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ABSTRACT 
Context. The problem of optimizing the resilience of artificial intelligence systems to destructive disturbances has not yet been 

fully solved and is quite relevant for safety-critical applications. The task of optimizing the resilience of an artificial intelligence 
system to disturbing influences is a high-level task in relation to efficiency optimization, which determines the prospects of using the 
ideas and methods of meta-learning to solve it. The object of current research is the process of meta-learning aimed at optimizing the 
resilience of an artificial intelligence system to destructive disturbances. The subjects of the study are architectural add-ons and the 
meta-learning method which optimize resilience to adversarial attacks, fault injection, and task changes. 

Objective. Stated research goal is to develop an effective meta-learning method for optimizing the resilience of an artificial 
intelligence system to destructive disturbances. 

Method. The resilience optimization is implemented by combining the ideas and methods of adversarial learning, fault-tolerant 
learning, model-agnostic meta-learning, few-shot learning, gradient optimization methods, and probabilistic gradient approximation 
strategies. The choice of architectural add-ons is based on parameter-efficient knowledge transfer designed to save resources and 
avoid the problem of catastrophic forgetting. 

Results. A model-agnostic meta-learning method for optimizing the resilience of artificial intelligence systems based on gradient 
meta-updates or meta-updates using an evolutionary strategy has been developed. This method involves the use of tuner and meta-
tuner blocks that perform parallel correction of the building blocks of a original deep neural network. The ability of the proposed 
approach to increase the efficiency of perturbation absorption and increase the integral resilience indicator of the artificial 
intelligence system is experimentally tested on the example of the image classification task. The experiments were conducted on a 
model with the ResNet-18 architecture, with an add-on in the form of tuners and meta-tuners with the Conv-Adapter architecture. In 
this case, CIFAR-10 is used as a base set on which the model was trained, and CIFAR-100 is used as a set for generating samples on 
which adaptation is performed using a few-shot learning scenarios. We compare the resilience of the artificial intelligence system 
after pre-training tuners and meta-tuners using the adversarial learning algorithm, the fault-tolerant learning algorithm, the 
conventional model-agnostic meta-learning algorithm, and the proposed meta-learning method for optimizing resilience. Also, the 
meta-learning algorithms with meta-gradient updating and meta-updating based on the evolutionary strategy are compared on the 
basis of the integral resilience indicator. 

Conclusions. It has been experimentally confirmed that the proposed method provides a better resilience to random bit-flip 
injection compared to fault injection training by an average of 5%. Also, the proposed method provides a better resilience to L -

adversarial evasion attacks compared to adversarial training by an average of 4.8%. In addition, an average 4.8% increase in the 
resilience to task changes is demonstrated compared to conventional fine-tuning of tuners. Moreover, meta-learning with an 
evolutionary strategy provides, on average, higher values of the resilience indicator. On the downside, this meta-learning method 
requires more iterations. 

KEYWORDS: Meta-learning, Evolutionary Strategies, Parameter-Efficient Transfer Learning, Robustness, Resilience, 
Adversarial Attacks, Faults Injection, Few-Shot Learning. 

 
ABBREVIATIONS 

AIS is an Artificial Intelligence System; 
CIFAR is a Canadian Institute for Advanced Research 

dataset; 
CMA-ES is the сovariance matrix adaptation 

evolution strategy optimization algorithm; 
MAML is a Model-Agnostic Meta-Learning; 
PID is a proportional-integral-derivative controller. 

 
NOMENCLATURE 

Acc  is an accuracy averaged over set of disturbance 
implementations; 

  is a step size hyperparameter for inner loop of 
meta-learning; 

  is a step size hyperparameters for outer loop of 

meta-learning; 
  is a tuner’ hyperparameter which regulates channel 

compression by 1, 2, 4, or 8 times; 

D  is a dataset for sampling few-shot learning tasks; 

baseD  is a dataset for main task; 
tr
baseD  is a training subset for main task; 
val
baseD  is an evaluation subset for main task; 
tr
kD  is a training subset for k-th few-shot learning 

task; 
val
kD  is an evaluation subset for k-th few-shot 

learning task; 
F  is an expected value of resilience criterion; 
  is a set of parameters of tuners; 
  is a set of optimal parameters of tuners; 

g  is a perturbation vector formed for the parameters 

that being meta-optimized; 
K  is a number of few-shot learning tasks; 
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shotk  is a number of images per class in few-shot 

task; 

0L -norm is a count the number of non-zero elements 

in an adversarial perturbation vector; 
L -norm is a largest magnitude among each element 

of an adversarial perturbation vector; 

i
L  is a loss function for current task; 

N  is a number of disturbance implementations; 
n  is a number of implementations of disturbances of 

the same type on one meta iteration; 

wayn  is a number of classes in few-shot task; 

0P  is a model performance before disturbance impact; 

( )p   is a distribution of disturbance implementations; 

i
P  is a performance metric for current state of model 

parameters and evaluation data; 

R  is an integral resilience indicator averaged over set 
of disturbance implementations;  

i
R  is a function that calculates the value of the 

integral resilience indicator for i  disturbance 

implementation; 
  is a precision parameter for evolution strategies of 

meta-learning; 
  are parameters of pretrained and frozen base AIS 

model; 
  is a set of all parameters of AIS model; 
T  is a maximum number of adaptation steps; 

i  is an i-th implementation of disturbance; 

i
U  is an operator that combines disturbance 

generation and adaptation; 
  is a set of parameters of meta-tuners; 
  is a set of optimal parameters of meta-tuners; 

W  is a task specified parameters; 

baseW  is a head weights for the main task. 

 
INTRODUCTION 

AIS are vulnerable to various types of disturbances. 
The most studied types of disturbances are fault injection, 
adversarial attacks, drift, and out-of-distribution data [1]. 
These disturbances can lead to financial and human life 
losses in safety-critical applications. This amplifies the 
need for research on vulnerabilities and resilience aspects 
of AISs.  

There are many papers devoted to protecting AIS 
against fault injection, adversarial attacks, various types 
of drift, and out-of-distribution [2, 3, 4]. However, few 
studies have investigated the compatibility of protection 
mechanisms against different types of disturbances. There 
is a lack of research on simultaneous protection against 
the impact of different types of disturbing factors.  

Since the main goal of machine learning of AIS is to 
ensure their maximum performance, the task of increasing 
the resilience of an AIS to disturbing influences can be 
considered an additional, higher-level task. In this case, 

the use of ideas and methods of meta-learning to ensure 
the resilience of an artificial intelligence system seems to 
be the most reasonable and promising approach. In 
addition, different mechanisms for protecting against 
disturbances may be incompatible or unbalanced, and 
meta-learning can be seen as a way to harmonize the 
effect of different machine learning mechanisms to 
enhance a high-level goal of resilience. 

The concept of resilience includes both architectural 
aspects related to system redundancy and mechanisms of 
graceful degradation, and behavioral aspects related to the 
ability to absorb disturbances (robustness) and the ability 
to quickly adapt and evolve [5, 6]. All these aspects are 
interconnected in neural networks, especially in the 
context of defense against various types of disturbing 
factors. However, conventional meta-learning methods 
usually take into account only one aspect of resilience and 
only one type of disturbance.  

Conventional methods for optimizing AIS parameters 
typically aim to maximize the performance metric, 
sometimes with simultaneous improvements in robustness 
[7]. Meta-learning algorithms usually solve the problem 
of learning in a few shots and the problem of convergence 
in a minimum number of iterations [8]. However, there is 
a lack of research on meta-learning application to 
simultaneously optimize different components of 
resilience, especially in the context of different types of 
disturbances. 

As the size of neural networks grows, more and more 
attention is focused on parameter-efficient fine-tuning 
methods for rapid adaptation to new tasks and domains 
[9]. This approach does not change the original AIS 
model, but instead adds additional elements that are fine-
tuned to improve the resulting model. Parameter-efficient 
fine-tuning is also relevant for adapting to disruptive 
influences in the context of affordable resilience, as there 
are always resource constraints in practice. 

The object of research is the process of meta-
learning for artificial intelligence system which functions 
under influences of destructive perturbations and is 
subject to resource constraints.  

The subjects of the research are model-agnostic 
method of meta-learning of an artificial intelligence 
system that provide resilience to adversarial attacks, fault 
injection attacks and task changes.  

The goal is a development parameter-efficient model-
agnostic meta-learning method of artificial intelligence 
system which provides resilience to adversarial attacks, 
fault injections and task changes.  

 
1 PROBLEM STATEMENT 

Let { | =1, }i i N is set of disturbance  implementations 

for AIS. Disturbances i  can be considered as adversarial 

attacks, fault injection, or switching to a new task.  Let 

{ ={ ; }tr val
base base baseD D D is a dataset on which the model 

was trained to perform the main task under known 
conditions. It is also given a dataset 
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={ ; | =1, }tr val
k kD D D k K for K  few-shot learning tasks, 

where fine-tuning data tr
kD  is used in the fine-tuning 

stage and validation set val
kD  is used in the meta-update 

stage. There is also a given set of parameters  ,  ,   

and W , where  are parameters of a pretrained and 
frozen base AIS model,   and   are adaptation 

parameters of AIS model backbone, and W  are task 
specified parameters (model head parameters). Head 
weights baseW  for the main task are pre-trained on the 

data baseD . 

It is necessary to find such values of the parameters 
 ,   which ensure the maximum expected resilience 

of AIS to the impact of various types of disturbances 
 

( ),
max [ ( ( , , , , ))].

i i
i p

E R U W D 
   

    (1)

 
The operator U  should combine a disturbing 

influence and adaptation in T  steps, which maps the 
current state of   to new state of  . Adversarial attacks, 

fault injection, or switching to new tasks may be 
considered as i -th disturbance i  

The function 
i

R  calculates the value of the integral 

resilience indicator for a particular disturbance 
implementation over model parameters   during its 

adaptation and the test sample 
i

valD . 
i

R  is a function of 

the performance metric 
i

P . 

 

1
0

1
( , , , , ).

i i i

T val
t ttR P W D

P T       (2)

 
Gradient-based meta-learning requires finding such 

values of the parameters  ,   that will ensure the 

minimum expected loss function L on the set of 
implementations of different types of disturbances i  

 

, ( )
min [ ( ( , , , , ))].

i i
i p

E L U W D 
    

    (3)

 
2 REVIEW OF THE LITERATURE 

The problem of the resilience of AIS to various types of 
disturbances was highlighted in [1, 5, 6]. In [10, 11] it is 
noted that the two main characteristics of the behavior of a 
resilient system are the simultaneous absorption of 
disturbances (robustness) and rapid adaptation to new 
disturbances. However, the majority of machine learning 
methods focus on maximizing pefomance under normal 
conditions, and sometimes one aspect of resilience [12, 13]. 

Increasing the robustness of AIS to adversarial attacks 
is based on gradient masking [14], robustness 
optimization [15], and adversarial attack detection [16]. 

Fault tolerance is implemented through the application of 
fault masking methods [17], explicit redundancy input 
methods [18], and error detection methods [19]. The most 
popular method is adversarial training, which is related to 
robustness optimization. It consists in generating 
perturbations of training samples during training. 
Increasing the robustness to small domain shifts or task 
changes is provided by Out-of-domain generalization 
methods [20]. However, there is a lack of methods that 
ensure optimal robustness to the complex effects of 
various types of disturbances. 

Increasing the speed of adaptation is usually 
implemented by improving optimizers or by reducing the 
requirements for the amount of training data. Research 
[21, 22] considers the use of PID control principles that 
can increase the stability and speed of the process of 
optimizing system parameters. In [23], methods for 
training neural network optimizers to increase the 
learning speed are considered. 

One of the ways to increase the generalization 
capability of the network and reduce the requirements for 
training data while adapting to changes is meta-learning. 
In [24], various model-agnostic meta-learning methods 
for implementing Few-Shot Learning are considered. In 
[7], an attempt was made to integrate different methods 
for increasing the robustness of a neural network with 
meta-learning for Few-Shot Learning. As a result, it has 
been demonstrated that the incorporation of regularization 
and the introduction of perturbative effects can be 
effectively executed in both the internal loop and the 
external loop of meta-learning. Another study [25] 
demonstrated that the outer loop of meta-learning could 
be implemented using an evolutionary strategy, enabling 
the use of even non-differentiable, non-smooth, and non-
decomposable meta-objectives. However, there is a lack 
of research examining meta-objectives such as robustness, 
adaptation speed, or integral resilience indicators.  

Study [26], has shown that ensuring resilience may 
require significant resources, and it is advisable to 
consider approaches for providing affordable resilience. 
In the works [9], it is proposed to perform model 
adaptation for specific tasks or domains within the 
framework of parameter-efficient transfer learning. In this 
approach, the large AIS model remains unchanged 
(frozen). Instead, the frozen model is modulated by 
adding adapters with a small number of parameters. In the 
study [27], the use of adapters in conjunction with meta-
adapters was considered to further enhance adaptation 
efficiency. However, the possibility of using adapters for 
optimizing model robustness and adaptation speed to new 
types of disturbances has not yet been explored. 

Thus, there is a lack of research on the use of meta-
learning for ensuring the resilience of AIS to the 
combined impact of various types of disturbances. 
However, existing studies demonstrate the possibility of 
optimizing individual aspects of resilience. Therefore, it is 
relevant to investigate the potential for combining 
different mechanisms to ensure the resilience of AIS in 
the full sense of this concept. 
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3 MATERIALS AND METHODS 
The larger the model, the more computationally 

complex it is to fine-tune for adaptation to new 
conditions. Moreover, there is a potential risk of 
catastrophic forgetting under the influence of new 
information. Therefore, it is proposed to attach tuners to 
the model, which can be computationally efficient in fine-
tuning [9]. In this case, the weight coefficients of the 
model remain frozen. The original model usually consists 
of certain blocks or modules, such as Convolutional 
Residual Block, Multi-layer Perceptron Block, Multi-head 
Self-Attention Block, and others. To generalize, we will 
refer to these blocks as frozen operations and denote them 
as OP(x). The parallel method of connecting a tuner 
(adapter) to the frozen blocks of the model is the most 
convenient and versatile approach (Fig. 1a) [28]. In this 
case, to ensure the properties of resilience, it is proposed 
to use three consecutive blocks of tuners at once, two of 
which are tuned during meta-training (Fig. 1a) [27]. To 
balance between different modules, we introduce a 
channel-wise scaling factor. 

For the same frozen model block, the architecture of 
the tuners is chosen to be identical. Various tuner 
(adapter) architectures have become popular in the 
literature, with the most computationally efficient ones 
shown in Fig. 1b, Fig. 1c, and Fig. 1d. The architectures 
depicted in Fig. 1b and Fig. 1c are based on convolutional 
layers, making them computationally simpler on the one 
hand and characterized by lower capacity for absorbing 
disturbances on the other hand. However, convolutional 

tuners have proven themselves effective in correcting 
frozen convolutional blocks [29]. The convolutional tuner 
shown in Fig. 1c has a hyperparameter γ, which regulates 
channel compression by 1, 2, 4, or 8 times. 

If we reject the specialization of different parameters 
of the AI model and denote the set of all parameters as 

, , ,W      , then the process of meta-learning using 

gradient learning methods can be described by the 
formula 
 

( )
arg min [ ( ( , ))].

i i i
i p

E L U D
  

 
  


 (4)

 

If we use the SGD stochastic gradient descent 
algorithm with T  steps in the U  operator and use 
gradient meta-update in the outer loop, we will get the 
algorithm shown in Fig. 2. Moreover, to simplify 
computations and increase stability, the tunable and meta-
tunable parameters can be updated using the REPTIL 
algorithm [30]. 

If we do not restrict ourselves to gradient algorithms 
in the outer loop, then the meta-learning for direct 
maximization of the expected resilience criterion can be 
described by the formula 

 

( )
arg max [ ( ( , ))]

arg max ( ).

i
i p

E R U D

F


 







   

 


 (5)

 

                                           
                                                                    a                                                     b                                    

             
                                                                     c                                                    d                             

Figure 1 – Parallel tunning scheme and tuner architectures: a – parallel tuning scheme for the frozen block;  
b – tuner or meta-tuner based on ResNet-like сonvpass; c – tuner or meta-tuner based on two-layer convolutional network with 

channel dimension down-sampling bottleneck; d – tuner or meta-tuner based on two-layer feed-forward network  
with a downward projection bottleneck 
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Figure 2 – Pseudocode of model-agnostic gradient-based meta-learning for AIS resilience optimization  

 

 
Figure 3 – Pseudocode of model-agnostic meta-learning with evolution strategies for AIS resilience optimization 
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It is proposed to use an evolutionary strategy for the 
direct maximization of the resilience criterion due to the 
possible non-differentiability of the criterion. In this case, 
the gradient estimation can be performed over the 
Gaussian-smoothed version of the outer loop objective, 
which is calculated by the formula [8] 
 

(0, )
[ ( )]

1
[ ( ) ( )].

2

g N I
E F g

E R g R g

   

      



 (6)

 
If, in the meta-optimization algorithm with an 

evolutionary strategy, a single perturbation vector g  is 

formed for the meta-optimized parameters at the 
beginning of each meta-optimization iteration, the 
resulting algorithm will be as shown in Fig. 3. 

The analysis of Fig. 2 shows that the type of 
disruptive influence does not change within a single meta-
adaptation step. However, each meta-adaptation step 
begins with the selection of a disruptive influence type, 
followed by the generation of n  implementations of the 
disruptive influence with a subsequent nested adaptation 
loop for each of them. Simultaneously combining 
disturbances may be ineffective. For example, after 
adding fault injection to the weights, we will have an 
outdated model, and applying adversarial attacks to it may 
be irrelevant. 

The formation of adversarial samples is based on the  
_ ()Adversarial perturbation  function. For differentiated 

models, FGSM attacks or PGD attacks can be used [31]. 
It is proposed to use adversarial attacks based on the 
search algorithm of the covariance matrix adaptation 
evolution strategy (CMA-ES) for non-differentiable 
models [32]. The level of perturbation is limited by the 
L -norm or 0L -norm. In this case, if the image is 

normalized by dividing pixel brightness by 255, then the 
specified disturbance level is also divided by 255. 

The formation of fault injections is performed by the 
_ ()Fault injection  [33]. It is suggested to choose the 

most difficult fault type to absorb, which involves 
generating an inversion of a randomly selected bit (bit-flip 
injection) in the weight coefficient of the model. For non-
differentiable models, it is proposed to generate up to 100 
damaged weight versions, selecting the one providing the 
greatest reduction in accuracy. For differentiable models, 
it is suggested to pass the test dataset through the network 
and calculate the gradients, which can then be sorted by 
their absolute values. In the top-k weights with the highest 
gradient, one bit is inverted in a random position. The 
proportion of weights for which one random bit is 
inverted can be denoted as the fault rate. 

Task change is needed to simulate concept drift and 
out-of-distribution. Forming a sample of other tasks can 
be done by randomizing the domain of the same task or 
by selecting tasks from relevant domains but sampling 
truly different tasks. These two approaches can also be 

combined. In any case, an attempt should be made to 
sample data from larger and more diverse sets than 

.baseD  

The analysis of Fig. 3 shows that, to calculate the 
resilience indicator, it is necessary to calculate the 
intermediate values of the performance metric for T  
adaptation steps, which in most cases is not differentiated. 

 
4 EXPERIMENTS 

For simplicity of experiments, we will use the Resnet-
18 as the base model, pretrained on CIFAR-10 [34]. The 
architecture of the tuner and meta-tuner is chosen to be 
the same in the form of a two-layer convolutional network 
with channel dimension down-sampling bottleneck 
( 2)  . To generate new tasks, CIFAR-100 is used, from 

which data is sampled for randomly selected 10 classes 
( 10)wayn   [34]. It is proposed to use 16 images per 

class ( 16)shotk  , which are sent in mini-batches of 4 

images ( _ _ 4)mini batch size   during adaptation. Thus, 

the number of adaptation steps is 
( ) / _ _ 40shot wayT k n mini batch size    iterations. The 

base task is used during meta-learning along with new 
tasks. The learning rate of the inner and outer loop of 
meta-learning are 0.001   and  0.0001   , 

respectively. The maximum number of meta-iterations is 
300. However, the Early Stopping algorithm is used to 
stop meta-learning, which terminates the execution if the 
criterion does not change for more than 10 consecutive 
iterations by more than 0.001. 

During the experiments, it is necessary to determine 
whether the connection of a meta-trained tuners can 
improve the ability to absorb disturbances such as faults 
and adversarial attacks, even if they are formed in a way 
different from what is used during training. It is also 
planned to determine whether meta-learning improves the 
speed of adaptation to faults and adversarial attacks 
compared to training under the influence of disturbances 
without meta-learning.  

When calculating the integral indicator of resilience to 
disturbance (2), it is proposed to use the accuracy metric 
as the performance criterion 

i
P . It is necessary to 

determine the advantages and disadvantages of the 
gradient-based meta-adaptation algorithm and the meta-
adaptation algorithm with an evolutionary strategy. 

The experimental research is proposed to be carried 
out in the following sequence: 

1. Testing the pre-trained model without tuners and 
meta-tuners on disturbances of varying intensity. 

2. Adding tuners and meta-tuners trained on data 
during fault injection into the entire model with a fixed 
fault_rate for testing the resulting model on different 
fault_rate values. 

3. Adding tuners and meta-tuners trained on data with 
adversarial disturbances with a fixed perturbation level 
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for L  for testing the resulting model on different 

perturbation levels for L . 

4. Adding tuners and meta-tuners trained using the 
proposed gradient-based meta-learning algorithm for 
optimizing resilience (Fig. 2) followed by testing of the 
resulting model on disturbances of varying amplitude. 

5. Adding tuners and meta-tuners trained using the 
proposed meta-learning algorithm with an evolutionary 
strategy for optimizing resilience (Fig. 3) followed by 
testing of the resulting model on disturbances of varying 
level. 

6. Adding tuners and meta-tuners and calculating the 
average resilience value during adaptation to new tasks 
sampled from CIFAR-100. 

7. Adding tuners and meta-tuners trained using the 
proposed gradient-based meta-learning algorithm for 
optimizing resilience (Fig. 2) and calculating the average 
resilience value during adaptation to new tasks sampled 
from CIFAR-100 but not used during meta-learning. 

During the studies of the pre-trained model without 
tuners, only the average accuracy value on the test set is 
calculated. During testing of the pre-trained model with 
tuners and meta-tuners, the meta-tuners remain fixed, and 
the tuner is used to restore performance and calculate the 
average resilience value (2). 

For training tuners with meta-tuners, fault injection is 
carried out by selecting weights with the largest absolute 
gradient values. The proportion of modified weights is 

_ 0.3fault rate  . For testing the resulting model, fault 

injection will be performed by random bit-flips in 
randomly selected weights, the proportion of which 
(fault_rate) ranges from 0.1 to 0.6. 

The training of the tuners and meta-tuners involves 
generating adversarial samples using the FGSM algorithm 
with perturbation_level according to L  up to 3. 

However, to test the resulting model against adversarial 
attacks, the adversarial samples are generated using the 
CMA-ES algorithm with perturbation_level according to 
L -norm from 1 to 10. 

Taking into account the elements of randomization, it 
is proposed to use their average values when assessing the 
accuracy and resilience of the model. To this end, 100 
implementations of a certain type of disturbance are 
generated and applied to the same model or data. The 
average value of resilience during adaptation to new tasks 
is estimated on 5 task implementations (combinations of 
classes from CIFAR-100 that did not participate in the 
training of the meta-tuners). 

 
5 RESULTS 

The results of testing the impact of fault injection on 
model performance are shown in Table 1. When adding 
tuners and meta-tuners, before testing, they are pre-
trained using gradient-based algorithms with and without 
disturbances until the base model’s accuracy is reached. 

The average accuracy Acc  and the integral resilience 

indicator R  for the model are evaluated on 100 
implementations of fault injection with a given fault rate. 
During testing, meta-tuners are fixed, and tuners can be 
used for adaptation to disturbances and calculation of the 
resilience indicator. Meta-learning is performed using a 
gradient-based algorithm, where the early stopping 
condition occurred at the 150-th iteration (Fig. 2). 

The analysis of Table 1 shows that tuners with meta-
tuners can increase the robustness of the pre-trained 
model to faults by absorbing the impact. Moreover, the 
proposed resilience-aware meta-learning method provides 
a better resilience indicator compared to fault-tolerance 
training, on average by 5%. This means that during 40 
iterations of tuning, performance recovery occurs faster 
on average if the model was prepared based on resilience-
aware meta-learning. The resilience measurements in the 
experiment have standard deviation not exceeding 1.0. 

 
Table 1 – Experimental data of model resilience to the faults 

injection testing 
Only 
Pre-
trained 
model 

Pretrained model 
with tuners and meta-
tuners trained under 
fault injection 

Pretrained model 
with tuners and meta-
tuners meta-trained 
for resilience 
optimization 

Fault 
rate 

Acc  Acc  R  Acc  R  
0.0 92.5% 92.8% – 93.1% – 
0.1 90.2% 91.1% 0.971 92.2% 0.986 
0.3 85.1% 87.6% 0.944 89.1% 0.971 
0.5 83.0% 85.5% 0.883 86.5% 0.955 
0.6 75.4% 80.1% 0.831 84.9% 0.917 

 
The results of testing the impact of adversarial attacks 

on the model’s performance are shown in Table 2. Tuners 
and meta-tuners are trained without and with 
perturbations until the resulting model reaches the 
accuracy of the base model for the next resiliency test. 

The average value of the accuracy Acc  and the integral 

indicator of resilience R  for the model is estimated on 
100 implementations of adversarial perturbations of the 
dataset with a given perturbation level. After freezing the 
parameters of the meta-tuners, the tuners can be used to 
adapt to the disturbance and calculate the resilience 
indicator. Meta-learning is performed using a gradient-
based algorithm (Fig. 2). 

 
Table 2 – Experimental data of model resilience to the 

adversarial attack testing 
Only 
Pre-
trained 
model 

Pretrained model 
with tuners and meta-
tuners trained under 
adversarial attack 

Pretrained model 
with tuners and meta-
tuners meta-trained 
for resilience 
optimization 

Per-
tur-
ba-
tion 
level 

Acc  Acc  R  Acc  R  
0 92.5% 92.8% – 92.7% – 
1 91.6% 91.1 0.965 92.0% 0.981 
3 88.1% 88.9 0.934 90.1% 0.980 
5 82.5% 82.7 0.865 84.8% 0.922 

10 74.8% 75.9 0.821 77.7% 0.897 
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The analysis of Table 2 shows that meta-tuners can 
increase the robustness of a trained model to adversarial 
attacks by absorbing part of the disturbance. Moreover, 
the proposed method of resilience-aware meta-learning 
provides a better resilience indicator compared to 
adversarial training by an average of 4.8%. That is, within 
40 iterations of tuning, performance recovery is faster 
after resilience-aware meta-learning. The resilience 
measurements in the experiment have standard deviation 
not exceeding 1.1. 

The results of resilience testing of the model with 
tuners and meta-tuners that were meta-trained with the 
evolutionary strategy (Fig. 3) are shown in Table 3 and 
Table 4. In this case, the meta-learning was performed 
with 233 iterations until the Early Stopping condition was 
reached. 

The analysis of Table 3 and Table 4 shows that meta-
learning with an evolutionary strategy also improves the 
perturbation absorption and the integral resilience 
indicator. A comparison of the results from Tables 1 and 
2 with the results from Tables 3 and 4 shows that the 
results are comparable, but with a slight advantage in 
resilience (more than 1.5%) for the evolutionary 
optimization strategy. It is also worth noting that the 
evolutionary strategy required 83 additional iterations to 
achieve the optimal result. 

 

Table 3 – Experimental data of model resilience to the faults 
injection testing after resilience aware meta-learning with 

evolution strategies 
Fault rate Acc  R  

0.0 93.1% – 
0.1 93.3% 0.988 
0.3 89.9% 0.979 
0.5 87.5% 0.971 
0.6 85.0% 0.941 

 

Table 4 – Experimental data of model resilience to the 
adversarial attack testing after resilience aware meta-learning 

with evolution strategies 
Perturbation level Acc  R  

0 92.7% – 
1 93.5% 0.986 
3 91.6% 0.984 
5 86.7% 0.954 

10 83.5% 0.919 
 

The advantage of using meta-learning instead of 
conventional fine-tuning of tuners was evaluated based on 
the experiment results which are shown in Table 5.  

 

Table 5 – Experimental data of model resilience to the task 
change testing  

Pretraining method of tuners and meta-tuners  R  
Pre-trained on the base dataset until the accuracy of the 
base model is achieved 

0.933 

Meta-trained for resilience optimization 0.981 
 

The analysis of Table 5 shows that when adapting to 
new tasks, the meta-trained tuners and meta-tuners 
provide on average a 4.8% higher value of the integrated 
resilience indicator over 40 iterations of adaptation than a 
simple pre-training on the base task. 

Thus, the proposed meta-learning algorithm for 
optimizing the AIS resilience ensures an increase in the 
AIS model’s resilience to disturbances compared to 
conventional approaches such as fault-tolerant training, 
adversarial training, and fine-tuning. 
 

6 DISCUSSION 
Experimental data confirm the increase in the 

resilience of the AI system to disturbing influences on the 
example of image classification with the use of the 
proposed meta-learning method. However, it is not clear 
exactly what effect the use of different types of 
perturbations in the internal optimization loop would have  
on the resilience. It is not known whether the 
conventional Model-Agnostic Meta-Learning (MAML) 
algorithm for Few Shot Learning will be inferior to the 
proposed method. Therefore, it is proposed to compare 
the results of testing meta-trained tuners and meta-tuners 
using the conventional MAML and the proposed 
algorithm (Fig. 2). Table 6 and Table 7 show the results 
of testing meta-trained tuners with meta-tuners using 
conventional MAML and the proposed Resilient-aware 
MAML. In this case, Table 6 illustrates the result of 
testing for fault injection, and Table 7 illustrates the result 
of testing for adversarial evasion attacks. 

 
Table 6 – Experimental data of model resilience to the faults 

injection testing for Conventional MAML and Proposed 
Resilient-aware MAML 

Gradient-based 
Conventional MAML 

Proposed Gradient-based 
Resilient-aware MAML 

Fault 
rate 

Acc  R  Acc  R  
0.0 92.8% – 93.1% – 
0.1 90.7% 0.962 92.2% 0.986 
0.3 84.9% 0.938 89.1% 0.971 
0.5 82.9% 0.877 86.5% 0.955 
0.6 75.6% 0.838 84.9% 0.917 

 
Table 7 – Experimental data of model resilience to the 
adversarial attack testing for Conventional MAML and 

Proposed Resilient-aware MAML 
Gradient-based 
Conventional MAML 

Proposed Gradient-based 
Resilient-aware MAML 

Per-
tur-
ba-
tion 
level 

Acc  R  Acc  R  

0 92.5% - 92.7% - 
1 91.3% 0.961 92.0% 0.981 
3 88.6% 0.921 90.1% 0.980 
5 81.9% 0.847 84.8% 0.922 
10 73.7% 0.811 80.7% 0.907 

 

The analysis of Table 6 shows that tuners and meta-
tuners trained with the conventional MAML algorithm for 
few-shot learning are inferior on average by more than 
5% to the proposed algorithm in terms of resilience. 
Moreover, a comparison with Table 1 shows that the 
results of conventional MAML are on average 0.3% 
lower in terms of resilience than fault-tolerant training 
algorithms. 

The analysis of Table 7 shows that tuners and meta-
tuners trained with the conventional MAML algorithm for 
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few-shot learning are inferior on average by more than 
6% to the proposed algorithm in terms of resilience. 
Moreover, a comparison with Table 2 shows that the 
results of conventional MAML are inferior in terms of 
resilience on average by more than 1% to the adversarial 
training algorithm. 

Thus, the proposed Resilient-aware MAML for model 
pre-training with tuners and meta-tuners ensures better 
absorption of fault injection and adversarial attacks and 
faster adaptation to them. Moreover, the proposed 
approach provides a higher resilience indicator compared 
to training separately under the influence of each type of 
perturbation or on the basis of conventional MAML. 

 
CONCLUSIONS 

The scientific novelty of the obtained result is the 
new MAML method for optimizing resilience to fault 
injection, adversarial attacks, and task change is 
developed. The method involves the use of tuners and 
meta-tuners which perform parallel correction of the 
building blocks of the deep neural network. The proposed 
meta-learning method consists of generating n 
implementations of a certain type of disturbance at each 
iteration of meta-optimization and using the results of 
adaptation for meta-updating tuners and meta-tuners. In 
this case, meta-updates can be calculated based on 
gradients or on an evolutionary strategy 

It is experimentally proven that the Proposed 
Resilient-aware MAML improves the ability of the basic 
model to absorb disturbances and increases the speed of 
adaptation compared to conventional approaches. The 
proposed method provides a better fault injection 
resilience indicator compared to fault-tolerance training 
on average by 5%. Also, the proposed method provides a 
better resilience to evasion adversarial attack compared to 
adversarial training on average by 4.8%. It has also 
demonstrated an average improvement by 4.8% in task 
change resilience compared to conventional fine-tuning of 
tuner blocks.  

The results of the conventional MAML and the 
Proposed Resilient-aware MAML are compared in terms 
of the impact on resilience to disturbances. The advantage 
of the proposed method is confirmed. In addition, meta-
learning with an evolutionary strategy provides on 
average higher values of the resilience indicator, although 
it requires more iterations. 

The practical significance of the achieved results lies 
in the formation of a new methodological basis for the 
development of algorithms for optimizing the resilience 
of AIS, which is important for safety-critical applications. 
Moreover, the method has a fairly unified structure and 
can be applied to a wide range of AIS model architectures 
and tasks, which brings it closer to the concept of 
providing resiliency as a service. 

The limitations of the research are related to testing 
this approach only on the ResNet-18 convolutional 
network with blocks of tuners and meta-tuners based on 
the Conv-Adapter architecture. Nevertheless, the paper 
shows the fundamental possibility of increasing the 

resilience of the original model by using tuners, meta-
tuners, and meta-learning with a perturbation generator. 

Future research should focus on the architecture of 
the tuner blocks and the application of the proposed 
approach to other machine learning tasks, such as 
regression, reinforcement learning, and generative 
models. 
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УДК 004.891.032.26:629.7.01.066 
НЕЗАЛЕЖНИЙ ВІД МОДЕЛІ АЛГОРИТМ МЕТА-НАВЧАННЯ ДЛЯ ОПТИМІЗАЦІЇ РЕЗІЛЬЄНТНОСТІ 

СИСТЕМИ ШТУЧНОГО ІНТЕЛЕКТУ 
Москаленко В. В. – канд. техн. наук, доцент, доцент кафедри комп’ютерних наук, Сумський державний університет, 

Суми, Україна. 
AНОТАЦІЯ 

Актуальність. Задача оптимізації резільєнтності систем штучного інтелекту до деструктивних збурень досі не була 
повністю вирішена і є досить актуальною для критичних до безпеки застосувань. Задача оптимізації резільєнтності системи 
штучного інтелекту до збурюючих впливів є високорівневою по відношенню до оптимізації ефективності, що обумовлює 
перспективність використання ідей і методів мета-навчання для її вирішення. Тому об’єктом дослідження є процес мета-
навчання для оптимізації резільєнтності системи штучного інтелекту до деструктивних збурень. Предметом дослідження є 
архітектурні надстройки та метод мета-навчання, що забезпечують оптимізацію резільєнтності до протиборчих атак, 
інжекції несправностей і зміни задач. 

Мета дослідження – розроблення ефективного методу мета-навчання для оптимізації резільєнтності системи штучного 
інтелекту до деструктивних збурень. 

Методи дослідження. Оптимізація резільєнтності реалізується шляхом поєднання ідей і методів протиборчого навчання, 
навчання з ін’єкцією несправностей, незалежного від моделі мета-навчання, навчання за обмеженою кількістю зразків, 
методів градієнтної оптимізації та ймовірнісних стратегій апроксимації градієнту. При цьому вибір архітектурних 
надстройок базується на ефективному щодо параметрів трансфері знань для для економії ресурсів та уникнення проблеми 
катастрофічного забування. 

Результати. Розроблено незалежний від моделі метод мета-навчання для оптимізації резільєнтності систем штучного 
інтелекту на основі градієнтних мета-оновлень, або мета-оновлень за еволюційною стратегією. При цьому метод передбачає 
використання тюнерів і мета-тюнерів, що здійснюють паралельну корекцію будівельних модулів (блоків) глибокої 
нейромережі. На прикладі задачі класифікації зображень експериментально протестовано здатність запропонованого 
підходу підвищувати ефективність поглинання збурень та підвищувати інтегральний показник резільєнтності системи 
штучного інтелекту. Експерименти проводились на моделі з архітектурою ResNet-18, з надстройкою у вигляді тюнерів і 
мета-тюнерів з архітектурою Conv-Adapter. При цьому CІFAR-10 використовується як базовий набір, на якому була навчена 
модель, а CІFAR-100 використовується як набір для формування вибірок, на яких здійснюють адаптацію за обмеженою 
кількістю зразків. Порівнюється показники резільєнтності системи штучного інтелекту після попереднього навчання 
тюнерів і мета-тюнерів за алгоритмом протиборчого навчання, алгоритмом навчання з ін’єкцією несправностей, 
традиційним алгоритмом незалежного від моделі мета-навчання та за запропонованим метод мета-навчання для оптимізації 
резільєнтності. Також порівнюються за інтегральним показником резільєнтності алгоритм мета-навчання з мета-
градієнтним оновленням та мета-оновленням на основі еволюційної стратегії. 

Висновки. Еспериментально підтверджено, що запропонований метод забезпечує кращий показник резільєнтності до 
ін’єкції випадкових інверсій біт порівняно з навчанням з ін’єкцією несправностей в середньому на 5%. Також 
запропонований метод забезпечує кращий показник  резільєнтності до L  протиборчих атак ухилення порівняно з 

протиборчим навчання всередньому на 4.8%. Так само продемонстровано підвищення всередньому на 4.8% резільєнтності 
до зміни задач порівняно зі звичайною точною настройкою тюнерів. При цьому мета-навчання з еволюційною стратегією 
забезпечує всередньому більші значення показника резільєнтності, однак попереднє мета-навчання потребує більше 
ітерацій. 

КЛЮЧОВІ СЛОВА: мета-навчання, еволюційна стратегія, ефективний стосовно параметрів трансфер знань, 
робастність, резільєнтність, протиборчі атаки, інжекція несправностей, навчання з декількох зразків. 
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