
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

ПРОГРЕСИВНІ ІНФОРМАЦІЙНІ
ТЕХНОЛОГІЇ

PROGRESSIVE INFORMATION
TECHNOLOGIES

UDC 004.94 : 004.2

TEST GRAPH-SCHEMES OF THE ALGORITHMS OF FINITE STATE
MACHINES WORK FOR ASSESSING THE EFFICIENCY OF

AUTOMATED SYNTHESIS IN XILINX VIVADO CAD

Barkalov A. A. – Dr. Sc., Professor, Professor of Institute of Computer Science and Electronics, University of
Zielona Gora, Zielona Gora, Poland;

Titarenko L. A. – Dr. Sc., Professor, Professor of Institute of Computer Science and Electronics, University of
Zielona Gora, Zielona Gora, Poland;

Babakov R. M. – Dr. Sc., Associate Professor, Associate Professor of department of information technologies,
Vasyl Stus Donetsk National University, Vinnytsia, Ukraine.

ABSTRACT
Context. The problem of evaluating the effectiveness of the automated design of a microprogram finite state machine with the

operational transformation of state codes using Xilinx Vivado CAD is considered. The object of the research was graph-schemes of
control algorithms implemented by finite state machine and able to prove the effectiveness of the principle of operational transforma-
tion of state codes in comparison with standard synthesis methods built into the CAD, in the context of hardware expenses optimiza-
tion.

Objective. Development and research of graph-schemes of control algorithms in order to substantiate the effectiveness of the ap-
plication of structure of the finite state machine with datapath of transitions in comparison with the built-in methods of synthesizing
finite state machines in Xilinx Vivado CAD in the basis of programmable logic devices.

Method. The research is based on the hypothetical assumption that the Xilinx Vivado CAD has built-in methods of automated
design of the circuit of a finite state machine, the effectiveness of which, according to the criterion of hardware expenses, exceeds
other known methods of optimizing hardware expenses in the finite state machine circuit. In order to refute this hypothesis, it is pro-
posed to prove that in some cases known methods of hardware expenses optimization in the finite state machine circuit are more
effective in comparison with the methods built into CAD. In this work, as a well-known optimization method, the method of opera-
tional transformation of state codes, which corresponds to the structure of a finite state machine with datapath of transitions, is cho-
sen. The effectiveness of this method is demonstrated on the example of several test graph-schemes of algorithms, the structure of
which is abstract and artificially adapted to the chosen optimization method. The adaptation of the selected graph-schemes of the
algorithms consists in the fact that a relatively small number of transition operations is required for their implementation with the
help of a finite state machine with datapath of transitions. This contributes to the simplification of the circuit of the finite state ma-
chine and the reduction of hardware costs for its implementation. At the same time, the test graph-schemes of the algorithms have the
possibility of scaling, which allows to automate the construction of VHDL models of the corresponding finite state machines for
graph-schemes of different sizes and to evaluate the optimization of hardware expenses for finite state machines of different com-
plexity.

Results. Using the example of several graph-schemes of algorithms, it is demonstrated that in some cases none of the finite state
machine synthesis methods built into the Xilinx Vivado CAD is able to surpass the method of operational transformation of state
codes according to the criterion of hardware expenses for the implementation of a finite state machine circuit. At the same time, a
several-fold gain in hardware expenses can be achieved, which indicates the expediency of using this method under certain condi-
tions. The formal definition of such conditions for the considered and other known optimization methods is a separate unsolved sci-
entific problem.

Conclusions. The conducted experiments confirmed that in some cases, the known methods of synthesis of finite state machines
allow to obtain circuits with lower hardware expenses than when using the methods of synthesis of finite state machines contained in
Xilinx Vivado CAD. This testifies to the general expediency of using existing and developing new methods of hardware expenses
optimization in the circuit of the finite state machines and the current relevance of the theory of the synthesis of digital automata as a
scientific direction.

KEYWORDS: graph-scheme of algorithm, finite state machine, datapath of transitions, hardware expenses, Xilinx Vivado
CAD.

ABBREVIATIONS
FSM is a finite state machine;
DT is a datapath of transitions;
GSA is a graph-scheme of algorithm;

CPLD is a complex programmable logic device;
LUT is a look-up table;
XST is a Xilinx Synthesis Tool.

120

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

NOMENCLATURE
M is a number of FSM states;
A is a set of FSM states {a1, ..., aM};
L is a number of logic conditions;
X is a set of logic conditions {x1, ..., xL};
N is a number of microoperations;
Y is a set of microoperations {y1, ..., yN};
R is a digit capacity of state code;
T is a transition function of the FSM;

DTH is a number of hardware expenses in the circuit
of FSM with DT;

XSTH is a number of hardware expenses in the circuit
of FSM, synthesized by XST;

E – the efficiency of the structure of the finite state
machine according to the criterion of hardware expenses
used for the implementation of its logic circuit.

INTRODUCTION

Modern human activity is closely related to the use of
digital systems [1]. One of the main components of the
digital system is the control unit [2, 3]. There are various
ways of implementing control units, among which the
finite state machine (FSM) model stands out [4, 5]. This
model implements a given control algorithm in the form
of a hardware circuit and is characterized by the maxi-
mum hardware expenses among other models of control
units. At the same time, the model ensures the maximum
speed of execution of the control algorithm due to the
possibility of performing multidirectional microprogram
transitions in one cycle of the device. The structure of the
FSM can correspond to the Mealy machine model or the
Moore machine model [2–5].

Large hardware expenses for the implementation of
the FSM logic circuit have an impact on such characteris-
tics of the finite state machine as power consumption,
dimensions, cost, reliability, etc. [6]. Optimizing the char-
acteristics of FSM circuit, in particular hardware ex-
penses, is an important scientific and practical problem,
the solution of which is devoted to many scientific works
all over the world [1–7]. The structure of the finite state
machine with datapath of transitions (FSM with DT),
which is considered in this paper, is specifically aimed at
minimizing hardware expenses by means of operational
transformation of state codes [8].

In practice, the synthesis of FSM circuits is carried out
with the help of specialized CAD, oriented to the use of
the elemental basis of certain FPGA manufacturers. One
of the leading manufacturers of FPGA-type chips is Xil-
inx, which is also the developer of Xilinx Vivado CAD. A
component of this CAD is the Xilinx Synthesis Tool
(XST), which implements, in particular, a number of
methods for the synthesis of finite state machines [9]. At
the same time, the question of how much these methods
contribute to the optimization of hardware expenses in
comparison with other known methods remains unex-
plored. This work solves the scientific and practical prob-
lem of comparing the efficiency of FSM synthesis meth-

ods built into the Xilinx Vivado CAD with the method of
operational transformation of state codes. The solution to
this problem is carried out by using graph-schemes of
algorithms (GSA), adapted specifically for the structure of
FSM with DT and able to demonstrate the advantages of
this structure in comparison with the methods of synthesis
of FSM in Xilinx Vivado.

The object of study is the process of synthesizing the
logic circuit of a finite state machine in Xilinx Vivado
CAD according to the VHDL model that corresponds to
the given GSA.

This process can be carried out in automatic mode us-
ing the XST tool built into CAD according to the VHDL
model recommended by Xilinx [9]. In the case of FSM
with DT, a separate VHDL model must be developed, in
the synthesis of which the capabilities of the XST tool are
not used.

The subject of study is graph-schemes of control al-
gorithms, which allow to prove the principle possibility of
building a circuit with lower hardware expenes in the case
of FSM with DT in comparison with circuits synthesized
by Xilinx Vivado CAD in automatic mode.

The purpose of the work is the development and re-
search of graph-schemes of control algorithms in order to
substantiate the effectiveness of the application of the
structure of FSM with DT in comparison with the built-in
methods of synthesizing FSMs in Xilinx Vivado CAD in
the basis of programmable logic devices.

1 PROBLEM STATEMENT

Let us assume that the finite state machine is given by
the graph-scheme of the algorithm G and is characterized
by the sets of states A={a1, ..., aM}, input signals X={x1,
..., xL} and microoperations Y={y1, ..., yN}. The synthesis
of the FSM logic circuit involves the implementation of
the transition function T=T(X, T) and the output function
Y=Y(X, T) in the FPGA element base using Xilinx Vivado
CAD. As a result of the synthesis of FSM according GSA
G using the built-in XST tool, the circuit of the FSM is
numerically characterized by hardware expenses HCAD. As
a result of the synthesis of FSM with DT in Xilinx Vivado
without the use of XST, the circuit is characterized by
hardware expenses HDT.

The work solves the problem of finding several exam-
ples of graph-schemes of algorithms for which

DTCAD HH  , (1)

which will prove the expediency of using (under certain
conditions) the method of operational transformation of
state codes instead of FSM synthesis methods built into
Xilinx Vivado CAD.

2 REVIEW OF THE LITERATURE

Today, a wide range of methods for optimizing hard-
ware expenses in the circuit of a finite state machine is
known. These include, for example, the so-called methods
of structural decomposition [7]. The essence of the meth-

121

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

ods lies in the multiple transformation of logic signals,
which leads to corresponding changes in the structural
scheme of the FSM.

In this article, the method of operational transforma-
tion of state codes is considered as a method of optimiz-
ing hardware expenses [8]. According to it, the transfor-
mation of state codes into FSM is not created using a sys-
tem of canonical Boolean equations, but using a set of
arithmetic and logical operations. Circuits that implement
these operations are combined into the so-called datapath
of transitions (DT). As a result, a structure of FSM with
DT is formed, the synthesis of which is discussed, in par-
ticular, in [10].

The paper [11] substantiates the effectiveness of FSM
with DT in comparison with the canonical structure of
FSM based on the criterion of hardware expenses. How-
ever, today the canonical structure of FSM plays a more
theoretical role, while the practical implementation of
FSM circuits is carried out with the help of appropriate
CAD, for example, Xilinx Vivado CAD. This is primarily
due to the use of an elemental basis supported by CAD
(as a rule, an FPGA basis).

Since FSM is often used as part of designed digital
systems, support for its synthesis is implemented at the
Xilinx Vivado CAD as part of the XST tool [9]. This tool
supports several FSM synthesis methods aimed at opti-
mizing various characteristics of the device circuit when
implemented in the FPGA basis. Modeling the process of
synthesizing the FSM circuit allows you to obtain the
numerical values of the hardware expenses in the circuit
of the device, expressed in the number of used LUT-
elements.

During research conducted by the authors, the follow-
ing hypothetical assumption was put forward. The use of
FSM synthesis methods built into the Xilinx Vivado CAD
will always allow you to obtain a machine circuit with
lower hardware expenses than using other methods of
optimizing the device circuit, which are not part of this
CAD. This assumption is based on the fact that the Xilinx
Vivado product has long been known in the world and
contains developed technologies for the synthesis of spe-
cialized digital devices. In addition, CAD is focused on
the use of its own elemental basis, which allows it to use
the technological features of microchips to optimize cir-
cuits. The question of comparing the effectiveness of the
synthesis of finite state machine by different methods in
CAD Xilinx Vivado is not sufficiently considered today
and does not allow to confirm or refute the hypothesis.
This article is devoted to the solution of this issue on the
example of a finite state machine with datapath of transi-
tions.

3 MATERIALS AND METHODS
The XST synthesis tool, built into the Xilinx Vivado

CAD, is able, under certain conditions, to find in the
VHDL description of the device fragments of code that
correspond to the description of the finite state machine
(by state machine we mean a machine with undefined
state codes). This process is called FSM extraction. For

the found state machine, the XST tool performs the fol-
lowing actions:

– coding of states according to the chosen method;
– synthesis of the register circuit in accordance with

the chosen method of states encoding;
– synthesis and optimization of the circuit for transi-

tion and output functions.
To ensure the possibility of automatic extraction of the

FSM in its VHDL description, the following provisions
should be observed:

1. The FSM states are specified in the form of a set of
letters combined in an element of the Enumeration Type.

2. The memory register must be synchronous and have
the possibility of being resetted to the initial state by a
reset signal.

3. The implementation of the transition and output
functions system is implemented using the case operator.

These requirements make it possible to specify an fi-
nite state machine in the VHDL language using one, two
or three processes [9, 12–14]. Regardless of how many
processes describe the FSM, the XST tool is capable of
extracting the finite state machine from the VHDL code
and coding the states according to the chosen coding
method. For this purpose, the "fsm_extraction" parameter
is provided in the synthesis process setting section, which
can take on the following values [9]:

1. “One-hot”. A separate trigger is used to encode
each state. The number of triggers is equal to the number
of FSM states. At each point in time, only one trigger can
have a ones value. To form the value of each trigger, a
logical equation is used, in which the number of terms is
equal to the number of transitions to the corresponding
state.

2. “Sequential”. The XST tool finds in the FSM long
sequences of states consisting of unconditional transi-
tions, and encodes the states within them with consecutive
binary codes of minimum sufficient digit capacity. As a
result, the input signals of the FSM are not fed to the ad-
dress inputs of the LUT elements, but only the code of the
current state is fed, which usually has a small digit capac-
ity compared to the number of input signals. Sequential
encoding of states ensures more optimal filling of the
static memory cells of LUT elements and reduces the
number of unused cells.

3. “Johnson”. Coding of states is performed using the
Johnson code. Each value of this code contains only one
continuous sequence of ones, and any two adjacent values
in the ordered sequence of values differ by only one digit.
The Johnson code is a cyclic code with redundancy and
allows you to reduce the number of electrical disturbances
caused by the simultaneous switching of several bits of
the register circuit.

4. “Gray”. Coding of states is performed using the
Gray code, in which two adjacent values in an ordered
sequence of values differ by the value of one binary bit,
and the number of bits matches the number of bits in the
case of sequential coding. It is advisable to use the Gray
code for encoding chains of states, since each micropro-
gram transition in such chain will be accompanied by a

122

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

change of only one digit in the memory register of the
FSM.

5. “Auto”. The XST tool chooses one of the coding
methods described above at its discretion based on the
results of the analysis of the VHDL model of the FSM.
The choice of the coding method also depends on other
XST settings (for example, on the leading optimization
strategy – hardware expenses or speed), but the general-
ized approach is as follows: if the FSM contains a small
number of states, “One-hot” coding is used; with an aver-
age number of states, the Johnson code is used; with a
large number of states, the Gray code is used.

6. “None”. The method of encoding states is not regu-
lated. If in the five modes considered above, the coding of
states is noted in the protocol of the synthesis process,
then in this case, information about the coding of states is
not provided. It is usually assumed that state codes corre-
spond to the sequential number of state identifiers when
they are listed in the VHDL description, starting from
zero, but the XST tool does not officially define this and
reserves the right to code states at its own discretion. This
feature does not interfere with the synthesis of the correct
FSM circuit, but it does not allow the application of addi-
tional optimization methods based on the known values of
state codes.

The considered values of the “-fsm_extraction” pa-
rameter (except for the “Auto” and “None” parameters)
correspond to different methods of FSM circuit synthesis
built into Xilinx Vivado CAD. We will conduct a study of
the effectiveness of the automatic FSM synthesis accord-
ing to built methods in comparison with the synthesis of
FSM with DT according to the criterion of hardware ex-
penses. Efficiency will be determined by the following
expression:

DT

CAD
DT

H

H
E  , (2)

where CADH is the minimum possible hardware ex-
penses for the implementation of the FSM circuit when

using built-in CAD methods; DTH – hardware expenes
for the implementation of the FSM circuit with datapath
of transitions. The unit of measurement of these parame-
ters will be the number of used LUT elements of the se-

lected FPGA chip. The value 1DTE will mean that the
circuit of the FSM with DT has lower hardware expenes
compared to the FSM circuit synthesized by Xilinx

Vivado built-in methods. Achieving the values 1DTE
will prove that, under certain conditions, the use of third-
party methods for optimizing hardware expenses is more
appropriate than the methods built into CAD.

In the context of the considered problem, the authors
investigated five test GSAs G1–G5, which have the fol-
lowing common properties:

1. GSA reproduces only the transition function of the
FSM and does not contain information about the output
function (all operator nodes are empty). This makes it
possible to determine the hardware expenses for the im-

plementation of the transition function, although it cannot
be considered an indicator of the efficiency of the FSM as
a whole.

2. GSA has a regular structure, that is, it is a sequence
of identical fragments. This approach, firstly, simplifies
the scaling of the GSA by increasing the number of frag-
ments, and secondly, allows you to automate the process
of generating the VHDL code to describe the FSM.

Let’s consider GSAs investigated in this work.
GSA G1
The GSA does not contain conditional nodes, has a

completely linear structure and is marked by M states of
the Moore machine (Fig. 1).

To implement sequential transitions in the correspond-

ing FSM with DT, natural coding of states can be used, in
which the binary code of the state coincides with its index
in Fig. 1, and the state codes are transformed using a
counter [3, 7].

GSA G2
GSA corresponds to a Moore machine and has the fol-

lowing structure (Fig. 2):

Figure 2 – GSA G2

START a0

a1

a10

a2

a11

. . .

aM-3

a0

aM-2

a0

END a0

x1
1

0

x1
1

0

x1
1

0

x1
1

0

aM-1

Figure 1 – GSA G1

START

END

a0

a1

a0

aM-1

. . .

123

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

– each operator node is followed by a conditional
node;

– the same logical condition x1 is checked in all condi-
tional nodes;

– when 01 x the transition leads to the next FSM

state, when 11 x the transition leads ten states forward;

– for the last ten states, under the condition 11 x the

transition leads to the state 0a .

In this case, the natural sequence of state coding is
obvious, which makes it possible to implement the opera-
tional transformation of state codes based on the counter.

GSA G3
The structure of the GSA is similar to the G2 GSA, but

the number of the state to which the transition is made
under the condition 11 x , is generated in a pseudo-

random way within the limits of]1;0[M . The general

appearance of the GSA G3, marked by the states of the
Moore machine, is shown in Fig. 3.

In Fig. 3 states ai, aj, ak, al mean some different states
within the GSA. As in GSA G2, states are coded in a natu-
ral order. Implementation of pseudo-random transitions is
carried out with the help of a shift register with feedback
based on the XOR operation. Such a register allows you

to generate a sequence of)12(R unique bit vectors that

can be used to encode the states of the FSM. For this, the
feedback must be organized according to a special primi-
tive polynomial of length R, where R is the bit capacity of
the state code of the FSM.

GSA G4
GSA is similar in structure to G2, but in each condi-

tional node a different logical condition is checked, from

1x to 1Mx . The general appearance of the GSA G4,

marked by the states of the Moore machine, is shown in
Fig. 4.

GSA G5

GSA is similar in structure to G3, but in each condi-
tional node a different logical condition is checked, from

1x to 1Mx . The general appearance of the GSA G5,

marked by the states of the Moore machine, is shown in
Fig. 5.

For each of the considered GSAs two VHDL models
were built. The first model describes an FSM in the form
of two processes and is intended for automated synthesis
by Vivado XST. The second model represents the RTL
description of the FSM with DT and is designed for cir-
cuit synthesis in Xilinx Vivado without using the “FSM
Extraction” option.

As an example, consider VHDL-models correspond-
ing to GSA G2. In Fig. 6 shows an example of the synthe-
sized part of the FSM VHDL model intended for synthe-
sis using XST. This model describes a machine with only

Figure 3 – ГСА G3

START a0

a1

ai

a2

aj

. . .

aM-3

ak

aM-2

al

END a0

x1
1

0

x1
1

0

x1
1

0

x1
1

0

aM-1

Figure 4 – GSA G4

START a0

a1

a10

a2

a11

. . .

aM-3

a0

aM-2

a0

END a0

x1
1

0

x2
1

0

xM-2
1

0

xM-1
1

0

aM-1

Figure 5 – GSA G5

START a0

a1

ai

a2

aj

. . .

aM-3

ak

aM-2

al

END a0

x1
1

0

x2
1

0

xM-2
1

0

xM-1
1

0

aM-1

124

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

five states, but can easily be scaled to a machine with an
arbitrary number of states. The model corresponds to the
structure of the canonical FSM [2, 3, 9], but does not con-
tain a part corresponding to the output function of the
FSM. This is due to the fact that in the FSM with DT, the
optimization of hardware expenses is carried out only in
the transitions formation circuit, while the circuit of form-
ing microoperations remains the same as in the canonical
FSM. In order to emphasize the saving of hardware ex-
penses precisely in the transition formation circuit, the
used VHDL-models (as well as GSA) do not contain parts
that correspond to the FSM output function).

package types is
 type state_type is (a0, a1, a2, a3, a4);
end package types;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.types.all;

entity FSM is -- Canonical FSM
 port (x1: in std_logic;
 C: in std_logic; -- Clock
 Reset: in std_logic; -- Reset
 O: out state_type); -- Current state
end FSM;

architecture FSM_A of FSM is
signal state, next_state: state_type;
begin

 process(C) -- Memory Register
 begin
 if rising_edge(C) then
 if Reset = '1' then
 state <= a0;
 else
 state <= next_state;
 end if;
 end if;
 end process;

 process (state, x1) -- Trans. circuit
 begin
 case state is
 when a0 => if x1 = '0' then
 next_state <= a1;
 else
 next_state <= a2;
 end if;
 when a1 => if x1 = '0' then
 next_state <= a2;
 else
 next_state <= a3;
 end if;
 when a2 => if x1 = '0' then
 next_state <= a3;
 else
 next_state <= a4;
 end if;
 when a3 => if x1 = '0' then
 next_state <= a4;
 else
 next_state <= a0;
 end if;
 when a4 => next_state <= a0;

 end case;
 end process;

 O <= state;
end FSM_A;

Figure 6 – Synthesizable part of the VHDL model
of canonical FSM for GSA G2

We emphasize that in the model in Fig. 6 FSM states

are declared by enumerating the literals “a0”, “a1”, etc.
Specific state codes are not defined in this model. It is this
approach that makes it possible to use the automatic ex-
traction of the finite state machine by XST tool.

In Fig. 7 shows the VHDL model of the FSM with DT
corresponding to GSA G2 for the case of M=100 states.

На рис. 7 наведена VHDL-модель МПА з ОАП, що
відповідає ГСА G2 для випадку M=100 станів.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity FSM is
 -- Bit capacity of state code:
 generic (R: integer := 7);

 port (C: in std_logic;
 Reset: in std_logic;
 D: out unsigned (R-1 downto 0));
end entity FSM;

architecture OAP_A of OAP is
signal state,
next_state: unsigned (R-1 downto 0);
begin

 process (C) -- Memory Register
 begin
 if rising_edge(C) then
 if Reset = '1' then
 state <= "0000000";
 else
 state <= next_state;
 end if;
 end if;
 end process;

 process (state, x1)--Datapath of transitions
 begin
 -- If state is in range from a0 to A(M-10)
 if state < "1011010" then
 if x1 = '0' then -- If x1=0
 next_state <= state + 1; -- +1
 else -- If x1=1
 -- Transition to next state:
 next_state <= state + 10;
 end if;
 -- If it is state a(M-1)
 elsif state = "1100011" then
 next_state <= "0000000";-- To state a0

 -- If it is one of other ten states
 else
 if x1 = '0' then -- If x1=0
 -- Transition to next state:
 next_state <= state + 1;
 else -- If x1=1
 -- Transition to initial state a0
 next_state <= "0000000";
 end if;
 end if;

125

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

 end process;

 D <= state;
end architecture OAP_A;

Figure 7 – Synthesizable part of the VHDL model
of FSM with DT for GSA G2

It should be noted that for the model in Fig. 6, the

VHDL code length will increase along with the increase
in the number of states of the machine. This is primarily
due to an increase in the number of branches of the “case”
operator. Instead, in the case of the equivalent FSM with
DT (Fig. 7), a change in the number of states will only
lead to a change in the bit rate and values of the constants
in the model code. However, at the same time, this VHDL
model maintains a “hard” binding to the GSA G2 struc-
ture, which corresponds to the concept of FSM as a ma-
chine with “hardware” logic.

4 EXPERIMENTS

On the basis of the developed test GSAs, studies of
the effectiveness of FSM with DT in comparison with the
methods of synthesis of finite state machines built into the
Xilinx Vivado CAD were carried out. The criterion of
efficiency is the value of hardware expenses in the circuit
of the FSM when it is implemented in the FPGA basis.
The essence of the experiments was as follows:

1. VHDL models of canonical FSM and FSM with DT
containing 100, 200, 500, 1000, 2000 states were built for
each of GSA G1–G5.

2. For each model of the canonical FSM, the synthesis
of the circuit was performed in the mode of automatic
extraction of the finite state machine. The synthesis is
performed for each of the following values of the “fsm-
extraction” parameter: “one-hot”, “sequential”, “john-
son”", “gray”, “auto”. According to the results of each
synthesis, the numerical value of hardware expenses

CADH was obtained, expressed in the number of used
LUT-elements of the FPGA. The synthesis was carried
out for the microchip xc7s6cpga196-2 of the Spartan-7
series. All Xilinx Vivado settings except the parameter
“fsm_extraction” are selected by default.

3. For each GSA G1–G5, such a value of the “fsm-
extraction” parameter is defined, at which the FSM circuit
has the lowest hardware expenses in comparison with
other values of this parameter. The values of hardware
expenses obtained in this case are considered to be the
minimum possible, which can be obtained when using
FSM synthesis methods built into CAD.

4. For each model of FSM with DT, synthesis of the
circuit was performed without using the mode of auto-
matic extraction of the finite state machine. According to
the results of each synthesis, the numerical value of the

hardware expenses DTH was obtained, expressed in the
number of used LUT-elements of the FPGA. The synthe-
sis conditions are the same as in the synthesis of models
of canonical FSM.

5. For each model, the efficiency was calculated ac-

cording to expression (2). As values CADH , the mini-
mum values of hardware expenses are taken in accor-
dance with clause 3.

It should be emphasized that for all models, the oper-
ability of the logic circuit of the FSM in Xilinx Vivado
was verified using an additional VHDL model of the be-
havioral type. The function of this model was the genera-
tion of input signals, reset and synchronization signals.

5 RESULTS

The results of experimental studies are given in ta-
bles –5. The row of the table containing the minimum
values according to clause 3 is marked with a gray back-
ground. The symbol “–” in the cells of the tables means
that the numerical values of the hardware expenses for the
corresponding parameters were not obtained due to the
extremely high complexity of the resulting circuit.

Table 1 – Results of GSA G1 studies
M 100 200 500 1000 2000

one-hot 60 116 292 570 1181
sequential 9 15 18 23 27
johnson 273 457 979 – –

gray 18 20 29 38 40

CADH ,
LUT

auto 60 116 292 570 1181

DTH , LUT 6 8 11 12 13

E 1.5 1.88 1.63 1.92 2.08

Table 2 – Results of GSA G2 studies
M 100 200 500 1000 2000

one-hot 109 215 539 1489 3091
sequential 18 18 23 27 22
johnson 267 759 3047 – –

gray 26 38 56 68 66

CADH ,
LUT

auto 109 215 539 1489 3091

DTH , LUT 13 15 19 20 21

E 1.38 1.20 1.21 1.35 1.05

Table 3 – Results of GSA G3 studies

M 100 200 500 1000 2000
one-hot 112 250 668 1454 3334

sequential 44 94 239 511 1177
johnson 419 1642 – – –

gray 43 92 239 510 1166

CADH ,
LUT

auto 112 250 668 1454 3334

DTH , LUT 21 41 99 190 407

E 2.05 2.24 2.41 2.68 2.86

Table 4 – Results of GSA G4 studies

M 100 200 500 1000 2000
one-hot 155 311 799 1958 4051

sequential 130 269 656 1368 2767
johnson 412 1219 3978 – –

gray 127 254 631 1240 2498

CADH ,
LUT

auto 155 311 799 1958 4051

DTH , LUT 51 72 155 318 586

E 2.49 3.54 4.07 3.90 4.26

126

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

Table 5 – Results of GSA G5 studies
M 100 200 500 1000 2000

one-hot 145 298 831 1782 4050
sequential 166 357 1048 2286 5123
johnson 589 1967 – – –

gray 155 348 995 2281 4922

CADH ,
LUT

auto 145 298 831 1782 4050

DTH , LUT 58 117 225 454 931

E 2.50 2.54 3.69 3.92 4.35

The content of the last row of each table is calculated

as the result of dividing the values in the row of the table,
marked with a gray background, by the value in the row

DTH of the table. For example, in the table 1, the value
of 1.5 in the last row of the table is calculated as a fraction
of the division of 9 by 6, where 9 is the minimum possible
value of hardware expenses obtained using the XST tool,
6 is the value of hardware expenses for the implementa-
tion of circuit of the equivalent FSM with DT.

6 DISCUSSION

A finite state machine with datapath of transitions dif-
fers from a canonical finite state machine in that it uses a
set of arithmetic and logic operations to transform state
codes, which form a datapath of transitions. The complex-
ity of the DT circuit depends on the number of operations
used by datapath to transform state codes. If, for a given
GSA, the complexity of the DT turns out to be less than
the complexity of the transitions formation circuit of the
canonical FSM, the use of the structure of FSM with DT
is preferable compared to the canonical FSM.

The synthesis results shown in tables 1–5 demonstrate
a clear gain (sometimes several times) in hardware ex-
penses when implementing the FSM transition function
using the method of operational transformation of state
codes and the structure of FSM with DT. This allows us
to draw the following conclusions.

1. Finite state machine synthesis methods built into
Xilinx Vivado CAD do not always give the best result in
terms of hardware expenses in comparison with third-
party FSM optimization methods.

2. The use of finite state machine synthesis methods
built into CAD does not allow choosing specific values of
state codes. This makes it impossible to simultaneously
use other known methods of optimization of the FSM
circuit, in particular, optimization of the output function
circuit. Instead, the use of FSM with DT is based on pre-
selected values of state codes, which potentially allows
combining other optimization methods with the method of
operational transformation of state codes.

3. The theory of synthesis and optimization of circuits
of finite state machine remains relevant today, provided
that modern CAD digital systems and elemental basis are
used. A promising scientific and practical direction is the
formalization and algorithmization of well-known meth-
ods of FSM circuit optimization.

Certain limitations of the conducted research should
also be taken into account when analyzing the obtained
results.

1. The comparative analysis of hardware expenses was
carried out only for the circuit of transition function with-
out taking into account expenses in the circuit that im-
plements the output function. If, for a given FSM, the
hardware expenses for the implementation of the output
function significantly exceed expenses for the implemen-
tation of the transition function, the effect of using an
FSM with DT instead of a canonical FSM will be much
smaller. However, from the point of view of Xilinx Viva-
do CAD, the use of FSM with DT is not the only third-
party approach to reducing hardware expenses. Therefore,
the potential possibility of surpassing the methods built
into CAD remains for other well-known synthesis and
optimization methods.

2. The structure of studied GSAs is artificially adapted
in such a way that the implementation of microprogram
transitions in the corresponding FSM with DT takes place
with the help of a smaller number of operations. This
made it possible to obtain efficiency values greater than 1.
This fact indicates the need to optimize the FSM with DT
circuit, which is possible under the condition of develop-
ment and application of special methods of synthesis of
this FSM class. At that time, the use of methods built into
CAD allows for synthesis in automatic mode, following
only the rules of building VHDL models to ensure auto-
matic extraction of the finite state machine by means of
XST.

However, these limitations do not negate (and in some
ways emphasize) the general possibility and expediency
of using known optimization methods, as opposed to the
methods built into CAD.

CONCLUSIONS

The article proposes a solution to the scientific prob-
lem of researching the effectiveness of the method of op-
erational transformation of state codes in comparison with
the methods of synthesis of finite state machines built into
Xilinx Vivado CAD, according to the criterion of hard-
ware expenses.

The scientific novelty of the work consists in the ex-
perimental confirmation of the advantage (under certain
conditions) of the use of well-known methods of synthe-
sis of finite state machines (in particular, the method of
operational transformation of state codes) compared to the
methods of synthesis of finite state machines built into
Xilinx Vivado CAD. This confirmation is provided by the
efficiency values obtained during research (Tables 1–5).
Thus, the hypothesis that finite state machine synthesis
methods built into Xilinx Vivado are always able to gen-
erate FSM circuits with lower hardware expenses com-
pared to other hardware expenses optimization methods is
disproved.

The practical use of the obtained results is possible in
the development of methods for evaluating the effective-
ness of the structure of a finite state machine with
datapath of transitions, as well as other structures and
methods aimed at optimizing the characteristics of the
circuit of a finite state machine.

127

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

Prospects for further research consist in solving a
range of scientific and practical problems related to the
development, implementation and evaluation of the effec-
tiveness of structures and methods of synthesis of finite
state machines with optimized hardware expenses.

ACKNOWLEDGEMENTS

The work is supported by the state budget scientific
research project of Vasyl’ Stus Donetsk National Univer-
sity “Methods, algorithms and tools of computer-aided
design of control units of computing systems” (state regis-
tration number 0122U200085).

REFERENCES

1. Bailliul J., Samad T. Encyclopedia of Systems and Control.
Springer, London, UK, 2015, 1554 p.

2. Sklyarov V., Sklyarova I., Barkalov A., Titarenko L. Syn-
thesis and Optimization of FPGA-Based Systems; Volume
294 of Lecture Notes in Electrical Engineering. Springer,
Berlin, Germany, 2014, 432 p.

3. Baranov, S. Logic and System Design of Digital Systems.
Tallin, TUTPress, 2008, 267 p.

4. Micheli G. D. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, Cambridge, MA, USA, 1994, 579 p.

5. Minns P., Elliot I. FSM-Based Digital Design Using Verilog
HDL, JohnWiley and Sons, Hoboken, NJ, USA, 2008,
408 p.

6. Grout I. Digital Systems Design with FPGAs and CPLDs.
Elsevier Science, Amsterdam, The Netherlands, 2011,
784 p.

7. Baranov S. Logic Synthesis for Control Automata.
Dordrecht, Kluwer Academic Publishers, 1994, 312 p.

8. Barkalov A. A., Babakov R. M. Operational formation of
state codes in microprogram automata, Cybernetics and Sys-
tems Analysis, 2011, Volume 47 (2), pp. 193–197.

9. Xilinx. XST UserGuide. V.11.3. Available online:
https://www.xilinx.com/support/documentation/sw_manuals
/xilinx11/xst.pdf (accessed on 12 April 2023).

10. Barkalov A. A., Titarenko L. A., Babakov R. M. Synthesis
of Finite State Machine with Datapath of Transitions Ac-
cording to the Operational Table of Transitions, Radio Elec-
tronics, Computer Science, Control, 2022, Volume 3 (62),
pp. 109–119.

11. Barkalov A. A., Babakov R. M. Determining the Area of
Efficient Application of a Microprogrammed Finite-State
Machine with Datapath of Transitions, Cybernetics and Sys-
tems Analysis, 2019, Volume 54 (3), pp. 366–375.

12. Czerwinski R., Kania D. Finite State Machine Logic Syn-
thesis for Complex Programmable Logic Devices. Berlin,
Springer, 2013, 172 p.

13. Mano M. Digital design (4th Edition). New Jersey, Prentice
Hall, 2006, 624 p.

14. Zwolinski M. Digital System Design with VHDL. Boston,
Addison-Wesley Longman Publishing Co., Inc. 2000, 416 p.

Received 19.06.2023.
Accepted 11.08.2023.

УДК 004.94 : 004.2

ТЕСТОВІ ГРАФ-СХЕМИ АЛГОРИТМІВ РОБОТИ МІКРОПРОГРАМНИХ АВТОМАТІВ ДЛЯ ОЦІНКИ
ЕФЕКТИВНОСТІ АВТОМАТИЗОВАНОГО СИНТЕЗУ В САПР XILINX VIVADO

Баркалов О. О. – д-р техн. наук, професор, професор Інституту комп’ютерних наук та електроніки університету Зеле-

ногурського, м. Зельона Гура, Польща.
Тітаренко Л. О. – д-р техн. наук, професор, професор Інституту комп’ютерних наук та електроніки університету Зеле-

ногурського, м. Зельона Гура, Польща.
Бабаков Р. М. – д-р техн. наук, доцент, доцент кафедри інформаційних технологій Донецького національного універси-

тету імені Василя Стуса, м. Вінниця, Україна.

АНОТАЦІЯ
Актуальність. Розглянуто задачу оцінки ефективності автоматизованого проєктування мікропрограмного автомата з

операційним перетворенням кодів станів із використанням САПР Xilinx Vivado. Об’єктом дослідження були граф-схеми
алгоритмів керування, що імплементуються мікропрограмним автоматом та здатні довести ефективність принципу опера-
ційного перетворення кодів станів у порівнянні зі стандартними методами синтезу, вбудованими в САПР, в контексті опти-
мізації апаратурних витрат.

Мета. Розробка і дослідження граф-схем алгоритмів керування з метою обґрунтування ефективності застосування стру-
ктури мікропрограмного автомата з операційним автоматом переходів у порівнянні із вбудованими методами синтезу авто-
матів в САПР Xilinx Vivado в базисі програмувальних логічних пристроїв.

Метод. В основу дослідження покладено гіпотетичне припущення про те, що САПР Xilinx Vivado має вбудовані методи
автоматизованого проектування схеми мікропрограмного автомата, ефективність яких за критерієм апаратурних витрат
перевершує інші відомих методи оптимізації апаратурних витрат в схемі автомата. З метою спростування даної гіпотези
запропоновано довести, що в окремих випадках відомі методи оптимізації апаратурних витрат в схемі автомата є більш
ефективними у порівняні з методами, вбудованими в САПР. В даній роботі в якості відомого методу оптимізації обраний
метод операційного перетворення кодів станів, що породжує структуру мікропрограмного автомата з операційним автома-
том переходів. Ефективність цього методу доводиться на прикладі кількох тестових граф-схем алгоритмів, структура яких є
абстрактною і штучно адаптована до обраного методу оптимізації. Адаптація обраних граф-схем алгоритмів полягає в тому,
що для їх реалізації за допомогою мікропрограмного автомата з операційним автоматом переходів потрібна відносно мала
кількість операцій переходів. Це сприяє спрощенню схеми автомата і зменшенню апаратурних витрат на її реалізацію. Ра-
зом з тим тестові граф-схеми алгоритмів мають можливість масштабування, що дозволяє автоматизувати побудову VHDL-
моделей відповідного автомата для граф-схем різного розміру і оцінити оптимізацію апаратурних витрат для автоматів різ-
ної складності.

128

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 3

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-3-12

Результати. На прикладі декількох граф-схем алгоритмів продемонстровано, що в окремих випадках жоден із методів
синтезу кінцевих автоматів, вбудованих в САПР Xilinx Vivado, не здатен перевершити метод операційного перетворення
кодів станів за критерієм апаратурних витрат на реалізацію схеми мікропрограмного автомата. При цьому може досягатись
кількаразовий виграш у витратах апаратури, що свідчить про доцільність використання даного методу за певних умов. Фо-
рмальне визначення таких умов для розглянутого та інших відомих методів оптимізації є окремою невирішеною науковою
проблемою.

Висновки. Проведені експерименти підтвердили, що в окремих випадках відомі методи синтезу мікропрограмних авто-
матів дозволяють отримати схеми автоматів із меншими витратами апаратури, ніж при використанні методів синтезу авто-
матів, вбудованих в САПР Xilinx Vivado. Це свідчить про загальну доцільність використання існуючих і розробки нових
методів оптимізації апаратурних витрат в схемі автомата та про сьогоденну актуальність теорії синтезу цифрових автоматів
як наукового напрямку.

КЛЮЧОВІ СЛОВА: граф-схема алгоритму, мікропрограмний автомат, операційний автомат переходів, апаратурні ви-
трати, САПР Xilinx Vivado.

ЛІТЕРАТУРА

1. Bailliul J. Encyclopedia of Systems and Control / J. Bailliul,
T. Samad. – Springer : London, UK, 2015. – 1554 p.

2. Sklyarov V. Synthesis and Optimization of FPGA-Based
Systems; Volume 294 of Lecture Notes in Electrical Engi-
neering / V. Sklyarov, I. Sklyarova, A. Barkalov, L. Ti-
tarenko. – Springer : Berlin, Germany, 2014. – 432 p.

3. Baranov S. Logic and System Design of Digital Systems /
S. Baranov. – Tallin : TUTPress, 2008. – 267 p.

4. Micheli G. D. Synthesis and Optimization of Digital Cir-
cuits / G. D. Micheli. – McGraw-Hill : Cambridge, MA,
USA, 1994. – 579 p.

5. Minns P. FSM-Based Digital Design Using Verilog HDL /
P. Minns, I. Elliot. – JohnWiley and Sons: Hoboken, NJ,
USA, 2008. – 408 p.

6. Grout I. Digital Systems Design with FPGAs and CPLDs /
I. Grout. – Elsevier Science: Amsterdam, The Netherlands,
2011. – 784 p.

7. Baranov S. Logic Synthesis for Control Automata /
S. Baranov. – Dordrecht : Kluwer Academic Publishers,
1994. – 312 p.

8. Barkalov A. A. Operational formation of state codes in mi-
croprogram automata / A. A. Barkalov, R. M. Babakov //

Cybernetics and Systems Analysis. – 2011. –Volume 47 (2).
– P. 193–197.

9. Xilinx. XST UserGuide. V.11.3. Available online:
https://www.xilinx.com/support/documentation/sw_manuals
/xilinx11/xst.pdf (accessed on 12 April 2023).

10. Barkalov A. A. Synthesis of Finite State Machine with
Datapath of Transitions According to the Operational Table
of Transitions / A. A. Barkalov, L. A. Titarenko, R. M. Ba-
bakov // Radio Electronics, Computer Science, Control. –
2022. – Volume 3 (62). – P. 109–119.

11. Barkalov A. A. Determining the Area of Efficient Applica-
tion of a Microprogrammed Finite-State Machine with
Datapath of Transitions / A. A. Barkalov, R. M. Babakov //
Cybernetics and Systems Analysis. – 2019. – Vol-
ume 54. (3). – P. 366–375.

12. Czerwinski R. Finite State Machine Logic Synthesis for
Complex Programmable Logic Devices / R. Czerwinski,
D. Kania. – Berlin : Springer, 2013. – 172 p.

13. Mano M. Digital design (4th Edition) / M. Mano. – New
Jersey : Prentice Hall, 2006. – 624 p.

14. Zwolinski M. Digital System Design with VHDL /
M. Zwolinski. – Boston : Addison-Wesley Longman Pub-
lishing Co., Inc., 2000. – 416 p.

129

