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ABSTRACT

Context. The problem of optimizing the resilience of artificial intelligence systems to destructive disturbances has not yet been
fully solved and is quite relevant for safety-critical applications. The task of optimizing the resilience of an artificial intelligence
system to disturbing influences is a high-level task in relation to efficiency optimization, which determines the prospects of using the
ideas and methods of meta-learning to solve it. The object of current research is the process of meta-learning aimed at optimizing the
resilience of an artificial intelligence system to destructive disturbances. The subjects of the study are architectural add-ons and the
meta-learning method which optimize resilience to adversarial attacks, fault injection, and task changes.

Objective. Stated research goal is to develop an effective meta-learning method for optimizing the resilience of an artificial
intelligence system to destructive disturbances.

Method. The resilience optimization is implemented by combining the ideas and methods of adversarial learning, fault-tolerant
learning, model-agnostic meta-learning, few-shot learning, gradient optimization methods, and probabilistic gradient approximation
strategies. The choice of architectural add-ons is based on parameter-efficient knowledge transfer designed to save resources and
avoid the problem of catastrophic forgetting.

Results. A model-agnostic meta-learning method for optimizing the resilience of artificial intelligence systems based on gradient
meta-updates or meta-updates using an evolutionary strategy has been developed. This method involves the use of tuner and meta-
tuner blocks that perform parallel correction of the building blocks of a original deep neural network. The ability of the proposed
approach to increase the efficiency of perturbation absorption and increase the integral resilience indicator of the artificial
intelligence system is experimentally tested on the example of the image classification task. The experiments were conducted on a
model with the ResNet-18 architecture, with an add-on in the form of tuners and meta-tuners with the Conv-Adapter architecture. In
this case, CIFAR-10 is used as a base set on which the model was trained, and CIFAR-100 is used as a set for generating samples on
which adaptation is performed using a few-shot learning scenarios. We compare the resilience of the artificial intelligence system
after pre-training tuners and meta-tuners using the adversarial learning algorithm, the fault-tolerant learning algorithm, the
conventional model-agnostic meta-learning algorithm, and the proposed meta-learning method for optimizing resilience. Also, the
meta-learning algorithms with meta-gradient updating and meta-updating based on the evolutionary strategy are compared on the
basis of the integral resilience indicator.

Conclusions. It has been experimentally confirmed that the proposed method provides a better resilience to random bit-flip
injection compared to fault injection training by an average of 5%. Also, the proposed method provides a better resilience to L -
adversarial evasion attacks compared to adversarial training by an average of 4.8%. In addition, an average 4.8% increase in the
resilience to task changes is demonstrated compared to conventional fine-tuning of tuners. Moreover, meta-learning with an
evolutionary strategy provides, on average, higher values of the resilience indicator. On the downside, this meta-learning method
requires more iterations.

KEYWORDS: Meta-learning, Evolutionary Strategies, Parameter-Efficient Transfer Learning, Robustness, Resilience,
Adversarial Attacks, Faults Injection, Few-Shot Learning.

ABBREVIATIONS

AIS is an Artificial Intelligence System;

CIFAR is a Canadian Institute for Advanced Research
dataset;

CMA-ES is the covariance matrix
evolution strategy optimization algorithm;

MAML is a Model-Agnostic Meta-Learning;

PID is a proportional-integral-derivative controller.

D is a dataset for sampling few-shot learning tasks;
Dpase 1s a dataset for main task;

Dgase is a training subset for main task;
adaptation Dyaly is an evaluation subset for main task;
D|t(r is a training subset for k-th few-shot learning

task;

Dl\('al is an evaluation subset for Kk-th few-shot
NOMENCLATURE

) . learning task;
Acc is an accuracy averaged over set of disturbance

F is an expected value of resilience criterion;

implementations;

o is a step size hyperparameter for inner loop of
meta-learning;

B is a step size hyperparameters for outer loop of
meta-learning;

v is a tuner’ hyperparameter which regulates channel
compression by 1, 2, 4, or 8 times;
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¢ is a set of parameters of tuners;

¢ is a set of optimal parameters of tuners;

g is a perturbation vector formed for the parameters
that being meta-optimized;

K' is a number of few-shot learning tasks;
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Kshot is @ number of images per class in few-shot
task;

Ly-norm is a count the number of non-zero elements
in an adversarial perturbation vector;

L, -norm is a largest magnitude among each element
of an adversarial perturbation vector;

L, is aloss function for current task;

N is a number of disturbance implementations;

N is a number of implementations of disturbances of
the same type on one meta iteration;

Nyay is a number of classes in few-shot task;

P, is a model performance before disturbance impact;

p(t) is a distribution of disturbance implementations;

P

parameters and evaluation data;

is a performance metric for current state of model

R is an integral resilience indicator averaged over set
of disturbance implementations;

R;, is a function that calculates the value of the
integral resilience indicator for t;  disturbance
implementation;

G is a precision parameter for evolution strategies of
meta-learning;

0 are parameters of pretrained and frozen base AIS
model;
is a set of all parameters of AIS model;
T is a maximum number of adaptation steps;
Tj is an i-th implementation of disturbance;

U

Ti
generation and adaptation;
o is a set of parameters of meta-tuners;

[1]

is an operator that combines disturbance

o is a set of optimal parameters of meta-tuners;
W is a task specified parameters;
Wyage 18 @ head weights for the main task.

INTRODUCTION

AIS are vulnerable to various types of disturbances.
The most studied types of disturbances are fault injection,
adversarial attacks, drift, and out-of-distribution data [1].
These disturbances can lead to financial and human life
losses in safety-critical applications. This amplifies the
need for research on vulnerabilities and resilience aspects
of AISs.

There are many papers devoted to protecting AIS
against fault injection, adversarial attacks, various types
of drift, and out-of-distribution [2, 3, 4]. However, few
studies have investigated the compatibility of protection
mechanisms against different types of disturbances. There
is a lack of research on simultaneous protection against
the impact of different types of disturbing factors.

Since the main goal of machine learning of AIS is to
ensure their maximum performance, the task of increasing
the resilience of an AIS to disturbing influences can be
considered an additional, higher-level task. In this case,
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the use of ideas and methods of meta-learning to ensure
the resilience of an artificial intelligence system seems to
be the most reasonable and promising approach. In
addition, different mechanisms for protecting against
disturbances may be incompatible or unbalanced, and
meta-learning can be seen as a way to harmonize the
effect of different machine learning mechanisms to
enhance a high-level goal of resilience.

The concept of resilience includes both architectural
aspects related to system redundancy and mechanisms of
graceful degradation, and behavioral aspects related to the
ability to absorb disturbances (robustness) and the ability
to quickly adapt and evolve [5, 6]. All these aspects are
interconnected in neural networks, especially in the
context of defense against various types of disturbing
factors. However, conventional meta-learning methods
usually take into account only one aspect of resilience and
only one type of disturbance.

Conventional methods for optimizing AIS parameters
typically aim to maximize the performance metric,
sometimes with simultaneous improvements in robustness
[7]. Meta-learning algorithms usually solve the problem
of learning in a few shots and the problem of convergence
in a minimum number of iterations [8]. However, there is
a lack of research on meta-learning application to
simultaneously optimize different components of
resilience, especially in the context of different types of
disturbances.

As the size of neural networks grows, more and more
attention is focused on parameter-efficient fine-tuning
methods for rapid adaptation to new tasks and domains
[9]. This approach does not change the original AIS
model, but instead adds additional elements that are fine-
tuned to improve the resulting model. Parameter-efficient
fine-tuning is also relevant for adapting to disruptive
influences in the context of affordable resilience, as there
are always resource constraints in practice.

The object of research is the process of meta-
learning for artificial intelligence system which functions
under influences of destructive perturbations and is
subject to resource constraints.

The subjects of the research are model-agnostic
method of meta-learning of an artificial intelligence
system that provide resilience to adversarial attacks, fault
injection attacks and task changes.

The goal is a development parameter-efficient model-
agnostic meta-learning method of artificial intelligence
system which provides resilience to adversarial attacks,
fault injections and task changes.

1 PROBLEM STATEMENT
Let {’Ci|i=1,_N} is set of disturbance implementations
for AIS. Disturbances t; can be considered as adversarial
attacks, fault injection, or switching to a new task. Let
{Dpase={Dihee; DY2L 1 is a dataset on which the model

was trained to perform the main task under known
conditions. It is also given a  dataset
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D={D{; Dy |k=1,K} for K few-shot learning tasks,
where fine-tuning data D|t(r is used in the fine-tuning

stage and validation set Df{al is used in the meta-update
stage. There is also a given set of parameters 6, ¢, ®

and W , where 0 are parameters of a pretrained and
frozen base AIS model, ¢ and ® are adaptation
parameters of AIS model backbone, and W are task
specified parameters (model head parameters). Head
weights Wy,qe for the main task are pre-trained on the

data Dy,ge -

It is necessary to find such values of the parameters
o, ¢" which ensure the maximum expected resilience
of AIS to the impact of various types of disturbances

max E [R. (U, (6,9,0,W,D))].
o, t~p(r) I

(M

The operator U should combine a disturbing
influence and adaptation in T steps, which maps the
current state of ¢ to new state of ¢ . Adversarial attacks,
fault injection, or switching to new tasks may be
considered as i -th disturbance T;

The function R calculates the value of the integral

resilience indicator for a particular disturbance
implementation over model parameters © during its

adaptation and the test sample Dl_’_al . Rl.i is a function of
1

the performance metric P .

1 T |
Re, = oz 2ty Pr (8,060 We, DI). )
0

Gradient-based meta-learning requires finding such
values of the parameters @  , ¢" that will ensure the

minimum expected loss function L on the set of
implementations of different types of disturbances T;

I(,r;,l(]r)l % NE(-E)[LTi (U‘ri (6’ ¢7 (D,W, D))] (3)
2 REVIEW OF THE LITERATURE

The problem of the resilience of AIS to various types of
disturbances was highlighted in [1, 5, 6]. In [10, 11] it is
noted that the two main characteristics of the behavior of a
resilient system are the simultaneous absorption of
disturbances (robustness) and rapid adaptation to new
disturbances. However, the majority of machine learning
methods focus on maximizing pefomance under normal
conditions, and sometimes one aspect of resilience [12, 13].

Increasing the robustness of AIS to adversarial attacks
is based on gradient masking [14], robustness
optimization [15], and adversarial attack detection [16].
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Fault tolerance is implemented through the application of
fault masking methods [17], explicit redundancy input
methods [18], and error detection methods [19]. The most
popular method is adversarial training, which is related to
robustness optimization. It consists in generating
perturbations of training samples during training.
Increasing the robustness to small domain shifts or task
changes is provided by Out-of-domain generalization
methods [20]. However, there is a lack of methods that
ensure optimal robustness to the complex effects of
various types of disturbances.

Increasing the speed of adaptation is wusually
implemented by improving optimizers or by reducing the
requirements for the amount of training data. Research
[21, 22] considers the use of PID control principles that
can increase the stability and speed of the process of
optimizing system parameters. In [23], methods for
training neural network optimizers to increase the
learning speed are considered.

One of the ways to increase the generalization
capability of the network and reduce the requirements for
training data while adapting to changes is meta-learning.
In [24], various model-agnostic meta-learning methods
for implementing Few-Shot Learning are considered. In
[7], an attempt was made to integrate different methods
for increasing the robustness of a neural network with
meta-learning for Few-Shot Learning. As a result, it has
been demonstrated that the incorporation of regularization
and the introduction of perturbative effects can be
effectively executed in both the internal loop and the
external loop of meta-learning. Another study [25]
demonstrated that the outer loop of meta-learning could
be implemented using an evolutionary strategy, enabling
the use of even non-differentiable, non-smooth, and non-
decomposable meta-objectives. However, there is a lack
of research examining meta-objectives such as robustness,
adaptation speed, or integral resilience indicators.

Study [26], has shown that ensuring resilience may
require significant resources, and it is advisable to
consider approaches for providing affordable resilience.
In the works [9], it is proposed to perform model
adaptation for specific tasks or domains within the
framework of parameter-efficient transfer learning. In this
approach, the large AIS model remains unchanged
(frozen). Instead, the frozen model is modulated by
adding adapters with a small number of parameters. In the
study [27], the use of adapters in conjunction with meta-
adapters was considered to further enhance adaptation
efficiency. However, the possibility of using adapters for
optimizing model robustness and adaptation speed to new
types of disturbances has not yet been explored.

Thus, there is a lack of research on the use of meta-
learning for ensuring the resilience of AIS to the
combined impact of various types of disturbances.
However, existing studies demonstrate the possibility of
optimizing individual aspects of resilience. Therefore, it is
relevant to investigate the potential for combining
different mechanisms to ensure the resilience of AIS in

the full sense of this concept.
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3 MATERIALS AND METHODS

The larger the model, the more computationally
complex it is to fine-tune for adaptation to new
conditions. Moreover, there is a potential risk of
catastrophic forgetting under the influence of new
information. Therefore, it is proposed to attach tuners to
the model, which can be computationally efficient in fine-
tuning [9]. In this case, the weight coefficients of the
model remain frozen. The original model usually consists
of certain blocks or modules, such as Convolutional
Residual Block, Multi-layer Perceptron Block, Multi-head
Self-Attention Block, and others. To generalize, we will
refer to these blocks as frozen operations and denote them
as OP(x). The parallel method of connecting a tuner
(adapter) to the frozen blocks of the model is the most
convenient and versatile approach (Fig. 1a) [28]. In this
case, to ensure the properties of resilience, it is proposed
to use three consecutive blocks of tuners at once, two of
which are tuned during meta-training (Fig. 1a) [27]. To
balance between different modules, we introduce a
channel-wise scaling factor.

For the same frozen model block, the architecture of
the tuners is chosen to be identical. Various tuner
(adapter) architectures have become popular in the
literature, with the most computationally efficient ones
shown in Fig. 1b, Fig. lc, and Fig. 1d. The architectures
depicted in Fig. 1b and Fig. 1c are based on convolutional
layers, making them computationally simpler on the one
hand and characterized by lower capacity for absorbing
disturbances on the other hand. However, convolutional
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]
I OP(O frozens X) I | Tuner(¢ , x’) I
F N x'
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a
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tuners have proven themselves effective in correcting
frozen convolutional blocks [29]. The convolutional tuner
shown in Fig. 1c has a hyperparameter y, which regulates
channel compression by 1, 2, 4, or 8 times.

If we reject the specialization of different parameters
of the Al model and denote the set of all parameters as
E=<0,¢,m,W >, then the process of meta-learning using

gradient learning methods can be described by the
formula

2" —argmin E
= T~p(r

[ U5 &) 4

If we use the SGD stochastic gradient descent
algorithm with T steps in the U operator and use
gradient meta-update in the outer loop, we will get the
algorithm shown in Fig. 2. Moreover, to simplify
computations and increase stability, the tunable and meta-
tunable parameters can be updated using the REPTIL
algorithm [30].

If we do not restrict ourselves to gradient algorithms
in the outer loop, then the meta-learning for direct
maximization of the expected resilience criterion can be
described by the formula

== arg max [Rri U(E,D))]=
= p(z)

= T~

- (&)

=argmax F(E).

Az A
Convolutional Layer
kernel size = 1x1

Convolutional Layer
kernel size = 3x3

Az +
Feedforward upward
projection

Feedforward
downward projection
x4

d

Figure 1 — Parallel tunning scheme and tuner architectures: a — parallel tuning scheme for the frozen block;
b — tuner or meta-tuner based on ResNet-like convpass; ¢ — tuner or meta-tuner based on two-layer convolutional network with
channel dimension down-sampling bottleneck; d — tuner or meta-tuner based on two-layer feed-forward network
with a downward projection bottleneck
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Require:  Distribution over disturbances p(7); Step size hyperparameters a, f8;
Number of adaptation steps T.
Pretrain ¢), @ on original data D,
While not done do:
Select type of disturbance from set {fault injection, evasion adversarial attack, task change}
Sample disturbance implementations 7,~p(t), i = 1,n
For i=1,2,...,n do:
Clone the current parameters: 8,,, &, ¢, W, —copy(8, ®, d, W)
If disturbance type is a task change:
Sample the training and validation data Df], D¥:" from new task
else:
Sample the training and validation data D}, Dﬁi‘” from D,
If disturbance type is a fault injection:
8y, @y, P, « Fault_injection(8., @, ¢, Wy,)
If disturbance type is an evasion adversarial attack:
DY, DY — Adversarial_perturbation(D};, DY)
¢r; = SGDQ).W(LU(QTN d’r;: é’qr Wry Di’.’)» T, a)
w—w-—pV, Z LT[(B, @, o, Dﬁ[‘“
7~p(1)

b+ By (B, — B)

Figure 2 — Pseudocode of model-agnostic gradient-based meta-learning for AIS resilience optimization

Require: Distribution over disturbances p(7); Step size hyperparameters a, f3;

Precision parameter g; Number of adaptation steps T.
Pretrain ¢, w on original data Dy,
While not done do:
Select type of disturbance from set { fault injection, evasion adversarial attack, task change}
Sample disturbance implementations 7;~p(7), i = 1,n
Sample perturbation vectors gg , ~N(0,I), i = 1n g, n~NOD,i=1n
For i=1,2,...n do:
Clone the current parameters: 8, @, ¢, W, — copy(8, w, d, Wyag.)
‘bt.-i = ﬁ'br,- + 09y, ‘bt,-— “ ‘a’t’t,- — 0441

g,y & G, t o4, 1 Mg & W, —ag,, g,

If disturbance type is a task change:
Sample the training and validation data DY/, D¥*' from new task
else:
Sample the training and validation data DY, D¥* from D,
If disturbance type is a fault injection:
Or) @4, @, by by, - — Fault_injection(8y, @y, @, rpvr Pr,-)
If disturbance type is an evasion adversarial attack:
DI, DYl — Adversarial_perturbation(D, Do)
{@r4.0lt = LT} < SGD g w(Ly (6:) @ri, Prps W, DY), T, @)
(bo, (It = 1T} = SGD gy (L (B0 o, o, Wor, DY), T, )
R’f:”‘i - R({Pﬁ(otf'd’w'l" (i'TH‘rf-‘ Dg:ﬂ)})
R-a < R({Pt(éﬂ"bﬂ—* ‘i"l'd--ﬂ Dg:ﬂ D

1
Rf! « E (R+-f| - R—-TJ
1% R
cw+f— G,
@ — @ ﬂmz -

i=1

1 n
b d +ﬂEZ Re,Go,

Figure 3 — Pseudocode of model-agnostic meta-learning with evolution strategies for AIS resilience optimization
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It is proposed to use an evolutionary strategy for the
direct maximization of the resilience criterion due to the
possible non-differentiability of the criterion. In this case,
the gradient estimation can be performed over the
Gaussian-smoothed version of the outer loop objective,
which is calculated by the formula [8]

vV E

[F(E+o9)]=
g~-N(0,1)
(6)

ZZLE[R(Emg)— R(E-o9)].
(o)

If, in the meta-optimization algorithm with an
evolutionary strategy, a single perturbation vector g is

formed for the meta-optimized parameters at the
beginning of each meta-optimization iteration, the
resulting algorithm will be as shown in Fig. 3.

The analysis of Fig.2 shows that the type of
disruptive influence does not change within a single meta-
adaptation step. However, each meta-adaptation step
begins with the selection of a disruptive influence type,
followed by the generation of n implementations of the
disruptive influence with a subsequent nested adaptation
loop for each of them. Simultaneously combining
disturbances may be ineffective. For example, after
adding fault injection to the weights, we will have an
outdated model, and applying adversarial attacks to it may
be irrelevant.

The formation of adversarial samples is based on the
Adversarial _ perturbation() function. For differentiated

models, FGSM attacks or PGD attacks can be used [31].
It is proposed to use adversarial attacks based on the
search algorithm of the covariance matrix adaptation
evolution strategy (CMA-ES) for non-differentiable
models [32]. The level of perturbation is limited by the
L, -norm or Ly -norm. In this case, if the image is

normalized by dividing pixel brightness by 255, then the
specified disturbance level is also divided by 255.

The formation of fault injections is performed by the
Fault _injection() [33]. It is suggested to choose the

most difficult fault type to absorb, which involves
generating an inversion of a randomly selected bit (bit-flip
injection) in the weight coefficient of the model. For non-
differentiable models, it is proposed to generate up to 100
damaged weight versions, selecting the one providing the
greatest reduction in accuracy. For differentiable models,
it is suggested to pass the test dataset through the network
and calculate the gradients, which can then be sorted by
their absolute values. In the top-k weights with the highest
gradient, one bit is inverted in a random position. The
proportion of weights for which one random bit is
inverted can be denoted as the fault rate.

Task change is needed to simulate concept drift and
out-of-distribution. Forming a sample of other tasks can
be done by randomizing the domain of the same task or
by selecting tasks from relevant domains but sampling
truly different tasks. These two approaches can also be
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combined. In any case, an attempt should be made to
sample data from larger and more diverse sets than

Dpase-

The analysis of Fig.3 shows that, to calculate the
resilience indicator, it is necessary to calculate the
intermediate values of the performance metric for T
adaptation steps, which in most cases is not differentiated.

4 EXPERIMENTS
For simplicity of experiments, we will use the Resnet-
18 as the base model, pretrained on CIFAR-10 [34]. The
architecture of the tuner and meta-tuner is chosen to be
the same in the form of a two-layer convolutional network
with channel dimension down-sampling bottleneck
(y =2). To generate new tasks, CIFAR-100 is used, from

which data is sampled for randomly selected 10 classes
(Nyay =10) [34]. It is proposed to use 16 images per

class (Kgpot =16), which are sent in mini-batches of 4
images (mini_batch size =4) during adaptation. Thus,
the number of adaptation steps is
T = (Kshot * Nway)/ Mini _batch _size = 40 iterations. The

base task is used during meta-learning along with new
tasks. The learning rate of the inner and outer loop of
meta-learning are o =0.001 and p=0.0001

respectively. The maximum number of meta-iterations is
300. However, the Early Stopping algorithm is used to
stop meta-learning, which terminates the execution if the
criterion does not change for more than 10 consecutive
iterations by more than 0.001.

During the experiments, it is necessary to determine
whether the connection of a meta-trained tuners can
improve the ability to absorb disturbances such as faults
and adversarial attacks, even if they are formed in a way
different from what is used during training. It is also
planned to determine whether meta-learning improves the
speed of adaptation to faults and adversarial attacks
compared to training under the influence of disturbances
without meta-learning.

When calculating the integral indicator of resilience to
disturbance (2), it is proposed to use the accuracy metric
as the performance criterion PTi . It is necessary to

determine the advantages and disadvantages of the
gradient-based meta-adaptation algorithm and the meta-
adaptation algorithm with an evolutionary strategy.

The experimental research is proposed to be carried
out in the following sequence:

1. Testing the pre-trained model without tuners and
meta-tuners on disturbances of varying intensity.

2. Adding tuners and meta-tuners trained on data
during fault injection into the entire model with a fixed
fault rate for testing the resulting model on different
fault rate values.

3. Adding tuners and meta-tuners trained on data with
adversarial disturbances with a fixed perturbation level
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for L, for testing the resulting model on different
perturbation levels for L, .

4. Adding tuners and meta-tuners trained using the
proposed gradient-based meta-learning algorithm for
optimizing resilience (Fig.2) followed by testing of the
resulting model on disturbances of varying amplitude.

5. Adding tuners and meta-tuners trained using the
proposed meta-learning algorithm with an evolutionary
strategy for optimizing resilience (Fig.3) followed by
testing of the resulting model on disturbances of varying
level.

6. Adding tuners and meta-tuners and calculating the
average resilience value during adaptation to new tasks
sampled from CIFAR-100.

7. Adding tuners and meta-tuners trained using the
proposed gradient-based meta-learning algorithm for
optimizing resilience (Fig. 2) and calculating the average
resilience value during adaptation to new tasks sampled
from CIFAR-100 but not used during meta-learning.

During the studies of the pre-trained model without
tuners, only the average accuracy value on the test set is
calculated. During testing of the pre-trained model with
tuners and meta-tuners, the meta-tuners remain fixed, and
the tuner is used to restore performance and calculate the
average resilience value (2).

For training tuners with meta-tuners, fault injection is
carried out by selecting weights with the largest absolute
gradient values. The proportion of modified weights is

fault rate=0.3. For testing the resulting model, fault

injection will be performed by random bit-flips in
randomly selected weights, the proportion of which
(fault_rate) ranges from 0.1 to 0.6.

The training of the tuners and meta-tuners involves
generating adversarial samples using the FGSM algorithm
with perturbation level according to L, up to 3.

However, to test the resulting model against adversarial
attacks, the adversarial samples are generated using the
CMA-ES algorithm with perturbation_level according to
L, -norm from 1 to 10.

Taking into account the elements of randomization, it
is proposed to use their average values when assessing the
accuracy and resilience of the model. To this end, 100
implementations of a certain type of disturbance are
generated and applied to the same model or data. The
average value of resilience during adaptation to new tasks
is estimated on 5 task implementations (combinations of
classes from CIFAR-100 that did not participate in the
training of the meta-tuners).

5 RESULTS
The results of testing the impact of fault injection on
model performance are shown in Table 1. When adding
tuners and meta-tuners, before testing, they are pre-
trained using gradient-based algorithms with and without
disturbances until the base model’s accuracy is reached.

The average accuracy Acc and the integral resilience
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indicator R for the model are evaluated on 100
implementations of fault injection with a given fault rate.
During testing, meta-tuners are fixed, and tuners can be
used for adaptation to disturbances and calculation of the
resilience indicator. Meta-learning is performed using a
gradient-based algorithm, where the early stopping
condition occurred at the 150-th iteration (Fig. 2).

The analysis of Table 1 shows that tuners with meta-
tuners can increase the robustness of the pre-trained
model to faults by absorbing the impact. Moreover, the
proposed resilience-aware meta-learning method provides
a better resilience indicator compared to fault-tolerance
training, on average by 5%. This means that during 40
iterations of tuning, performance recovery occurs faster
on average if the model was prepared based on resilience-
aware meta-learning. The resilience measurements in the
experiment have standard deviation not exceeding 1.0.

Table 1 — Experimental data of model resilience to the faults
injection testing

Fault | Only Pretrained model | Pretrained model
rate Pre- with tuners and meta- | with tuners and meta-
trained tuners trained under | tuners meta-trained
model fault injection for resilience
optimization
Acc Acc R Acc R
0.0 92.5% 92.8% - 93.1% -
0.1 90.2% 91.1% 0.971 92.2% 0.986
0.3 85.1% 87.6% 0.944 89.1% 0.971
0.5 83.0% 85.5% 0.883 86.5% 0.955
0.6 75.4% 80.1% 0.831 84.9% 0.917

The results of testing the impact of adversarial attacks
on the model’s performance are shown in Table 2. Tuners
and meta-tuners are trained without and with
perturbations until the resulting model reaches the
accuracy of the base model for the next resiliency test.

The average value of the accuracy Acc and the integral

indicator of resilience R for the model is estimated on
100 implementations of adversarial perturbations of the
dataset with a given perturbation level. After freezing the
parameters of the meta-tuners, the tuners can be used to
adapt to the disturbance and calculate the resilience
indicator. Meta-learning is performed using a gradient-
based algorithm (Fig. 2).

Table 2 — Experimental data of model resilience to the
adversarial attack testing

Per- | Only Pretrained model | Pretrained model
tur- Pre- with tuners and meta- | with tuners and meta-
ba- trained tuners trained under | tuners meta-trained
tion | model adversarial attack for resilience
level optimization
Acc Acc R Acc R

0 92.5% 92.8% - 92.7% -

1 91.6% 91.1 0.965 92.0% 0.981

3 88.1% 88.9 0.934 90.1% 0.980

5 82.5% 82.7 0.865 84.8% 0.922

10 74.8% 75.9 0.821 77.7% 0.897
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The analysis of Table 2 shows that meta-tuners can
increase the robustness of a trained model to adversarial
attacks by absorbing part of the disturbance. Moreover,
the proposed method of resilience-aware meta-learning
provides a better resilience indicator compared to
adversarial training by an average of 4.8%. That is, within
40 iterations of tuning, performance recovery is faster
after resilience-aware meta-learning. The resilience
measurements in the experiment have standard deviation
not exceeding 1.1.

The results of resilience testing of the model with
tuners and meta-tuners that were meta-trained with the
evolutionary strategy (Fig. 3) are shown in Table 3 and
Table 4. In this case, the meta-learning was performed
with 233 iterations until the Early Stopping condition was
reached.

The analysis of Table 3 and Table 4 shows that meta-
learning with an evolutionary strategy also improves the
perturbation absorption and the integral resilience
indicator. A comparison of the results from Tables 1 and
2 with the results from Tables 3 and 4 shows that the
results are comparable, but with a slight advantage in
resilience (more than 1.5%) for the evolutionary
optimization strategy. It is also worth noting that the
evolutionary strategy required 83 additional iterations to
achieve the optimal result.

Table 3 — Experimental data of model resilience to the faults

injection testing after resilience aware meta-learning with

evolution strategies

Fault rate

Acc R
0.0 93.1% —
0.1 93.3% 0.988
0.3 89.9% 0.979
0.5 87.5% 0.971
0.6 85.0% 0.941

Table 4 — Experimental data of model resilience to the
adversarial attack testing after resilience aware meta-learning
with evolution strategies

Perturbation level ‘Acc R
0 92.7% -
1 93.5% 0.986
3 91.6% 0.984
5 86.7% 0.954
10 83.5% 0.919

The advantage of using meta-learning instead of
conventional fine-tuning of tuners was evaluated based on
the experiment results which are shown in Table 5.

Table 5 — Experimental data of model resilience to the task
change testing

Pretraining method of tuners and meta-tuners R
Pre-trained on the base dataset until the accuracy of the | 0.933
base model is achieved
Meta-trained for resilience optimization 0.981

The analysis of Table 5 shows that when adapting to
new tasks, the meta-trained tuners and meta-tuners
provide on average a 4.8% higher value of the integrated
resilience indicator over 40 iterations of adaptation than a
simple pre-training on the base task.

© Moskalenko V. V., 2023
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Thus, the proposed meta-learning algorithm for
optimizing the AIS resilience ensures an increase in the
AIS model’s resilience to disturbances compared to
conventional approaches such as fault-tolerant training,
adversarial training, and fine-tuning.

6 DISCUSSION

Experimental data confirm the increase in the
resilience of the Al system to disturbing influences on the
example of image classification with the use of the
proposed meta-learning method. However, it is not clear
exactly what effect the use of different types of
perturbations in the internal optimization loop would have
on the resilience. It is not known whether the
conventional Model-Agnostic Meta-Learning (MAML)
algorithm for Few Shot Learning will be inferior to the
proposed method. Therefore, it is proposed to compare
the results of testing meta-trained tuners and meta-tuners
using the conventional MAML and the proposed
algorithm (Fig. 2). Table 6 and Table 7 show the results
of testing meta-trained tuners with meta-tuners using
conventional MAML and the proposed Resilient-aware
MAML. In this case, Table 6 illustrates the result of
testing for fault injection, and Table 7 illustrates the result
of testing for adversarial evasion attacks.

Table 6 — Experimental data of model resilience to the faults
injection testing for Conventional MAML and Proposed
Resilient-aware MAML

Fault | Gradient-based Proposed Gradient-based
rate Conventional MAML Resilient-aware MAML
Acc R Acc R
0.0 92.8% — 93.1% —
0.1 90.7% 0.962 92.2% 0.986
0.3 84.9% 0.938 89.1% 0.971
0.5 82.9% 0.877 86.5% 0.955
0.6 75.6% 0.838 84.9% 0.917

Table 7 — Experimental data of model resilience to the
adversarial attack testing for Conventional MAML and
Proposed Resilient-aware MAML

Per- | Gradient-based Proposed Gradient-based
tur- Conventional MAML Resilient-aware MAML

ba- Acc R Acc R

tion

level

0 92.5% - 92.7% -

1 91.3% 0.961 92.0% 0.981

3 88.6% 0.921 90.1% 0.980

5 81.9% 0.847 84.8% 0.922

10 73.7% 0.811 80.7% 0.907

The analysis of Table 6 shows that tuners and meta-
tuners trained with the conventional MAML algorithm for
few-shot learning are inferior on average by more than
5% to the proposed algorithm in terms of resilience.
Moreover, a comparison with Table 1 shows that the
results of conventional MAML are on average 0.3%
lower in terms of resilience than fault-tolerant training
algorithms.

The analysis of Table 7 shows that tuners and meta-
tuners trained with the conventional MAML algorithm for

OPEN a ACCESS m



p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpapiinas. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

few-shot learning are inferior on average by more than
6% to the proposed algorithm in terms of resilience.
Moreover, a comparison with Table 2 shows that the
results of conventional MAML are inferior in terms of
resilience on average by more than 1% to the adversarial
training algorithm.

Thus, the proposed Resilient-aware MAML for model
pre-training with tuners and meta-tuners ensures better
absorption of fault injection and adversarial attacks and
faster adaptation to them. Moreover, the proposed
approach provides a higher resilience indicator compared
to training separately under the influence of each type of
perturbation or on the basis of conventional MAML.

CONCLUSIONS

The scientific novelty of the obtained result is the
new MAML method for optimizing resilience to fault
injection, adversarial attacks, and task change is
developed. The method involves the use of tuners and
meta-tuners which perform parallel correction of the
building blocks of the deep neural network. The proposed
meta-learning method consists of generating n
implementations of a certain type of disturbance at each
iteration of meta-optimization and using the results of
adaptation for meta-updating tuners and meta-tuners. In
this case, meta-updates can be calculated based on
gradients or on an evolutionary strategy

It is experimentally proven that the Proposed
Resilient-aware MAML improves the ability of the basic
model to absorb disturbances and increases the speed of
adaptation compared to conventional approaches. The
proposed method provides a better fault injection
resilience indicator compared to fault-tolerance training
on average by 5%. Also, the proposed method provides a
better resilience to evasion adversarial attack compared to
adversarial training on average by 4.8%. It has also
demonstrated an average improvement by 4.8% in task
change resilience compared to conventional fine-tuning of
tuner blocks.

The results of the conventional MAML and the
Proposed Resilient-aware MAML are compared in terms
of the impact on resilience to disturbances. The advantage
of the proposed method is confirmed. In addition, meta-
learning with an evolutionary strategy provides on
average higher values of the resilience indicator, although
it requires more iterations.

The practical significance of the achieved results lies
in the formation of a new methodological basis for the
development of algorithms for optimizing the resilience
of AIS, which is important for safety-critical applications.
Moreover, the method has a fairly unified structure and
can be applied to a wide range of AIS model architectures
and tasks, which brings it closer to the concept of
providing resiliency as a service.

The limitations of the research are related to testing
this approach only on the ResNet-18 convolutional
network with blocks of tuners and meta-tuners based on
the Conv-Adapter architecture. Nevertheless, the paper

shows the fundamental possibility of increasing the
© Moskalenko V. V., 2023
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resilience of the original model by using tuners, meta-
tuners, and meta-learning with a perturbation generator.

Future research should focus on the architecture of
the tuner blocks and the application of the proposed
approach to other machine learning tasks, such as
regression, reinforcement learning, and generative
models.
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HE3AJIEXKHHWI BII MOJEJI AJITOPUTM META-HABUAHHS JIJISI ONITUMIBAIIT PE3LJILEHTHOCTI
CUCTEMMU LITYYHOI'O IHTEJIEKTY

Mockanenko B. B. — xaHz. TexH. HayK, JIOLEHT, AOLEHT Kadenpu KOMII IOTepHUX HayK, CyMCBKUI Jep)KaBHHH YHIBEpCHTET,
Cymu, YkpaiHa.

AHOTAUIIA

AKTyaJabHicTh. 3agaya onTuMizamii pe3iIb€HTHOCTI CHCTEM IUTYYHOTO iHTENEKTY A0 NeCTPYKTHBHUX 30ypeHb NOoci He Oyia
TIOBHICTIO BHpIIIEHA i € JOCUTh aKTYAJILHOIO [UISl KPUTUYHHX [0 Oe3MeKH 3aCTOCYBaHb. 3ajada ONTHMIi3amnii pe3lIbeHTHOCTI CHCTEMHU
IITYYHOTO IHTEJEKTY A0 30ypIOIOYNX BIUIMBIB € BHCOKOPIBHEBOIO IO BiHOIICHHIO O ONTHMI3allii e()eKTUBHOCTI, 1[0 00YMOBIIOE
NIePCTICKTUBHICTh BUKOPUCTAHHS i/ieil i MeToAiB MeTa-HaB4YaHHs Ais ii BupimeHHs. ToMy 00’€KTOM IOCIIDKEHHS € IpOoLec MeTa-
HaBYaHH JUIS ONTHMIi3alii pe3iIbeHTHOCTI CHCTEMHU LITYYHOTO IHTENEKTY IO ACCTPYKTUBHHX 30ypeHb. [IpeaMeToM nocmiukeHHs €
apXITeKTYpHI HAACTPOMKH Ta METOJ MeTa-HaBYaHHS, LI0 3a0e3MeuyloTh ONTHMI3alil0 PEe3iUTBEHTHOCTI OO MPOTHOOpPYMX arak,
IHDKeKLii HecripaBHOCTeH 1 3MiHM 3a1au.

Merta pocJinskeHHs — po3poOiIeHHS ¢pEeKTHBHOTO METOLY METa-HaBYaHHS Ul ONTUMi3alii pe3iIbeHTHOCTI CHCTEMH IITYYHOTO
IHTEJIEKTY [0 IECTPYKTUBHHUX 30ypEHb.

Metoan gocaigxenns. OnTuMizanis pe3UTLEHTHOCTI pealTi3y€eThCs MUITXOM HOEJHAHHS 1/1eH 1 MeTo[iB TPOTHOOPUIOTro HaBYAHHS,
HaBYaHHS 3 iH’€KIII€I0 HECIIPAaBHOCTCH, HE3aJISKHOTO BiJ MOJEIN MeTa-HaBYAHHS, HaBYAHHS 32 OOMEKEHOIO KUTBKICTIO 3pa3KiB,
METOIIB TIpajieHTHOI onTHMi3auii Ta HMOBIpHICHMX cTpareriii ampokcumauii rpagieHty. Ilpum mpomy BHOIp apXITEKTYpHHX
HAJICTPOHOK 0a3yeThcsi Ha epeKTHBHOMY IIOJ0 MapaMeTpiB TpaHcdepi 3HaHb IS U1 €KOHOMII PecypciB Ta YHHUKHEHHS IpoOIeMu
katacTpodiuHOro 3a0yBaHHI.

Pe3yabraT. Po3po0ieHo HeszanexHH Bif MOfeNi METOA MeTa-HaBYaHHs Ul ONTUMi3allil pe3iIbeHTHOCTI CHCTEM IITYYHOTO
IHTEJIEKTY Ha OCHOBI TPaJiEHTHUX METa-OHOBJICHB, 00 METa-OHOBJICHB 3a €BOJIOIKHOIO cTparerielo. [Ipu npoMy Meton nependadae
BHKOPUCTAHHsS TIOHEpIB 1 MeTa-TIOHEpiB, M0 3MIMCHIOITH MapalelbHy KOpeKIifo OyniBenpHHX MOAyIiB (ONOKIB) TIHOOKOI
Helipomepexxi. Ha mpukmani 3amaui kimacudikarii 300pa’keHb €KCIIEPUMEHTAIBHO IPOTECTOBAHO 3IATHICTH 3alpONOHOBAHOTO
MAXOMy IMiJBHINYBAaTH €()eKTHBHICTh NOTIMHAHHSA 30ypeHb Ta IiJBHINYBAaTH IHTETPAJbHUHA ITOKa3HUK PE3IIbEHTHOCTI CHCTEMHU
LITYYHOTO iHTeNIeKTy. EXcriepiMeHTH NpOoBOAMIIMCE Ha MoJeli 3 apxiTekTyporo ResNet-18, 3 HancTpoikoro y BHUITISII TIOHEPIB i
MeTa-TIoHepiB 3 apxitekTypoto Conv-Adapter. ITpu npomy CIFAR-10 BukopuctoByeThes sik 6a30BHil Habip, HA sIKOMY OyJia HaBUSHA
mozeinb, a CIFAR-100 BukopucToByeThesi sik Habip st popmyBaHHS BHOIPOK, Ha SIKMX 3/IHCHIOIOTH aJaNTalLilo 32 00MEXEHOI0
KUIBKiCTIO 3paskiB. [IOpiBHIOEThCS MOKA3HUKH DPE3LIBEHTHOCTI CHCTEMH MITYYHOTO IHTENEKTY IIC/s MOMEPeAHbOr0 HaBYAHHSI
TIOHEpIB 1 MeTa-TIOHEpiB 32 alrOPUTMOM MPOTHOOPYOr0 HABYAHHS, AITOPUTMOM HaBYaHHS 3 1H €KII€I0 HECIPaBHOCTEH,
TpaOULiHHIM AITOPUTMOM HE3aJEKHOTO BiJl MOJEI MeTa-HaBYaHHS Ta 32 3aIPOIIOHOBAHUM METO]] ME€Ta-HaBUYAHHS JUIS ONTUMI3amii
pe3inbeHTHOCTI. TakoX IOPIBHIOIOTHCS 3a IHTETPAIBHUM IIOKa3HUKOM PpE3UIBEHTHOCTI alrOpUTM MeTa-HaBYaHHSA 3 MeTa-
rpaJiecHTHUM OHOBJICHHSIM Ta METa-OHOBJICHHSIM Ha OCHOBI €BOJIIOIIHHOT cTparterii.

BucnoBkn. EciepnMeHTansHO MATBEPIKEHO, 1[0 3aIPONOHOBAHUH MeTo[] 3abe3nedye Kpalluid MOKAa3HUK Pe3iTbeHTHOCTI 10
iH’eKIii BHIIAQJKOBUX iHBEpCid OIT MOPIBHSAHO 3 HABYaHHSAM 3 1H €KIEI0 HECTpaBHOCTEH B cepemHboMy Ha 5%. Takox
3aNpONOHOBAaHUN MeTOA 3abe3nedye Kpaluuil MOKasHUK —pesinbentHocTi g0 L, mporuGopuux arak yxujieHHs HOPIBHSHO 3

poTHOOpYNM HaBYaHHS BcepenHboMy Ha 4.8%. Tak camMo MPOAEMOHCTPOBAHO MiABUINEHHS BcepeaHboMy Ha 4.8% pe3inbeHTHOCTI
JI0 3MiHH 33714 TIOPIBHSHO 31 3BUYAHHOI0 TOYHOIO HACTPOIKOIO TIOHepiB. IIpy 11boMy MeTa-HaBYaHHS 3 €BOJIOLIHHOIO CTpaTEriclo
3a0e3redye BCEpeNHbOMY OLUIBII 3HAYCHHS IIOKa3HUKA pPE3UILEHTHOCTI, OJHAK IIONEpeIHE MeTa-HaBUaHHS MHOTpedye Oinblie
iTeparii.

KJIIOYOBI CJIOBA: wMera-HaB4YaHHS, €BONIOLIMHA cTpaTeris, e(peKTHBHHH CTOCOBHO IapaMeTpiB TpaHC(ep 3HaHb,
pO0aCTHICTh, Pe3ITLEHTHICT, NPOTHOOPYI aTaKH, IHKEKI[isl HECIPABHOCTEH, HABYAaHHS 3 IEKIJIbKOX 3pa3KiB.
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