p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

IMPOI'PECUBHI IHOOPMAIINHI
TEXHOJOTTI

PROGRESSIVE INFORMATION
TECHNOLOGIES

UDC 004.414.38

TECHNOLOGY FOR IDENTIFYING AND FORMING POSSIBLE
RELATIONSHIPS BETWEEN USE CASES
IN THE PROCESS OF THE INFORMATION SYSTEM DESIGN

Kungurtsev O. B. — PhD, Professor, Professor of the Software Engineering Department, Odessa Polytechnic Na-

tional University, Odessa, Ukraine.

Zinovatna S. L. — PhD, Associate Professor of the Software Engineering Department, Odessa Polytechnic National

University, Odessa, Ukraine.

ABSTRACT
Context. Use cases are widely used as a means of formulating requirements in the development of information systems. All sub-
sequent design stages depend on the quality of their presentation. Structuring use cases can significantly increase their understanding

and maintenance in the face of changing requirements..

Objective. Flexible technologies involve working in small teams. The existing communication between teams is not sufficient to
highlight sub use cases at the project level. There is a need for automated analysis of the corpus of all use cases.
Method. A mathematical model of a use case which makes it possible to define the criteria for comparing scenarios and elimi-

nate the redundancy of descriptions is proposed. A four-step method for restructuring use cases has been developed. At the first
stage, use cases are presented in a formalized form. At the second, they are stored in the repository, which ensures their quick search
and placement. At the third stage, procedures of scenario comparison are performed. Scenario similarity criteria are proposed. At the
fourth stage, the formation of subordinate use cases is carried out, their texts are coordinated with all interested teams, and the use

cases that cause subordinate use cases are corrected.

Results. Experiments providing the formalized compilation of use cases by several development teams followed by automated
restructuring were carried out to test the proposed solutions. As a result, new subordinate use cases were correctly identified and the
scope of use of previously formed ones was expanded. There was a significant reduction in the time for restructuring.

Conclusions. The proposed method of restructuring use cases improves the clarity and consistency of requirements, the possibil-
ity of their adjustment and maintenance, and reduces the compilation time. The method can be used in the design of any information
system, where the requirements are presented in the form of use cases.

KEYWORDS: Use Case, Subordinate Use Case, Scenario, Information System Design.

ABBREVIATIONS
UC is a use case;
IS is a information system;
SUC is a subordinate use case.

NOMENCLATURE

Actor is the system user who will perform the said UC
step;

CA is a condition of transition to an alternative sce-
nario;

Client is an optional element (introduced when it is
necessary to specify who the initiative comes from);

datay is a data that is input and/or output from the sys-
tem;

dName is the name of the data;

dType is the type of the data;

eList is a list of template elements of a scenario step;

editText is a texts of scenario step edited by the devel-
oper;

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

ep; is the number of the main scenario step from which
the transition to the alternative scenario takes place;

id is the UC identifier;

MAP is a numbered set of extension scenario steps;

mData is a set of data entered into the system or re-
ceived from it;

mP is a numbered set of items of the main scenario;

MES is a set of alternative scenarios;

mRef is a set of references of the subordinate UC to
the UC that access it;

n; is a number of alternative scenarios;

NP is the number of the scenario step;

pi is a step text;

pH is the head step number, possible values: empty
string, integer;

pText is a scenario step text;

pType is a scenario step type;

refT is a reference to the command that accompanies

the UC;
OPEN a ACCESS m

117

p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

rpx is the number of the main scenario step, to which
the return from the alternative scenario takes place;

Siis a UC scenario;

tp; is a pre-composed piece of text;

tu; is a piece of text formulated by the developer;

ucType is a UC type, can take two values: main (for
main UCs) or subordinate (for subordinate UCs).

INTRODUCTION

UCs are the main way to represent functional re-
quirements [1], and partially non-functional requirements
[2] to the designed IS. The quality of the entire project
largely depends on the quality of UC writing. There are a
number of recommendations for compiling UCs that re-
late to general issues of selecting UCs, ways of scenario
recording in relation to the tasks solved, and formats for
presenting UCs. In [3], the concept of “subordinate UC”
(SUC) is introduced to define UC, which is called from
some step in the scenario of the main UC. Usually, SUCs
are formed from extensions of the main UC. There are at
least two reasons for this:

— the extension is used in several places. The forma-
tion of a SUC from it will simplify the maintenance of
requirements and the code that implements them;

— expansion makes the main UC difficult to under-
stand.

The SUC must be linked to the main UC by an include
or extend relationship. Fig. 1 shows examples of such
relationships.

Within the framework of a large project, dozens or
hundreds of UCs are formed by different development
teams. Under such conditions, determining the identity of
subordinate UCs selected in various subsystems, and,
furthermore, finding repeating fragments of scenarios, is a
very complex and time-consuming task. The problem
becomes even more difficult in the context of global
software development [4].

In this paper, it is proposed to consider the problem
associated with the allocation of SUC in a broader sense —
the elimination of repetitive requirements and the code
corresponding to them.

In a simplified form, the process of UC formation in
the design of IS is shown in Fig. 2. At the system analyst
level, a list of the main UCs can be generated. If several
development teams are working on the project, then the
allocation of SUC becomes possible only within some
parts of the project.

The purpose of the work is to improve the quality of
presentation of functional requirements in the form of use
cases by eliminating the redundancy of descriptions and
introducing UC structuring.

To achieve the said goal, it is proposed to solve the
following tasks:

1) to create a mathematical model of UC that makes it
possible to compare fragments of their scenarios;

2) to develop a method for UC restructuring;

3) to test the study results.

Getting information about
the accoubt balance

\ <<include>>

f / N i s

— PIN code change = b e===aaa Verifacation of the card and
<<include>> customer code

Client \

ATM management system

- <<include>>

Shopping mall service system

Withdrawing
money from a bank card

Figure 1 —Relationships between master and subordinate use
cases

<<extend>>
— Sale of goods JE=-=-==---

Client

% —_——_——— Definition of —_———
iy requirements s
~ ~

re

f ~
Domain Expert ~

Expert
(user) ™~
Y

Clarification and
UC detection

Making a list of
the main UCs
(UC diagram)

System Analyst

x

Expert

(user)
L~ ’ji\%

Team N

7
4

Clarification and
UC detection

uc, uc: uc,, UC, |UCu uc.
i ' ' |
[Lo |
| Possible suC I
R Possible SUC — — — — — — — — — — — J

Figure 2 —The process of generating use cases

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

118

OPEN 8#CCESS @ @ @

p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

1 PROBLEM STATEMENT
Suppose given the set of UC descriptions provided by
development teams mUC={UC,,...,UC,,..., UC}, where

each element UC=<mUC;", mUC*>>, i =1,t, consists of
mUC" (set of master UC) and mUC;® (set of subordinate
UC). The problem are create unified set subordinate UCs

t
efficiency muc® = ((_muc’)U
i=1

with a given

Lumuc&w»$mwnngj=Lhucs,whaemuc&wis

formed using the operation of item belonging to the sce-

t
nario &, for all elements of the set mUC™ = (U mUCim) ;
i=1
create of an updated set of master UC, taking into account
new relationships with SUCs

muc™ mUC,, .

ref instead of text

2 REVIEW OF THE LITERATURE

The need to improve the description of UC for their
use at various design stages is indicated in [5].

In [6], it is noted that UCs should be the main tool for
communication and verification of requirements by the
user. However, the authors believe that expanded class
diagrams can be a good mechanism for communicating
and checking requirements. In our opinion, first, it is nec-
essary to perform structuring of the UC, which in the fu-
ture will ensure the construction of high-quality class dia-
grams.Studies carried out within the framework of the
energy project [7] have shown the effectiveness of creat-
ing a repository for more than 50 UCs. The authors note
that this created the conditions for solving a number of
tasks of project progress control, documentation man-
agement, profitability and safety improvement. In our
opinion, the functions of the repository can be extended
with the tasks of analysis and UC restructuring.

The authors propose a formal model of the UC dia-
gram followed by a multiview consistency check. How-
ever, the authors do not consider the distribution of func-
tions between UCs.

The need for further formalization of requirements
was noted in [9]. It is proposed to use a structured natural
language and the corresponding FRET tool. In our opin-
ion, formalization should be introduced wherever there
are conditions for this, for example, when forming UC.
The problem of presenting UCs with varying degrees of
detail is considered in [10]. The complexity of this task is
noted and a number of recommendations for “slicing” UC
in Agile technologies are given. However, the authors do
not propose a formal model for the UC refinement proc-
ess.

In [11], the problem of low-quality specification of
requirements is noted. As a solution, it is proposed to use
document templates compiled on the basis of the experi-
ence of successfully completed projects. We believe that
the use of templates will be especially effective in the

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

formation of UC and SUC. Such templates were proposed
in [12] as part of building a model of conceptual classes
based on an automated description of UC.

In [13], the influence of natural language on the qual-
ity of work with requirement specifications is noted and it
is recommended to use natural language processing tools.
In [14], it is proposed to improve the quality of project
documentation by expanding the use of formal methods
for its presentation. This problem extends to a large extent
to the description of UC. Both natural language process-
ing tools and the use of special templates that reduce the
ambiguity of text fragments can be its solution. Models of
UC scenario steps [15] can be a solution to this problem.

3 MATERIALS AND METHODS

Selection of SUC requires comparison of UC scenar-
i0s. It is possible to organize a comparison of scenarios of
all UCs to select matching sequences of steps. However,
since UCs are compiled by different developers, the prob-
ability of finding matching texts is negligible. We can use
fuzzy string comparison [16] by introducing certain
matching coefficients. However, a very low signal-to-
noise ratio is expected in this case too. To solve the prob-
lem, it is proposed to introduce certain formalization in
the description of UC, expressed in the following steps.

1. When describing all UCs, use a unified classifica-
tion of scenario steps [12].

2. When describing all UCs, use a unified system of
generalized data typing [15].

Let us represent UC in the form of a tuple:

UC=<id, ucType, mP, mES, mRef, refT>. (D

The mRef parameter makes it possible to determine
the efficiency of using the subordinate UC. For main UC
mRef=. In the main UC links to subordinate UCs are
provided by a special scenario clause.

Let us represent each alternative scenario as a tuple:

UC=<id, ucType, mP, mES, mRef, refT>,)

where MAP=(py, P2, .. , Px)-

If rpy =0, then UC ends.

Use case restructuring method provides for the follow-
ing steps.

Stage 1 — formalized presentation of UC scenarios.

In the representation of the step of the main scenario,
extension scenario or SUC, we will indicate its type. The
following types of UC steps are proposed in [12]: Create,
Enter data, Request a value, Request a list of values, Se-
lect from a list, Request a service, Request with a value,
Repeat actions, Successful completion of the UC, Failure
of the UC, Call of the UC.

For each step type, a model has been compiled that
makes it possible to formalize and automate the formation
of the step. As an example, the model of the “Value Re-
quest” step is given. The user asks the system for some
data. This is usually followed by an evaluation of the ob-

OPEN a ACCESS m

119

p-ISSN 1607-3274 Pagioenexrponika, inpopmaTuka, ynpasainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

tained data by the user. The step description template
looks like this:

requestValue=<nP [, Client, tpy, tu;], Actor, tp,, tu,,
data, [, tps, tus, data,][, tps, tu,, datas, tps], (3)
tp65 data1[7 tp7]>

For them, the developer specifies the position.

The elements of the template can be pre-composed
pieces of text (tp;), pieces of text formulated by the devel-
oper (tu;), and data that is input and/or output from the
system (datay). The datay element is formed from two
components: the name of the data and its type. This in-
formation is used only by the developer and is not visible
to the user. Square brackets enclose optional template
elements. Below are the values of the template elements:

tPone= “wishes to receive”;

- tu,,e — is formed by the developer, for example,
“repair cost ...”;

- tp,= “requests the system”;

- tu, — is formed by the developer, for example, “re-
pair cost ...”;

- data,,.— data that is requested from the system;

- tp;=“based on”;

- tu; —is formed by the developer, for example, “car
brands ... ”;

- data, — data on the basis of which the requested
value is determined;

tpfour: “SubjeCt tO”;

- tUgy, — is formed by the developer, for example,
“availability of spare parts ... ”’;

- data;— data on the basis of which the fulfillment of
the condition is checked;

- tps= “The system confirms the fulfillment of the
condition” — an optional element;

- tps= “The system outputs”;

- tp~=“Client/Actor agrees”.

Service request step template:

reqService=<nP [, Client, tp,, tu,], Actor, tps, tu,,
{datal}3tp4 [7 tpS, tU3]>,

where tp = “wishes”; tu; is a text that identifies the ser-
vice (e.g. “undercarriage overview”) or document (e.g.
“application for a reduced rate”); tp;="enters”; tu, — a
phrase that is formed by the user, the name of the service
or document; data; — service or document representation
in the project; tp,= “The system confirms the possibility
of performing the service (document) ”; tps= “Transfer of
the control to scenario step”; tus— scenario step number.

To formalize the representation of input and output
data, the following set of generic types is proposed:

—List — list (can represent a linear list, an array, a set,
etc.);

- Struct — the structure (in the general case it contains
fields of different types), must contain the numbering of
the fields;

- Text — any text;

- Numb — any number format;
© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

120

- Bool — boolean value;

-Void — the function does not return the value;

-PClass — a reference to a class object;

From the point of view of SUC selection, the step of
the type “Request for a service” has a special meaning. It
may be followed by steps (subordinate), revealing the
mechanism for providing the service. It is this sequence of
stepss that can be a candidate for a SUC formation. To
formalize the semantic relationship between steps, it is
proposed to introduce link indicators in the form of step
numbers into the texts of steps belonging to the “Service
Request” group.

Example 1. A scenario fragment that implements reg-
istration will look like this:

N. [0] The client wishes to register in the system. The
system confirms the possibility of registration.

N+1. [N] The system displays the registration condi-
tions. The client agrees.

N+2. [N] The system suggests entering an email. The
client enters. The system confirms the completion of the
registration.

Taking into account the considered types of scenario
steps and data, we will represent the scenario step in the
form:

p=<nP, pH, pType, pText, mData>. 4

In accordance with the accepted classification, a set
can contain up to three data.
Each data has the form

mData=<dName, dType>. 5)

Stage 2 — Placement of the UC in the repository.

To simplify the performance of operations with UC
(storage, structuring, tracking changes), a repository is
created.

Using queries to the repository database (Fig. 3), it is
possible to organize the set of all UCs, divided into sub-
sets depending on the commands that work with individ-
ual UCs. The common part containing SUC is also se-
lected.

Stage 3 — Comparison of UC scenarios.

Selection of subordinate UCs can be performed at the
level of the development team and at the project level.

At the level of the development team, it is possible to se-
lect subordinate UCs from the set of UCs that this team is
engaged in. We call such a SUC local. Verification and ap-
proval of such a selection should occur within the team itself.

At the project level, it is necessary to determine the
possibility of using the local SUC of a certain team for
UCs developed in other teams. At the same time, the
analysis of the possibility of using the SUC should be
determined by the team that is proposed to use the SUC.
In addition, considering the entire corpus of UCs, it is
necessary to ensure the possibility of identifying SUCs
that have not previously been created at the level of indi-

vidual teams.
OPEN a ACCESS m

p-ISSN 1607-3274 Pagioenexrponika, inpopmaTuka, ynpasainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

Command Project
PK |id PK |id
CommandName ProjectName
l ScenarioPoint
UseCase
- PK |id
Subordinate PK |id
- i i idUseCase
PK |id idProject nP
idInProject FullText
idMainUC UseCaseName idType
idSubUC idCommand nPHead
SubType UseCaseType nPStart
nPReturn
Qk IsAlternative
Component H
PK |id
Data PointType
idPoint " »
idComponentType PK |id PK |id
ComponentText i]
idPoint Description
*_\\/ DataName
DataType
ComponentType
PK |id
Description
Denotation

Figure 3 — Repository data model

If a team has selected a SUC within their part of the
project and it turns out that the SUC can be used in other
parts, then the respective teams must confirm its use in
their parts. If a new SUC is selected, then all teams where
it will be used must confirm the possibility of its applica-
tion within their part of the project. Each SUC must have
a link to the team (developer). The main operation of the
process is finding the occurrence of one scenario into an-
other. Let us determine the main options for comparison:

— the identity of two subordinate UCs is established
when the conditions for their call coincide and their se-
quences of steps coincide;

— a subordinate UC can be selected from two main
UCs if a certain common sequence of steps in the scenar-
ios of two main UCs with a length of at least 2 points is
determined;

— the entry of a subordinate UC into the UC is fixed if
all the points of the subordinate UC coincide with a part
of the sequence of UC steps.

A group of semantically related steps should not be
split into parts when compared. However, the order of
substeps in a group can be arbitrary.

Example 2: A scenario fragment that implements reg-
istration in a sequence different from the one in Exam-
ple 1:

N. [0] The client wishes to register in the system. The
system confirms the possibility of registration.

N+1. [N] The system suggests entering an email. The
client enters. The system confirms its correctness.

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

N+2. [N] The system displays the registration condi-
tions. The client agrees. The system confirms the comple-
tion of the registration.

Let us formulate the conditions for the coincidence of
two steps from different scenarios.

1. Step types p; and p; must match (pType; = pType;).

2. The actual values of Client and Actor are not com-
pared (the same use case can be performed by different
executors in different subsystems of the same project).

3. It follows from the scenario step model (3) that the
text of a step of a certain type can have different spellings
due to optional elements and elements formed by the de-
veloper. Since these elements are important for the spe-
cific implementation of the steps, the necessary condition
for the steps to match is the identity of their structures.

4. Any step of the scenario, except for the points of
repeating actions and calling the SUC, provides for the
performance of certain operations in the system of the
form: creating an object, entering or receiving data, possi-
bly, if certain conditions are met. Therefore, it is neces-
sary to compare all text fragments formulated by the de-
veloper (tu;).

5. The data that is input, output or created within the
framework of the scenario step, in accordance with the
template, must have a name and type. Both of these pa-
rameters are subject to comparison.

To determine the coincidence of two scenario items, it
may be necessary that some elements are identical (we
denote this operation as =) and incomplete or fuzzy (we
denote this operation as =). The result of a fuzzy match
is the value of the similarity coefficient K. In what fol-
lows, we will consider the elements similar if their simi-
larity coefficient is not less than a certain threshold value
(K>Kin). Thus, we obtain the condition for the coinci-
dence of points p; and p;, which belong to scenarios S; and
S,, respectively. Here € denotes the operation of an item
belonging to a UC scenario.

(Pi €s S1)= (pj €5 Sp) if ((PTypei = pType;)
A (eList=eList)) A (editText; = editText;) (6)
A 3 ((dTypeix = dTypejx) k=1,n)).

One step of the main scenario, possibly an alternative
one, can have several extension scenarios. In order for the
compared items to match, their alternative scenarios must
also match. The number of alternative scenarios for the
compared steps must match, but the order in which they
are written can be arbitrary.

Let us formulate the conditions for the coincidence of
semantic groups of steps. If a spep p;j is found for which
pH="[0]”, then an ordered set of steps of the subordinate
group gi=(Px | Pk - PH="Ti]"")should be formed.

If a step p; is found in some other UC, such that
pj=pi A p; pH="[0]", then a subordinate group
0=(Pq | Pq - PH="[j]”) is created for it.

To forma SUC based on steps p; and pj, it is necessary
for the number of elements in the groups to be the same |

OPEN 8 ACCESS m

121

p-ISSN 1607-3274 Pagioenexrponika, inpopmaTuka, ynpasainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

gi | =1 9j | =n and for each step from the set g;, a matching
step was found in the set g; px = pg; k=1, n; g=1, n.

Let us formulate the conditions for the coincidence of
extensions for points p; and p; with n; and n; alternative
scenarios, respectively. First of all, the conditions for
switching to an alternative scenario must match:

HCAiypI ((CAi'p = CAjyk), p:l, N;; kzl, nj)) A (ni = nj). (7)

Further, in accordance with (6), the steps of alternative
scenarios are compared in pairs, for which condition (7) is
satisfied.

If condition (6) is met the first time for scenarios S;
and S,, then a new scenario S, is created, the first step of
which is pS12,=p;.

If condition (6) is also satisfied for the next pair of
steps Pi+1 = Pj+1, then step pi.; is added to scenario S, and
the process of scenario formation continues. Otherwise,
the scenario S;, is destroyed (there is only 1 step in the
scenario).

It is proposed to evaluate the degree of coincidence
Ki;j of two scenarios S, and S, as an average coefficient of
similarity of the steps included into them:

k
Ki j :ZT' (®)

Stage 4 — Selection of SUC and UC restructuring.

The execution of the stage involves the following se-
quence of actions.

1. For each local SUC, its comparison with other lo-
cal SUC is performed. In case of a match, the SUC is de-
fined as global and a link to the support command is set in
it. Local links are replaced with a global one.

2. For each global SUC, the possibility of its inclu-
sion in the UC scenarios is determined. If possible, the
UC scenario is edited accordingly. A link to the SUC is
set in it.

3. For each UC, a comparison with other UCs (of dif-
ferent localization) is performed. If common parts are
selected, then a global SUC is formed, a link to the sup-
port command is set in it, scenarios and links in the UC
that have a common fragment are edited.

All operations for selecting a new UC or expanding
the scope of its use are coordinated with the developer
teams, which must introduce changes into the UC descrip-
tions.

4 EXPERIMENTS

To carry out the experiments, a document “Vision” for
the development of an information system on the topic
“Automation of the work of a clinic”, a list of users of the
designed system and a list of UCs of 16 names were com-
piled. The developers were represented by 4 teams of 2
people. Each group received tasks to form 4 UCs in the
UseCaseEditor. The groups were asked, if possible, to
form a SUC in addition to the UC.

To test the results of the study, a software product that
makes it possible to select SUC on the basis of the entire
UC corpus in accordance with the developed methodol-
ogy was developed.

5 RESULTS

The results were introduced into Table 1 after the dis-
cussion with all participants of the experiment. Symbols
for UC and SUC were introduced in the table. For exam-
ple, SUC (1) indicates that it was selected from UC 1 and
is not used anywhere else. SUC (1-10-15)s indicates that
in terms of content it is SUC (1)s, however, it was found
out that it is a part of UC 10 and UC 15. A record of the
form (2—-6-10%)s means that SUC can be used for UC 2
and UC 6, but its use for UC 10 is a mistake.

The analysis of table data shows that at K.,;;=0.5 the
best results were obtained: the scope of SUC 1 and 7 was
expanded by three UCs, and 2 new UCs were found.

During the experiments, the time spent on compiling
UC and SUC was estimated. On average, 3.5 hours were
spent on compiling 1 UC. It took 1.5 hours to select and
compile one SUC, as well as adjust the UC within one
team. The same work, but with unfamiliar UCs (4 UCs
from another team) took 3.7 hours. The calculation of the
time spent for the given example in the “manual” search
for SUC increased the total time of UC formation
by 58%.

6 DISCUSSION

Automation of SUC selection became possible due to
the use of UC step models. Further formalization of the
UC defination, for example, by using a formalized natural
language, is undesirable, since it will create inconven-
ience for the developer. It follows from the experiment
results that the quality of SUC selection significantly de-
pends on the value of the similarity coefficient K.
There is no guarantee that K,;;=0.5 value will always be
the best. The solution could be to use a domain dictionary
to define an additional semantic relationship between
compared texts, and as minimum, to use synonyms.

Table 1 — The fragment of experimental results on model building by the formed samples

Developer teams 1 2 3 4
9[¢ 1,2,3,4 5,6,7,8 9,10, 11,12 13,14, 15,16
Selection of Manual mode (s (N)s (9-11)s
SucC Auto Kimin=0.2 (1-10-15)s, (7-13)s, (12-14)s (13-15%)s
mode (2-6-10*)s (5-9-16%)s
Knin=0.5 (1-10-15)s, (7-13)s, (12-14)
(2-6)s (5-9)s
Kinin=0.8 (1-15)

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

122

OPEN a ACCESS

oNole

p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpapiinas. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

The effectiveness of the proposed method of UC re-
structuring depends on the specific subject area. In the
conducted experiment, the tasks for the development of
UC were selected taking into account the possibility of
selecting SUC. In real conditions, it can be expected that
the proportion of SUC in the UC corpus will be 2-3 times
lower [3]. This will reduce the time to search for the use
of SUC in UC, but not the selection of new SUCs. There-
fore, in this case, we can expect a reduction in the time for
restructuring by about 30% — 40% as well.

CONCLUSIONS

The analysis of existing technologies for compiling
UC was carried out. It was established that working in
small teams on projects of medium and high complexity
does not allow presenting the UC corpus in a well-
structured form.

A mathematical model of the use case characterized
by the introduction of the concept of the UC type, refer-
ences to other UCs and the development team was pro-
posed, which made it possible to further organize the
process of comparing the UC and selecting the UC.

For the first time, a method of automated UC restruc-
turing which allows comparing UC scenarios, selecting
SUC, correcting the links between UC and SUC was de-
veloped. Application of the method makes it possible to
improve the structure of the UC corpus, which increases
the degree of understanding of the requirements, reduces
the time and errors for maintaining requirements due to
the elimination of duplication.

The experiments conducted showed the selection of all
repeating fragments of scenarios, the correct selection of
the SUC and a significant reduction in the time for UC
restructuring (about 35%).

The proposed method can be used in any IS project
where the functional requirements are presented in the
form of UC.

REFERENCES

1. Wazlawick R. S. Object-Oriented Analysis and Design for
Information Systems: Modeling with UML, OCL, and
IFML. San Francisco, Morgan Kaufman, 2014, 376 p.

2. Nilsen A. F., Muller G. Use Cases and Non-functional Re-
quirements Presented in Compact System Description A3s,
INCOSE International Symposium, 2014, Vol. 24, Issue 1,
pp. 1-15. DOI: 10.1002/j.2334-5837.2014.tb03130.x

3. Cockburn A. Writing Effective Use Cases. Addison-Wesley,
2001, 270 p.

4. Mighetti J. P., Hadad G. D. S. A Requirements Engineering
Process Adapted to Global Software Development, CLEI

VK 004.414.38

13.

14.

15.

16.

Electronic Journal, 2016, Vol. 19, Issue 3, pp. 1-21. DOIL:
10.19153/cleiej.19.3.7

Russell M. Supporting Decision Makers with Use Cases;
case study result, Procedia Computer Science, 2019,
Vol. 153, P. 294-300. DOI: 10.1016/j.procs.2019.05.082
Dobing B., Parsons J. Understanding the Role of Use Cases
in UML: A ReUCew and Research Agenda, Journal of Da-
tabase Management, 2000, Vol. 11, Issue 4, pp. 28-36.
DOI: 10.4018/978-1-931777-12-4.ch008

Clausen M., Apel R., Dorchain M. Use case methodology: a
progress report, Energy Informatics, 2018, Vol. 1, pp. 274—
283. DOLI: 10.1155/2018/6854920

El Miloudi K., Ettouhami A. A Multiview Formal Model of
Use Case Diagrams Using Z Notation: Towards Improving
Functional Requirements Quality, Journal of Engineering,
2018, Vol. 2018, pp. 1-9.

Giannakopoulou D., Pressburger T., Mavridou A. et al.
Automated formalization of structured natural language re-
quirements, Information and Software Technology, 2021,
Vol. 137, pp. 106590. DOI: 10.1016/j.infsof.2021.106590

. Linders B. Applying Use Cases in Agile: Use Case 2.0, Slic-

ing and Laminating [Electronic resource]. Access mode:
https://www.infoq.com/news/2014/02/use-cases-agile

. Barcelos L. V., Penteado R. D. Elaboration of software re-

quirements documents by means of patterns instantiation,
Journal of Software Engineering Research and Develop-
ment, 2017, Vol. 5, pp. 3.1-3.23. DOI: 10.1186/s40411-017-
0038-9

. Kungurtsev O., Novikova N., Reshetnyak M. et al.Method

for defining conceptual classes in the description of use
cases, Photonics Applications in Astronomy, Communica-
tions, Industry, and High-Energy Physics Experiments 2019:
Wilga, 25 May — 2 June 2019, Proceedings. SPIE, 2019,
Vol. 1117624. DOI: 10.1117/12.2537070
Ahmed H., Hussain A., Baharom F. The Role of Natural
Language Processing in Requirement Engineering, Interna-
tional Journal of Engineering & Technology, 2018, Vol. 7,
Issue 4.19, pp. 168—171. DOI: 10.14419/ijet.v7i4.19.22041
Shah U. S., Jinwala D. C. Resolving Ambiguities in Natural
Language Software Requirements: A Comprehensive Sur-
vey, ACM SIGSOFT Software Engineering Notes, 2015,
Vol. 40, Issue 5, pp. 1-7. DOI: 10.1145/2815021.2815032
Kungurtsev O. B., Novikova N. O., Zinovatna S. L. et al.
Automated object-oriented for software module develop-
ment, Applied Aspects of Information Technology, 2021,
Vol. 4, Issue 4, pp. 338-353. DOIL: 10.15276/aait.04.2021.4
Kalyanathaya K. P., Akila D., Suseendren G. A Fuzzy Ap-
proach to Approximate String Matching for Text Retrieval
in NLP, Journal of Computational Information Systems,
2019, Vol. 15, No. 3, pp. 26-32.

Received 13.03.2023.

Accepted 03.05.2023.

TEXHOJIOI'LSI BUSABJIEHHSI i ®OPMYBAHHSA MOKJIUBUX BIJHOLIEHDb
MIX BAPIAHTAMU BUKOPUCTAHHS B ITIPOIECI TPOEKTYBAHHS IHOOPMAIIMHOT CHCTEMHA

Kynrypues O. B. — kann. TexH. Hayk,
yniBepcutery "Onecbka noiitexuika", M. Ozneca, YkpaiHa.

npodecop kabenpu ImwkeHepii mporpamHoro 3abesmedeHHs HarioHansHOTO

3inoBatna C. JI. — kxaHA. TexH. Hayk, aAoueHT Kadeapu Imwkenepii mporpamHoro 3abesnedeHHs HamioHaabHOTO

yHiBepcurety "Opecbka nomitexHika", M. Oneca, Ykpaina.

© Kungurtsev O. B., Zinovatna S. L., 2023
DOI 10.15588/1607-3274-2023-2-12

OPEN a ACCESS m

123

p-ISSN 1607-3274 PagioenekTpoHika, iHpopMaTuka, ynpasiminss. 2023.

Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

AHOTAIIA

AKTyasbHicTh. BapiaHTn BUKOpUCTaHHS IIMPOKO BUKOPUCTAIOTHCS SIK 3aci0 GopMyIIroBaHHS BUMOT IIPH po3podui iHdopmartii-
HHX CHCTeM. Bix sIkocTi IXHBOTO MpeCTaBICHHS 3aJIeKaTh BCI HACTYIIHI eTany npoekTyBaHHs. CTpyKTypH3allis BapiaHTiB BHKOPHC-
TaHH 103BOJISIE ICTOTHO MiABHUIIMTH iXHE PO3yMiHHS i CymnpoBix B yMOBaxX MiHIMBHX BUMOT. ['HydKi TeXHOJOrIi nependadaroTh po-
00Ty B HEBEJIHMKUX KoMaHIax. IcHyroumit oOMiH iHpopMaIi€l0 Mk KOMaHAaMHU HEIOCTATHIN /Ul BUIUICHHS IiJUICTJIMX BapiaHTiB
BHUKOPHUCTaHHS Ha PiBHI MPOEKTY. IcHye HEOOXiTHICTE aBTOMAaTH30BAHOTO aHANI3y KOPIIyCY BCiX BapiaHTiB BUKOPHCTaHHSA. MeTOIO
JOCHIKEHHS € 1ABUIIEHHS SKOCTI MPEeACTaBICHHS (QYHKIIOHAIFHUX BUMOT y BUIIA BapiaHTiB BUKOPUCTAHHS IUIIXOM YCYHEHHS
HaJIMIPHOCTI ONHUCIB 1 BBEACHHS CTPYKTypHU3alii BapiaHTiB BUKOPHCTAHHS HA PiBHI BCHOTO IIPOEKTY.

Mertoa. 3amnporoHOBaHa MaTeMaTH4YHA MOJENb BapiaHTa BHKOPUCTAHHS, SKa JO3BOJISIE BU3HAYUTH KPUTEPIl IS TIOPIBHSIHHS
creHapii. Po3poGiieHo MeTo pecTpyKTypu3anii BapiaHTiB BUKOPUCTAHHS, IKUH BKIIOYae 4oTupy eranu. Ha nepmomy erami Bapia-
HTH BUKOPHCTAHHS NPEICTABISIIOTECS Yy (opMaiizoBaHoMy BUrisiai. Ha apyromy — BoHM 30epiratoThesi B pero3uTopii, mo 3adesrme-
4ye iXHiil BUAKKI MOIIYK 1 po3MinieHHs. Ha TpeThboMy — BUKOHYIOThCSI TIPOLICAYPH MOPIBHIHHS CLEHapiiB. 3aIpONOHOBAHO KpUTE-
pii monobu cueHapiiB. Ha uerBepToMy — BUKOHY€EThCS (YOPMYBaHHS Mi/UIETINX BapiaHTIB BUKOPUCTAHHSI, y3TO/PKSHHs IXHIX TEKCTiB
i3 i3 ycima 3alikaBIeHIMH KOMaHIaMH, KOPEKTyBaHHS BapiaHTIB BUKOPUCTAHHS, SIKi BUKJIMKAIOTh ITiIETJIi BapiaHTH BUKOPUCTAHHS.

PesyabTaTu. [{ns anpoOarii 3aponoHoBaHKX pillleHb POBEICH] €KCIIEPUMEHTH, AKi nepeadadaroTs GopMatizoBaHe CKIIaJaHHA
BapiaHTiB BUKOPHUCTAHHS JEKLIbKOMa IPynaMy po3po0sIiOBayiB 3 HACTYIIHOK aBTOMATH30BAHOK PECTPYKTypu3alieo. Y pe3ynbrari
OyJI KOPEKTHO BHSIBJICHI HOBI ITiJUTETIIi BapiaHTH BUKOPHCTAHHS 1 pO3IIMpeHa o0iacTs BUKOpUCTaHHS paHimre copmoBanux. Cro-
CTepirayiocs iCTOTHE CKOPOYCHHS 4acy Ha pecTpyKTypusaiiro. O4ikyBaHe CKOPOYCHHS Yacy Ha PECTPYKTYPHU3AIl0 Ui PEabHOrO
MIPOEKTY cKiazne 0mm3bKo 35%.

BucHoOBKH. 3anponOHOBaHHUIi METO PECTPYKTYpH3aLlil BapiaHTIB BUKOPUCTAHHS JI03BOJISIE MOJIIMIIUTH JOX1UTUBICTD 1 HOTOKe-
HICTh BUMOT, MOXJIUBICTb IXHBOIO KOPEKTYBaHHS i CyNpoBOJy, CKOPOTHTH 4ac Ha CKJIajaHHsA. MeToJ Moxe OyTH BUKOPHCTaHHH
MIPY IPOEKTYBaHHI OyIb-s1K0i iH(pOPMAIiifHOI CHCTEMH, I¢ BUMOTH MIPECTABISIOTHCS y BUTIIAII BapiaHTiB BUKOPUCTAHHS.

KJIFOYOBI CJIOBA: BapiaHT BUKOPUCTAHHS, TiAJIETIINI BapiaHT BUKOPUCTAHHS, CLIEHAPI.

JITEPATYPA / IUTEPATYPA Technology. — 2021. — Vol. 137. — P. 106590. DOI:
1. Wazlawick R. S. Object-Oriented Analysis and Design for 10.1016/j.infs0f.2021.106590
Information Systems: Modeling with UML, OCL, and IFML 10. Linders B. Applying Use Cases in Agile: Use Case 2.0, Slic-
/ R. S. Wazlawick. — San Francisco : Morgan Kaufman, ing and Laminating [Electronic resource] / B. Linders. —
2014.—-376 p. Access mode: https://www.infoq.com/news/2014/02/use-
2. Nilsen A. F. Use Cases and Non-functional Requirements cases-agile
Presented in Compact System Description A3s / A. F. Nil- 11. Barcelos L. V. Elaboration of software requirements docu-
sen, G. Muller. // INCOSE International Symposium. — ments by means of patterns instantiation / L. V. Barcelos,
2014. — Vol. 24. Issue 1. — P. 1-15. DOI: 10.1002/j.2334- R. D. Penteado // Journal of Software Engineering Research
5837.2014.tb03130.x and Development. — 2017. — Vol. 5. — P. 3.1-3.23. DOI:
3. Cockburn A. Writing Effective Use Cases / A. Cockburn. — 10.1186/s40411-017-0038-9
Addison-Wesley, 2001. — 270 p. 12. Method for defining conceptual classes in the description of
4. Mighetti J. P. A Requirements Engineering Process Adapted use cases / [O. Kungurtsev, N. Novikova, M. Reshetnyak et
to Global Software Development / J. P. Mighetti, G. D. S. al.] / Photonics Applications in Astronomy, Communica-
Hadad // CLEI Electronic Journal. — 2016. — Vol. 19, tions, Industry, and High-Energy Physics Experiments 2019:
Issue 3. — P. 1-21. DOI: 10.19153/cleie;j.19.3.7 Wilga, 25 May — 2 June 2019 : Proceedings. — SPIE, 2019. —
5. Russell M. Supporting Decision Makers with Use Cases; Vol. 1117624. DOI: 10.1117/12.2537070
case study result / M. Russell // Procedia Computer Science. ~ 13. Ahmed H. The Role of Natural Language Processing in
- 2019. - Vol. 153. — P. 294-300. DOL Requirement Engineering / H. Ahmed, A. Hussain, F. Ba-
10.1016/j.procs.2019.05.082 harom // International Journal of Engineering & Technol-
6. Dobing B. Understanding the Role of Use Cases in UML: A ogy. — 2018. — Vol. 7, Issue 4.19. — P. 168-171. DOI:
ReUCew and Research Agenda / B. Dobing, J. Parsons // 10.14419/ijet.v7i4.19.22041
Journal of Database Management. — 2000. — Vol. 11, 14. Shah U. S. Resolving Ambiguities in Natural Language
Issue4. — P. 28-36. DOI: 10.4018/978-1-931777-12- Software Requirements: A Comprehensive Survey /
4.ch008 U. S. Shah, D. C. Jinwala // ACM SIGSOFT Software Engi-
7. Clausen M. Use case methodology: a progress report / neering Notes. — 2015. — Vol. 40, Issue 5. — P. 1-7. DOL:
M. Clausen, R. Apel, M. Dorchain // Energy Informatics. — 10.1145/2815021.2815032
2018.—Vol. 1. - P. 274-283. DOI: 10.1155/2018/6854920 15. Automated object-oriented for software module develop-
8. El Miloudi K. A Multiview Formal Model of Use Case Dia- ment / [O. B. Kungurtsev, N. O. Novikova, S. L. Zinovatna
grams Using Z Notation: Towards Improving Functional et al.] / Applied Aspects of Information Technology. —
Requirements Quality / K. El Miloudi, A. Ettouhami // Jour- 2021. — Vol. 4, Issue 4. — P. 338-353. DOI:
nal of Engineering. — 2018. — Vol. 2018. — P. 1-9. 10.15276/aait.04.2021.4
9. Automated formalization of structured natural language 16. Kalyanathaya K. P. A Fuzzy Approach to Approximate
requirements / [D. Giannakopoulou, T. Pressburger, String Matching for Text Retrieval in NLP / K. P. Kalyana-
A.Mavridou et al] // Information and Software thaya, D. Akila, G. Suseendren // Journal of Computational

Information Systems. — 2019. — Vol. 15, No.3. — P. 26-32.

DOI 10.15588/1607-3274-2023-2-12

© Kungurtsev O. B., Zinovatna S. L., 2023
ungurisey i OPENaacczss @ @ @

124

