процедури навчання: 1) 
адаптація до нової задачі; 2) оновлення мета-параметрів мережі. Вся тренувальна процедура потребує обчислення гесіану, 
що робить метод обчислювально складним. Після навчання мережа, зазвичай, буде використовуватися для адаптації до но-
вих задач та наступної класифікації на них. Таким чином, покращення часу адаптації мережі є важливою проблемою. Саме 
на цій проблемі ми фокусуємося в даній роботи. Нами запропоновано шаблон Λ (лямбда) за допомогою якого ми обмежує-
мо, які параметри мережі слід оновлювати під час кроку адаптації. Даний підхід дозволяє не обчислювати градієнти для 
обраних параметрів та таким чином зменшити кількість необхідних обчислень. Шаблон обирається в межах параметру до-
зволеного зменшення якості мережі. Серед шаблонів, що відповідають заданому критерію, обирається найшвидший. Однак, 
як буде показано далі, в деяких випадках також можливе підвищення якості за допомогою правильно обраного шаблону 
адаптації. 

Результати. Було реалізовано, навчено та перевірено якість роботи алгоритму MAML із шаблоном адаптації Λ на від-
критому наборі даних CIFAR-FS, що робить отримані результати легко відтворюваними. 

Висновки. Проведені експерименти показують, що із вибором шаблону Λ можливе значне покращення методу MAML в 
наступних областях: час адаптації було зменшено в 3 рази за мінімальних втрат якості. Цікаво, що для однокрокової адапта-
ції якість значно виросла за умови використання запропонованого шаблону. Перспективи подальших досліджень можуть 
полягати в розробці більш робастного методу автоматичного вибору шаблонів. 

КЛЮЧОВІ СЛОВА: пристрілкове навчання, мета-навчання, Model-Agnostic Meta-Learning, MAML, час адаптації, шви-
дкість адаптації, оптимізаційне мета-навчання. 
 
УДК 004.93 

УСКОРЕНИЕ ФАЗЫ АДАПТАЦИИ ОПТИМИЗАЦИОННОГО МЕТА-ОБУЧЕНИЯ 
Хабарлак К. С. – аспирант кафедры Системного анализа и управления Национального технического университета 

«Днепровская политехника», Днепр, Украина. 
 

AННОТАЦИЯ 
Актуальность. Нейронные сети требуют большого количества размеченных данных для обучения. Алгоритмы мета-

обучения предлагают способ обучаться лишь по нескольким примерам. Одним из наиболее выдающихся алгоритмов опти-
мизационного мета-обучения является MAML. Однако, его процедура адаптации к новым задачам достаточно медленная. 
Объектом исследования является процесс мета-обучения и фаза адаптации в виде, как она определена в алгоритме MAML. 

Цель. Цель данной работы – создание подхода, которых позволит: 1) уменьшить время выполнения адаптации алгорит-
ма MAML; 2) улучшить качество алгоритма в ряде случаев. Показать результаты тестирования на открытом наборе данных 
для мета-обучения CIFAR-FS. 

Метод. В данной работе предложено улучшение алгоритма мета-обучения MAML. Процедура мета-обучения определя-
ется через так называемые «задачи». В случае классификации изображений каждая задача является попыткой научиться 
классифицировать изображения новых классов по нескольким обучающим примерам. В алгоритме MAML определено 2 
шага в процедуре обучения: 1) адаптация к новой задаче; 2) обновления мета-параметров сети. Вся процедура обучения 
требует вычисление гессиана, что делает метод вычислительно сложным. После обучения сеть, как правило, будет исполь-
зоваться для адаптации к новым задач и последующей классификации на них. Таким образом, улучшение времени адапта-
ции сети является важной проблемой. Именно на этой проблеме мы и фокусируемся в данной работе. Нами предложено 
шаблон Λ (лямбда), с помощью которого мы ограничиваем, какие параметры сети следует обновлять во время шага адапта-
ции. Данный подход позволяет не вычислять градиенты для выбранных параметров и таким образом уменьшить количество 
необходимых вычислений. Шаблон выбирается в рамках значения параметра разрешенного падения качества сети. Среди 
шаблонов, которые соответствуют заданному критерию, выбирается наиболее быстрый. Однако, як будет показано дальше, 
в некоторых случаях также возможно повышение качества с помощью правильно выбранного шаблона адаптации. 

Результаты. Было реализовано, обучено и проверено качество работы алгоритма MAML с шаблоном адаптации Λ на 
открытом наборе данных CIFAR-FS, что делает полученные результаты легко воспроизводимыми. 

Выводы. Проведенные эксперименты показывают, что с выбором шаблона Λ возможно значительное улучшение мето-
да MAML в следующих областях: время адаптации было уменьшено в 3 раза при минимальных потерях в качестве. Инте-
ресно и то, что для одношаговой адаптации качество значительно выросло при условии использования выбранного шабло-
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на. Перспективы дальнейших исследований могут заключаться в разработке более робастного метода автоматического вы-
бора шаблонов. 
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