DEEP NETWORK-BASED METHOD AND SOFTWARE FOR SMALL SAMPLE BIOMEDICAL IMAGE GENERATION AND CLASSIFICATION

Berezsky O. M. – Dr. Sc., Professor, Professor of the Department of Computer Engineering, West Ukrainian National University, Ternopil, Ukraine.
Liashchynskyi P. B. – Post-graduate student of the Department of Computer Engineering, West Ukrainian National University, Ternopil, Ukraine.
Pitsun O. Y. – PhD, Associate Professor, Associate Professor of the Department of Computer Engineering, West Ukrainian National University, Ternopil, Ukraine.
Melnyk G. M. – PhD, Associate Professor of the Department of Computer Engineering, West Ukrainian National University, Ternopil, Ukraine.

ABSTRACT

Context. The authors of the article investigated the problem of generating and classifying breast cancer histological images. The widespread incidence of breast cancer explains the problem’s relevance. The automated diagnosing procedure saves time and eliminates the subjective aspect. The study’s findings can be applied to cancer CAD systems.

Objective. The purpose of the study is to develop a deep neural network-based method and software tool for generating and classifying histological images in order to increase classification accuracy.

Method. The method of histological image generation and classification was developed in the research study. This method employs CNN and GAN. To improve the classification accuracy, the initial image sample was expanded using GAN.

Results. The computer research of the developed method of image generation and classification was conducted on the basis of the dataset located on the Zenodo platform. Light microscopy served as the basis for obtaining the image. The dataset contained three classes of G1, G2, and G3 breast cancer histological images. Based on the developed method, the accuracy of image classification was 96%. This is a higher classification accuracy compared to existing models such as AlexNet, LeNet5, and VGG16. The software module can be integrated into CAD.

Conclusions. The developed method of generating and classifying images is the basis of the software module. The software module can be integrated into CAD.

ABBREVIATIONS

GAN is a generative adversarial network; CNN is a convolutional neural network; DNN is a deep neural network; CAD is a computer-aided diagnosis; AWS is a Amazon Web Services; Zenodo is a general-purpose open repository developed under the European OpenAIRE program and operated by CERN; ReLU is a rectified linear unit; Batch Norm is batch normalization; ROC is a receiver operating characteristic; CLI is a command line interface; IS metric is a metric based on the Google Inception V3 image classification model; FID is Fréchet inception distance; AlexNet is a name of a convolutional neural network architecture designed by Alex Krizhevsky; LeNet5 is a name of a convolutional neural network structure proposed by LeCun; VGG16 is a name of a Visual Geometry Group convolutional neural network; ResNet50 is a name of a 50-layer Residual Network; DenseNet201 is a name of a 201-layer Densely Connected Network; CSAResnet is a channel and spatial attention embedded Resnet network; DAMCNN is a dual attention multiscale convolutional neural network; DSS is a decision support system; DeepGrade is a histological grade model; DenseNet is a Densely Connected Network; CA-BreastNet is a Coordinated Attention Breast Network; DHE-Mit-Classifier is a Deep Heterogeneous Ensemble mitotic Classifier; SVM is a Support Vector Machine; SSDHO is a Shuffled Shepherd Deer Hunting Optimization; LR is a Logistic Regression; MLP is a Multilayer Perceptron; U-Net is a Network with U-shaped structure; PyTorch is a open source machine learning framework Python Torch; AWS SageMaker is an Amazon Web Services Sage Maker machine learning service; AWS S3 is an Amazon Web Services Simple Storage Service; URL is an Uniform Resource Locator; CrossEntropyLoss is a cross entropy loss;
Breast cancer in women is still a major medical and social problem that demands immediate attention. According to recent statistics, breast cancer continues to be the most common kind of malignant neoplasm in women. In 2020, the incidence rate of breast cancer in European Union nations was 13.3% of all new cases [1]. According to the American Cancer Society, breast cancer is also the most common among American women as of 2021 [2].

When analyzing morbidity data in Ukraine for the years 2021–2022, it is important to take into account that both periods were characterized by specific conditions in the country: the long course of the COVID-19 pandemic and military operations, which affected the work of both medical institutions and the cancer registration system. The report’s data for 2022 cannot accurately represent the country’s real onco-epidemiological process [3].

In 2021, women’s oncological incidence was dominated by breast cancer, skin cancer, and neoplasms of the body and cervix, accounting for 54.5% of identified diseases. Deaths from breast cancer, colon cancer, esophageal cancer, and ovarian cancer accounted for the majority of the overall structure of mortality among women (48.8%) [3].

Biomedical images are widely used to diagnose diseases in oncology. Let us define biomedical images.

A biomedical image is a structural and functional image of human and animal organs, used to diagnose diseases and study the anatomy and physiology of the human body [4].

Cytological, histological, and immunohistochemical images are used to diagnose [4] oncological diseases.

Accurate cancer diagnosis involves histological analysis of materials. Histopathology is the microscopic examination of thin slices of damaged tissue. Histopathologists examine tissues and offer diagnostic information based on their findings.

Histological stains are frequently used to improve the capacity to visualize or differentiate microscopic structures. Chemical fixatives are used to protect tissues against destruction while also preserving the structure of cells and subcellular components.

Cytopathological, histopathological, and immunohistochemical examinations are used to learn about the features of the tumor, its degree of dissemination, and the best treatment option [5].
The diagnostic process normally begins with cytopathological investigation, which might reveal the existence of abnormalities in the cells. Following that, a histological analysis of the resected tumor is undertaken for a more in-depth investigation. Immunohistochemical tests can supplement these findings by giving further information about the tumor’s biological characteristics.

Cytopathological investigations involve the examination of cells obtained during a tumor biopsy or puncture. They enable the assessment of anomalies in cellular structure and the identification of a suspected cancer process. Histopathological tests involve a detailed analysis of the removed tumor and adjacent tissues under a microscope. This helps determine the type of cancer, its aggressiveness, and its penetration into adjacent tissues.

Immunohistochemical investigations employ antibodies to identify specific proteins in tissues. They make it possible to more precisely detect the subtype of cancer and examine the presence of particular chemicals that might suggest prognosis and treatment alternatives. The molecular genetic subtype of the tumor is evaluated by immunohistochemistry expression of estrogen, progesterone, and oncprotein HER-2/neu receptors, as well as detection of tumor cell proliferation using Ki-67.

Histopathological tests involve a detailed analysis of the structure and the identification of a suspected cancer process. They enable the assessment of anomalies in cellular structure and the identification of a suspected cancer process. Immunohistochemical tests involve a detailed analysis of the removed tumor and adjacent tissues under a microscope. This helps determine the type of cancer, its aggressiveness, and its penetration into adjacent tissues.

The subject of research is the process of histological image generation and classification.

The object of research is deep neural networks used for image synthesis and classification.

The purpose of the research is to develop a method and software tool for breast cancer automatic diagnosis based on histological image analysis.

1 PROBLEM STATEMENT

Let the given set of original images is \(I_{\text{inp}} \). Let us divide this set into two subsets: \(I_1 \) and \(I_2 \), and \(I_{\text{inp}} = I_1 \cup I_2 \).

In addition, the architecture of \(A_{\text{CNN}} \) CNN is given. The CNN architecture can be represented through multiple layers:

\[
A_{\text{CNN}} = \{ L_i, i = 1, N \}.
\]

The classification accuracy is determined by the accuracy measure:

\[
AC = \frac{TP + TN}{TP + TN + FP + FN}.
\]

Classification accuracy depends on the number of layers and their parameters. The classification accuracy function is then presented in the following form:

\[
AC = f(L, P_{\text{CNN}}).
\]

For the known AlexNet, LeNet5 and VGG16 architectures, based on the original images, we get the following classification accuracies:

\[
AC_{\text{ALEX}}, AC_{\text{LE}}, AC_{\text{VGG}}.
\]

Then, we perform affine distortions on the input original images and generate \(I_{\text{inp}} \) on the basis of GAN. Let us divide these images into \(I^g_1 \) and \(I^g_2 \) ones, that is:

\[
I_{\text{ inp}}^g = I^g_1 \cup I^g_2.
\]

Based on the extended sample, we obtain the following classification accuracies for the known architectures AlexNet, LeNet5 and VGG16, respectively:

\[
AC_{\text{ALEX}}^g, AC_{\text{LE}}^g, AC_{\text{VGG}}^g.
\]

For the developed CNN architecture, we have the following classification accuracy: \(AC_{\text{DEV}}^g \).

Classification accuracy of the developed architecture depends on the following parameters:

\[
AC_{\text{DEV}} = f(P_{\text{DEV}}^g, L_{\text{DEV}}, I^g_1).
\]

Therefore, it is necessary to find a CNN architecture with a certain number of layers and parameters to satisfy the following condition:

\[
AC_{\text{CNN}} = \arg \max_{L_{\text{DEV}}, P_{\text{DEV}}} AC_{\text{DEV}}^g(P_{\text{DEV}}^g, L_{\text{DEV}}, I^g_1).
\]

2 REVIEW OF THE LITERATURE

The use of deep neural networks for cancer detection based on histological image processing has been widely addressed in research studies. For example, in the article [6], an ensemble of CNNs was investigated for malignancy identification using histological and cytological images. In [7], a multi-scale deep learning model was developed for breast cancer classification. In [8], the authors explored multi CNNs (VGG16, ResNet50, and DenseNet201) to detect mitotic cells.

Some researchers worked on the development of a deep learning-based approach for breast cancer image classification [9]. Others focused on the comparison of different CNN architectures for breast cancer classification [10]. Besides, segmentation and classification of cell nuclei in histology was discussed in [11]. The authors of [12] proposed a modified residual neural network-based method for breast cancer detection based on histological images. And the authors of [13] used an ensemble of deep multiscale CNN networks, namely CSAResnet and DAMCNN.
Additionally, a DSS for diagnosis of oncopathologies using histological images was developed by researchers in [14]. A CNN-based classifier for the automatic classification of breast cancer histological images was developed by the authors of [15]. A new DeepGrade histological class model was developed in [16]. The authors employed deep learning to analyze histological images. In [17], researchers combined two CNN architectures with the use of fractal geometry to improve histological image classification accuracy. In [18], the authors reviewed histological image classification methods for diagnosing breast cancer.

Thus, many researchers focused on the classification of breast cancer histological images. For example, the article [19] is devoted to the detection of breast cancer based on the CNN ensemble using histological images. In [20], the authors developed a method based on the combination of convolutional and recurrent deep neural networks for the classification of breast cancer histological images. In [21], the authors improved the DenseNet network and synthesized the CA-BreastNet model for the classification of breast cancer histological images. In [22], the authors analyzed modern algorithms for the automatic classification of breast cancer based on histological images. In [23], a heterogeneous ensemble based on CNN “DHE-Mit-Classifier” was developed. This ensemble was used to analyze mitotic nuclei in breast cancer histological images.

Besides, in [24], the authors analyzed the color and texture features of histological image slides. These features were used to count breast cancer mitosis. Article [25] was also devoted to the detection of mitosis in breast cancer. SVM, Naive Bayes, and Random Forest classifiers were used in the research study. The authors of the study [26] developed a DNN neural network based on the SSDHO optimization method to classify six classes of breast cancer images. In [27], the authors analyzed two methods of machine learning SVM and LR. The study also considered combinations of CNN + LR and CNN + SVM.

In the article [28], a review of machine learning methods for breast cancer diagnosis was carried out. In [29], the authors also used CNN to classify histological images of breast cancer. In the research study [30], the authors developed a 3-tier CNN model, which was used to classify breast cancer histological images. And researchers in [31] analyzed VGG16, VGG19, and ResNet50 networks for the classification of breast cancer histological images. A comparison of MLP and CNN networks was made in [32]. These networks have been used in breast cancer detection. The authors of [33] used a cascade deep learning network with U-Net architecture for segmentation and a ResNet network for breast cancer classification.

The authors of the article [34] developed a method of manual feature selection and applied a DNN to classify breast cancer. The authors of the article [35] analyzed the use of artificial intelligence methods in DSS for diagnosing breast cancer. In the article [36], a method and a software tool for diagnosing skin diseases were developed.

These authors have experience in the development of methods, algorithms, and software tools for diagnosing oncological diseases based on the analysis of cytological, histological, and immunohistochemical images. For example, in works [36–45] technology and software systems for the analysis of biomedical images for diagnosis were developed. A number of publications [42–45] are devoted to the development of methods and algorithms for the analysis of biomedical images.

3 MATERIALS AND METHODS

The developed method of generating and classifying histological images consists of the following steps:

1. Formation of the initial dataset of histological images of three classes: G1, G2, and G3 based on affine distortions.
2. Experimental study of known architectures of neural networks for histological image classification and evaluation of classification accuracy on a given sample.
3. Expanding the histological image sample based on GAN networks.
4. Determining the improved neural network accuracy on the extended sample.
5. Designing new neural network architecture.

This section details steps 1, 3, and 5. Steps 2, 4, and 6 are described in section 5.

Let’s create an initial data set. Diagnosticians determine the type of breast cancer using a histological examination. The Nottingham scale assesses the degree of difference in study findings. The following types of breast cancer are distinguished by the Nottingham grading: G1, G2, and G3. Breast tumor differentiation is determined by the degree of differentiation between pathological and normal cells, as well as the tumor cell growth rate. The authors of this article used cytological and histological images of breast cancer [46] from a private image database on the Zenodo platform. All images are anonymized, which complies with European standards [47].

The original sample contains images by class: G1 – 9 images, G2 – 100 images, and G3 – 76 images. This sample was expanded to 100 images in each class by applying affine distortions [48].

An example of histological images of different cancer types is shown in Fig. 1.

Based on the initial data set, we will form an extended data set using GAN.

The generator and discriminator architectures are based on the ResNet Block, borrowed from the ResNet [49].

The generator takes a noise vector with a Gaussian distribution of dimensions 1x100 as input and produces a 64x64x3 image as output. The generator’s architecture may be generally divided into three levels, as shown in Fig. 2.
The first layer is the pre-processing layer. In this layer, a one-dimensional input noise vector is read and sent to the linear layer for further conversion into a three-dimensional array.

The second layer is the main computing layer. It consists of four ResNet units. After each block, nearest-neighbor interpolation was used to enlarge the image by two times. In addition, following the third ResNet block, the Self-Attention block was used [50]. All convolutional layers use step 1. ReLU is also applied as the activation function.

The last layer is the output layer. Batch normalization, activation, another convolution layer, and the final Tanh activation function are all used here.

The discriminator is a convolutional neural network that takes an image of 64x64x4 pixels as input. The discriminator consists of five ResNet blocks. A Self-Attention mechanism is applied after the first block.

To reduce image dimensionality, the Average Pooling operation with a kernel size of 2x2 and a step of 2 is used in each ResNet block. However, dimensionality reduction is not used in the final block. Convolution layers use step 1.

ReLU is also applied as an activation function.

The output of the discriminator is two linear layers. The first has 1280 neurons, whereas the second has only one. The architecture of the discriminator is shown in Fig. 3.

IS and FID metrics were used to evaluate the quality of synthesized images [51, 52].

The next step is to design the new CNN architecture.

The architecture of the developed CNN is presented in Figure 4.

The CNN architecture consists of nine convolutional layers, four pooling layers, and one fully connected (linear) layer.
All convolutional layers use step 1. Maximum pooling layers with a 3x3 kernel and step 2 are used to minimize the image’s dimensionality.

An image with a size of 64x64x3 pixels is sent to the network input. The image is then passed to the first convolutional layer, which uses 64 feature maps with a 3x3 kernel.

The next two layers are convolutional blocks, which consist of successive layers of 3x3 kernel convolution, ReLU activation, and batch normalization. The first block employs 64 feature maps, whereas the second employs 128. A maximum pooling layer is then applied after these blocks. Accordingly, now the image size is 32x32x128.

Then there are two convolution blocks with a maximum pooling layer at the end. However, here the convolution layers use a 1x1 kernel and the same number of feature maps – 128. The size of the image after these layers is 16x16x128.

The next two convolution blocks are identical to the first two and also use the same number of feature maps – 128. At the end, a maximum pooling layer is applied. The image size is 8x8x128.

Next, there are two convolution blocks, identical to the previous ones, but the pooling layer is no longer applied after them. The size of the image remains the same – 8x8x128.

The output layer consists of sequential batch normalization layers, an adaptive average pooling layer with the number of output nodes 1, and a linear layer with 3 nodes.
The CNN parameters are shown in Table 1. The formalized description of the developed CNN is as follows:

\[A_{CNN} = \left\{ \text{inp}, (64 \times 64 \times 3) \right\}; \]
\[(c_1) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_2) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_3) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_4) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_5) \text{kernel size} = 3 \times 3, \text{stride} = 2; \]
\[(c_6) \text{kernel size} = 1 \times 1, \text{stride} = 1, \text{padding} = 1; \]
\[(c_7) \text{kernel size} = 1 \times 1, \text{stride} = 1, \text{padding} = 1; \]
\[(c_8) \text{kernel size} = 3 \times 3, \text{stride} = 2, \text{padding} = 1; \]
\[(c_9) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{10}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{11}) \text{kernel size} = 3 \times 3, \text{stride} = 2, \text{padding} = 1; \]
\[(c_{12}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{13}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{14}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{15}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(c_{16}) \text{kernel size} = 3 \times 3, \text{stride} = 1, \text{padding} = 1; \]
\[(f_{10}) \text{clauses} = 3 \right\}. \]

Table 1 – Developed CNN parameters

<table>
<thead>
<tr>
<th>Layer number</th>
<th>Layer type</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Image input</td>
<td>64x64x3 image</td>
</tr>
<tr>
<td>2</td>
<td>Convolution</td>
<td>3x3 kernel convolution with stride 1 and same padding</td>
</tr>
<tr>
<td>3</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>4</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>5</td>
<td>MaxPooling</td>
<td>3x3 kernel max pooling with stride 2</td>
</tr>
<tr>
<td>6</td>
<td>Convolution</td>
<td>ReLU followed by 1x1 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>7</td>
<td>Convolution</td>
<td>ReLU followed by 1x1 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>8</td>
<td>MaxPooling</td>
<td>3x3 kernel max pooling with stride 2</td>
</tr>
<tr>
<td>9</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>10</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>11</td>
<td>MaxPooling</td>
<td>3x3 kernel max pooling with stride 2</td>
</tr>
<tr>
<td>12</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>13</td>
<td>Convolution</td>
<td>ReLU followed by 3x3 kernel convolution with stride 1 and padding 1 followed by Batch Normalization</td>
</tr>
<tr>
<td>14</td>
<td>BatchNorm</td>
<td>Batch normalization followed by ReLU</td>
</tr>
<tr>
<td>15</td>
<td>Adaptive Average Pooling</td>
<td>3x3 kernel adaptive average pooling with output nodes</td>
</tr>
<tr>
<td>16</td>
<td>Output</td>
<td>Linear layer with 3 output nodes</td>
</tr>
</tbody>
</table>

4 EXPERIMENTS

For computer experiments, special software has been developed. The software implementation is based on the reliability and scalability of Amazon Web Services cloud infrastructure, allowing efficient use of cloud computing resources. The program focuses on the development and deployment of a PyTorch-based CNN model for histological image classification. The infrastructure of the software is shown in Figure 5.

The developed software is made up of two different Python files: train.py and predict.py, each of which serves a specific purpose in the entire workflow.

In the train.py file, we describe a convolutional neural network model. We define the architecture by specifying parameters such as the number of convolution layers, filters, activation functions, and loss functions. This file also outlines the model training process.

To train the CNN model, we use AWS SageMaker and a cloud-based machine learning service. This service offers a scalable and controlled environment for efficient GPU training.

After the training process is completed, the model is downloaded and stored in the AWS S3 service. A URL is generated in AWS SageMaker to make the model available for use. The URL allows you to utilize the model in both the AWS cloud architecture and other web apps.

The software predict.py allows the use of the trained model to classify new data. This application is designed to be a CLI tool. To obtain classification results for the images, just call the file, specifying the path of the directory containing the images as the first parameter. The model analyses images and produces classification findings that may be further analyzed or integrated into other research procedures. The classification results are output to the output.txt file for convenience, with the data separated into two columns – the image file and the class.
5 RESULTS

Computer experiments were performed on the original and expanded samples for AlexNet, LeNet5, and VGG16. Experiments have also been carried out for the developed CNN architecture on the expanded sample.

AlexNet, LeNet5, and VGG16 original sample experiments.

100 images were used for each class. The training sample was divided into 80/20. The same training parameters were used for all networks: the Adam optimizer (1e–4), the number of epochs was 100, the batch size was 100, and the loss function was CrossEntropyLoss.

Computer experiments were carried out using the three most prominent architectures: AlexNet, LeNet5, and VGG16. The results of the experiments are as follows: AlexNet classification accuracy was 74%, LeNet5 classification accuracy was 57%, and VGG16 classification accuracy was 70%.

ROC curves for these architectures are shown in Fig. 6–8.
The original sample of images (100 images per class) was used as the training dataset. The Python programming language and the Pytorch framework were used to write the code. The GAN network training parameters were as follows: Adam optimizer, generator learning rate – 1e–4, discriminator – 4e–4, number of epochs – 100000, batch size – 96, and loss function – HingeLoss.

A virtual machine with the following configuration was used to run the experiments: 16 GB RAM, 10 vCPU x 2.2 GHz, Nvidia Tesla V100 GPU 16 GB (13.2 TFLOPS). The GAN network was trained for 11 hours. As a result of the experiments, the values of the metrics for the network were as follows: IS – 3.024, FID – 68.

Examples of synthesized images are shown in Fig. 9. AlexNet, LeNet5, and VGG16 extended sample experiments. The training sample was increased to 3000 images per class using a generative-competitive network. The sample has 9,000 images in total. The training sample was 80/20 divided. Three architectures were tested on computers: AlexNet, LeNet5, and VGG16. The same training parameters were used for all networks – the Adam optimizer (1e–4), the number of epochs was 10, and the batch size was 100. The results of the experiments are as follows: AlexNet classification accuracy was 85%, LeNet5 – 90%, and VGG16 – 91%.

The ROC curves for these architectures are shown in Fig. 10–12. Experiments on extended samples for the developed CNN. The number of images per class and training parameters was similar to those for experiments with classical architectures. As a result of the experiments, the classification accuracy was 96%. The ROC curve is shown in Fig. 13.

A comparison of neural network architectures is shown in Table 2.
6 DISCUSSION

The limitation of using histological images to diagnose different forms of breast cancer is the limited initial sample size.

According to studies of CNN applications, every CNN model performs better on larger datasets. Large datasets offer a more diversified set of samples to train on, allowing the model to generalize the data more effectively. CNNs learn a broader range of characteristics and patterns when trained on a huge dataset, making them more resistant to variations in the data. Overtraining is more likely with smaller datasets. Simultaneously, the model learns to recall rather than generalize training data. Because of the higher variety in the data, large datasets make retraining a model challenging. The model has the capacity to handle large datasets. In large datasets, the model has the ability to learn complex and hierarchical features. This is especially important for deep CNNs like VGG16, which have many layers. Large datasets allow these models to extract meaningful features at different levels of abstraction. With a large dataset, the optimization process (e.g., gradient descent) usually works more efficiently.

GAN was used to expand the initial sample. The initial original sample contained the following number of images per class: G1 – 9 images, G2 – 100 images, and G3 – 76 images. Based on affine distortions, the sample is expanded to 100 images in each class. 7200 artificial images were generated using GAN. The GAN network has been trained for 11 hours. At the same time, it was possible to obtain the value of IS metrics – 3.024, and FID – 42.552.

For the three architectures of AlexNet, LeNet5, and VGG16, the following results were obtained for the initial samples: AlexNet classification accuracy was 74%, LeNet5 classification accuracy was 57%, and VGG16 classification accuracy was 70%. On the expanded sample, the results of the experiments are as follows: AlexNet classification accuracy was 85%, LeNet5 – 90%, and VGG16 – 91%.

The developed CNN architecture showed an accuracy of 96% on extended samples.

The developed program can be used in CAD. This will allow accurate histological image classification when making a diagnosis.

CONCLUSIONS

The problem of histological image classification to identify different breast cancer types was examined in this article. The authors used CNN in the research study. Low classification accuracy was revealed by analysis of known CNN based on original samples. The initial GAN-based image sample was enlarged for this purpose. On extended samples, AlexNet, LeNet5, and VGG16 showed a significant increase in classification accuracy.

In comparison to the well-known AlexNet, LeNet5, and VGG16 architectures, the newly developed CNN architecture demonstrated higher classification accuracy.

Scalability, dependability, and cost-effectiveness were provided for model training and classification using AWS SageMaker and AWS S3. Separating the training and prediction steps into two files (train.py and predict.py) ensured modularity and ease of maintenance.

With a user-friendly and simple interface, the CLI tool (predict.py) simplified the prediction process.

The cloud architecture ensures that the trained model is stored in a safe and accessible place and can be used for prediction in any application.

The architecture of the software system allows efficient training of models and classification of new data in a cloud environment, making it suitable for scalable machine learning applications.
The scientific novelty of the article is the development of a method of small initial sample image generation and classification.

The practical value of the article is the development of software for image generation and classification, which can be used as a separate module in CAD.

Prospects for further research are the investigation of methods of automatic design of convolutional networks and generative-competitive networks and the development of CADs for automatic diagnosis in oncology.

REFERENCES

36. Lovkin V. M., Subbotin S. A., Olinyik A. O. et al. Method and software component model for skin disease diagnosis, Radio Electronics, Computer Science, Control, 2023, N°1, P. 40. DOI: 10.15588/1607-3274-2023-1-4
МЕТОД І ПРОГРАМНИЙ ЗАСІБ ГЕНЕРУВАННЯ І КЛАСИФІКАЦІЇ БІОМЕДИЧНИХ ЗОБРАЖЕНЬ НА ОСНОВІ ГЛІБОКИХ МЕРЕЖ ЇЗ МАЛОЮ ВИБІРКОЮ

Березький О. М. – д-р техн. наук, професор, професор кафедри комп’ютерної інженерії Західноукраїнського національного університету, Тернопіль, Україна.
Лящинський П. Б. – асістрент кафедри комп’ютерної інженерії Західноукраїнського національного університету, Тернопіль, Україна.
Пісун О. Й. – канд. техн. наук, доцент, доцент кафедри комп’ютерної інженерії Західноукраїнського національного університету, Тернопіль, Україна.
Мельник Г. М. – канд. техн. наук, доцент кафедри комп’ютерної інженерії Західноукраїнського національного університету, Тернопіль, Україна.

АНОТАЦІЯ
Актуальність. У статті досліджено проблему класифікації гістологічних зображень раку молочної залози. Актуальність проблеми пояснюється широкою розповсюдженою хворобою – раку молочної залози. Автоматизацію процесу постановки діагнозу дає можливість зменшити час і виключити суб’єктивний фактор. Результати дослідження можуть бути використані в CAD в онкології.
Мета. У роботі розроблено метод генерування і класифікації гістологічних зображень. Цей метод базується на основі використання CNN і GAN. Для підвищення точності класифікації початкову вибірку зображення згенеровано за допомогою GAN.
Результати. Комп’ютерна інженерія розроблено метод генерування і класифікації зображень проводилася на основі dataset, який знаходиться платформі Zenodo. Зображення отримано на основі смугової мікроскопії. Dataset містить три класи G1, G2, G3 гістологічних зображень раку молочної залози. На основі розробленого методу отримано точність класифікації зображень 96%. Це краща точність класифікації порівняно з існуючими моделями типу AlexNet, LeNet5 і VGG16. Програмний модуль може бути інтегрований у CAD.
Висновки. Розроблений метод генерування і класифікації зображень є основою програмного модуля. Програмний модуль може бути інтегрований у CAD.
КЛЮЧОВІ СЛОВА: система автоматизованої діагностики, рак молочної залози, глибокі нейронні мережі, згорткові нейронні мережі.

ЛІТЕРАТУРА

© Berezsky O. M., Liashchynskyi P. B., Pitsun O. Y., Melynk G. M., 2023
DOI 10.15588/1607-3274-2023-4-8

