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ABSTRACT
Context. In this research, we explore an ensemble of metamodels that utilizes multivariate signals to generate forecasts. The en-
semble includes various traditional forecasting models such as multivariate regression, exponential smoothing, ARIMAX, as well as
nonlinear structures based on artificial neural networks, ranging from simple feedforward networks to deep architectures like LSTM

and transformers.

Objective. A goal of this research is to develop an effective method for combining forecasts from multiple models forming
metamodels to create a unified forecast that surpasses the accuracy of individual models. We are aimed to investigate the effective-
ness of the proposed ensemble in the context of forecasting tasks with nonstationary signals.

Method. The proposed ensemble of metamodels employs the method of Lagrange multipliers to estimate the parameters of the
metamodel. The Kuhn-Tucker system of equations is solved to obtain unbiased estimates using the least squares method. Addition-
ally, we introduce a recurrent form of the least squares algorithm for adaptive processing of nonstationary signals.

Results. The evaluation of the proposed ensemble method is conducted on a dataset of time series. Metamodels formed by com-
bining various individual models demonstrate improved forecast accuracy compared to individual models. The approach shows ef-
fectiveness in capturing nonstationary patterns and enhancing overall forecasting accuracy.

Conclusions. The ensemble of metamodels, which utilizes multivariate signals for forecast generation, offers a promising ap-
proach to achieve better forecasting accuracy. By combining diverse models, the ensemble exhibits robustness to nonstationarity and

improves the reliability of forecasts.

KEYWORDS: ensemble, metamodels, boosting, bagging, multivariate signals, nonstationarity, forecasting.

ABBREVIATIONS

MP — Multi-dimensional Predictors;

ARIMAX — AutoRegressive Integrated Moving Aver-
age with eXogenous inputs;

LSTM - Long Short-Term Memory;

RF — Random Forest;

NB — Naive Bayes;

SVM — Support Vector Machine;

LR — Logistic Regression;

AdaBoost — Adaptive Boosting;

AUC — Area Under the Curve;

DT — Decision Tree;

MIMO — Multiple-Input Multiple-Output;

LSTM — Long Short-Term Memory;

SMOTE - Synthetic Minority Over-sampling Tech-
nique;

ADASYN — Adaptive Synthetic Sampling.

NOMENCLATURE
x(t) — multivariate signal with time index t;
MP; — member of the ensemble of models with index
J
x;(T) — estimate obtained at the output of member

MP; of the ensemble;

x*(r) — combined forecast of the metamodel at time

T
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¢ — metamodel parameters, a vector of estimates
forming the combined forecast;

A — Lagrange multiplier used in optimization;

D(T) — matrix used for estimating metamo del pa-
rameters;

d(T) — vector that incorporates estimates at the pre-
vious time step;

o— regularization parameter that
method’s operation for nonstationary data;

s— size of the “sliding window”, determining the
number of recent observations considered in the estima-
tion;

ensures the

V2 (T") — squared error of the estimate at the last time
step.

INTRODUCTION
Forecasting multivariate nonstationary signals is a
relevant and challenging problem in various domains. To
achieve reliable and accurate results, different forecasting
models such as ARIMAX, LSTM, SVM, and many others
are used.

In this work, we consider the ensemble of metamodels
method for forecasting, which is based on combining
forecasts from different forecasting models. The meta-
model helps to merge information from various models to
improve forecasting accuracy and ensure more robust

results.
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The object of study is an ensemble of multivariate
predictors used for forecasting multivariate signals.

The subject of study is the ensemble of metamodels
method for combining forecasts from different forecasting
models to improve forecasting accuracy based on nonsta-
tionary signals.

The purpose of the work of this research is to de-
velop and evaluate the effective method based on ensem-
ble of metamodels for forecasting multivariate nonsta-
tionary signals. We aim to investigate how combining
forecasts from individual models can enhance the quality
of forecasting and provide more reliable results.

Forecasting tasks based on multivariate nonstationary
signals find broad applications in various fields, including
finance, economics, medicine, and engineering. An effi-
cient ensemble of metamodels can become a powerful
tool for addressing these tasks and ensuring accurate and
reliable forecasts.

1 PROBLEM STATEMENT
Let’s consider an ensemble of multivariate predictors,
MP1,..MPj,..MPh, each of which processes the same

multivariate signal x(t)=(x; (1)...x; (r)...)T,r =1,2,...,T.
The estimate that appears at the output of each member of
the ensemble will be denoted as fcj (1),j=12...h It is

worth noting that traditional forecasting models based on
multivariate regression, exponential smoothing, ARI-
MAXs-MIMO models (Box-Jenkins), as well as nonlinear
structures based on artificial neural networks, ranging
from simple shallow recurrent networks to deep architec-
tures like LSTM or transformers, can be used as members
of the ensemble.

The estimates Xx j(t) are input to the metamodel,

which forms the combined forecast of the metamodel:
* h ~ ~
x (1)= ijlcjxj (1) = x(1)c,
here
c= (cl 9005 cj 5o Chy )T’ )’(\:(T) = ()21 (T),..,)%j (T),..,)’eh (T)) -
—(nxh) — matrix formed by the signals at the outputs of

individual models, where metamodel parameters satisfy
the condition of unbiasedness:

h _ T _
Zj:lcj—c E, =1,

here E;, —(hx1) —is a vector formed by ones.

To solve this problem, methods of Lagrange
multipliers are used, leading to the estimation of the
metamodel parameters ¢ defined in a recursive form. The
case where estimation is carried out based on a “sliding
window” of size s is also considered, allowing for
consideration of only the last s observations from the
training dataset. To choose the best metamodel, a second-
level metamodel is introduced, which processes the
outputs of the first-level metamodels using a meta-
algorithm.
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Thus, the formal mathematical formulation of the
problem involves defining an ensemble of predictors,
computing estimates x;(t) for each member of the

. . *
ensemble, constructing a combined forecast x (1),

determining the parameters of the metamodel ¢ using the
method of Lagrange multipliers, and the ability to work
with different “sliding window” sizes and second-level
metamodels for selecting the optimal solution.

2 REVIEW OF THE LITERATURE

This approach has gained the most popularity in clas-
sification tasks, such as image recognition, where the
AdaBoost algorithm and its various modifications [1-8]
are very popular. The underlying idea of this algorithm is
stacked generalization, where the results of each member
of the ensemble (stack) are combined within a meta-
model, whose parameters are tuned using metalearning
procedures. Typically, this involves weighted averaging,
where each member of the ensemble (committee) is as-
signed a weight obtained through optimization of the
adopted learning criterion.

The foundation of AdaBoost lies in the ideas of
Bayesian estimation, logistic regression, and support vec-
tor machines. Interestingly, these ideas also form the basis
of several artificial neural networks, where ensemble ap-
proaches [9—11] are also utilized to obtain optimal fore-
casts. In this case, weights for each member of the en-
semble are estimated using an optimization procedure
implemented in batch mode, making the use of known
approaches for solving Data Stream Mining tasks practi-
cally impossible. Recurrent procedures for metamodel
parameter tuning were introduced in [12, 13], generaliz-
ing the output signals of predictor neural networks based
on the optimization of the standard least squares criterion
under certain constraints. Although these procedures are
designed for online evaluation, they are not adapted to
work with nonstationary time series, where parameters
change unpredictably at any moment.

Therefore, it is worthwhile to introduce adaptive re-
current metalearning procedures for a generalizing meta-
model that combines the output signals of a neural predic-
tor ensemble, each of which can have its own architecture
and its own algorithm for tuning-learning its synaptic
weights.

3 MATERIALS AND METHODS
Metamodel parameters (vector of estimates c) can be
determined using the classical method of Lagrange multi-
pliers, for which the Lagrange function is introduced:

L(e,n) =Sp T (W (1) + M’ Ep-1)=
=Sp(X (1)~ X(1) E,, ® )" (X(T) - X(T)E,, ®c)+
+(c! Ep-1)=

> @ -5 + o @E; -1,
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where
X (1)
x(T)=| x" () |,
x(T)
M 2 )
D=5 () H@© . %@ |
) @ .. T

V(T)=X(T)-X(T) E,, ®c.

— the matrix of errors is the training sample,
E,, —(nxn) is the identity matrix, ® — denotes the ten-
sor product, Sp(e) — denotes the trace of a matrix, A —
Lagrange multiplier.

Solving the Kuhn-Tucker system of equations leads to
the estimate [12]:

* 1—E£ C*
=c +D(T) —————E,,
c=c (T) ED(OE, ) (1)
where
D(T) = (X * (i), 2)
=1

¢ =DM & (1)x(r) = D(T)d(T)

=1

the regular estimate of the standard least squares method.
In [13], the optimality of this estimate is proven over
the entire training sample, meaning that the output of the

metamodels x*(r), does not compromise accuracy com-
pared to any of the individual ensemble models x (1) in

the interval from t=1 to t="T.
Equations (1) and (2) can be easily rewritten in a re-
cursive form similar to the recursive least squares method:

D(T+)=D(T) - D(T) 3T (T+1)

X(Epy + 2T +DD(T) x" (T +1))7"
<H(T+1)D(T),
d(T+)=d(T)+&T (T+1) X(T+1), 3)

¢ (TH)=D(T+)d(T+),
e(TH)=c" (T+1)+D(T+1) x
<(EID(T+1E,) '1-El " (T+)E,,.
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The use of the least squares criterion is associated
with the assumption of stationarity in the processed se-
quences, as all observations from x(1) to x(7') are as-

signed equal weights. Since we assume non-stationarity in
the controlled signals, including abrupt changes in the
forecasting model, the estimates based on the least
squares method are found to be inefficient. In such situa-
tions, more suitable predictors are those synthesized using
“sliding window” estimation procedures that consider not
the entire training sample but only the last s (window
size) observations from x(7' —s+1) to x(7) When the

value x(T +1) arrives, the observation x(7 —s+1) is ex-

cluded from consideration, and the estimate is calculated
over the interval from x(7 —s+2) to x(7 +1). In this

case, the procedure takes the form:

D(T+)=D(T)- D(T) T (T+1)x
X (B tR(TH)D(T) 2 (T+1)™ K(T+)D(T),
DS (TH)=D(T+)+D(T+1) 3T (T+S ~1)x
X (Epy — X(T+S ~1)D(T+) 37 (T+5 1))
xx(T+S —1)D(T+1), 4)
d3 (T+)=d(T)+3T (T+1) 3(T+1) -
— (TS =) R(T+S - 1),
¢S (1)
_nS s
=D” (T+) d> (TH).
An interesting situation arises when the estimation is
performed under the assumption of s=1, meaning that the

optimization criterion (learning) is based on the square
error of estimation at the last observation timestep.

V2 (T)x(T) - 3T .

In this case, the procedures (1), (2), and (4) take on a
simple form:

D(T+)=(zT (T+) H(T+)+E;,) 7",

d* (T+)=8T (T+1) 2(T+),

¢ S(E+)=D* (T+]) d* (T+1), 5)
¢ (TH)=C"* (T+1)+D" (T+1)x
< (EI D(T+1)E, )"t 0 -EF ™ (1+) E),

This is a generalization for the case under considera-
tion, an adaptive identification algorithm of Kachmazh-
Uidro-Hoff, where o >0 is a regularization parameter

that ensures the possibility of inversion during the calcu-
lation of D(T +1).

The most challenging issue here remains the choice of
the “window” size, s, which is usually done based on
purely empirical considerations since the nature of possi-
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ble changes in the controlled signal x(t) is unknown a

priori. In this case, it is advisable to use not a single
metamodel but a set of such structures built at different
values of the “sliding window”.

To select the best metamodel from such a set, it is ap-
propriate to introduce metamodels of the second level that
process the outputs of first-level metamodels using the
metaalgorithm (3), covering the entire training sample at
t=12,...T,T+1,...

The method of constructing an ensemble of meta-
models that use multidimensional signals for forecasting
can be presented in the following steps 1-9 (Figure 1):

Step 1: Data Collection: Gather a large dataset of mul-
tidimensional data to be used in the analysis.

Step 2: Input Data Formation: The outputs (predic-
tions) of each predictor are used as inputs for the meta-
model.

Step 3: Data Processing: Each of the multidimensional
predictors in the ensemble processes the same input data
in various ways. Each predictor may include different
machine learning methods, such as neural networks, sup-
port vector machines, gradient boosting, etc.

Step 4: Sliding Window Evaluation of Random Val-
ues: Model parameters are re-estimated for each new data
point using only the last s observations. This ensures that
the model is continuously updated with the most recent
data.

Step 5: Metamodel Synthesis: Develop metamodels
that use the method of Lagrange multipliers to determine
their parameters. This means that the metamodel utilizes
weights from different forecasts to form a single forecast.
The weights of these forecasts are determined through the
optimization of the Lagrange function.
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Figure 1 — Structural and Logical Diagram of the Method
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Step 6: Base Results Formation: Metamodel estimates
are stored in a database for further analysis.

Step 7: Synthesis of Second-level Metamodel: De-
velop another metamodel that processes the outputs of the
first-level metamodels. This can help gather information
from different metamodels and make a more accurate
forecast.

Step 8: Selection of the Best Metamodel: The second-
level metamodel is used to select the best metamodel
among the ensemble based on their performances.

Step 9: Forecasting: The final metamodel is used to
produce forecasts based on the input data. This allows
using a single, optimally weighted forecast instead of in-
dependent forecasts from each predictor.

This method employs the model ensembles to work
with multidimensional data and produce forecasts based
on a combination of predictions from each predictor.

5 EXPERIMENTS

In the previous study [14], an intelligent method for
identifying fraudulent websites was proposed. This
method was implemented using various machine learning
classification methods, including Logistic Regression
(LR), Random Forest (RF), K-Nearest Neighbors (KNN),
Naive Bayes (NB), Support Vector Machine (SVM), and
Decision Tree (DT). Additionally, each classification
method was modeled using different approaches, includ-

ing addressing imbalanced data, undersampling, over-
sampling, SMOTE, and ADASYN.

5 RESULTS

The method was applied to a dataset of websites oper-
ating in Ukraine, consisting of 67 sites, out of which 45%
were identified as fraudulent. The results showed that the
DTADASYN and RF Oversampling models achieved the
highest accuracy (1.0), AUC (1.0), precision (1.0), recall
(1.0), and F1-score (1.0).

Using the same intelligent method for an updated
dataset consisting of 1039 websites, of which 68% were
identified as fraudulent, slightly different results were
obtained (Table 1). The SVM Undersampling model
showed an accuracy of 0.93, AUC of 0.87, precision of
0.88, recall of 0.78, and F1-score of 0.82. The KNN Un-
dersampling model demonstrated an accuracy of 0.90,
AUC of 0.94, precision of 0.69, recall of 1.0, and F1-
score of 0.82. These results indicate that although accu-
racy and other metrics may vary depending on the dataset
and methods used, the proposed intelligent method still
achieves high accuracy in identifying fraudulent websites.

The proposed ensemble metamodel, utilizing multi-
dimensional signals for forecasting, was implemented. In
this case, the metamodel was constructed based on the
predictions of logistic regression (LR), decision tree (DT),
K-nearest neighbors (KNN), support vector machine
(SVM), random forest (RF), and naive Bayes (NB) mod-
els, which were selected from the previous study [14].

Table 1 — Modeling Results without Metamodel for the New Dataset

Model Accuracy Test

1 LR Undersampling 0.539394 0950000
2 LR Cversampling 0.939394  0.850000
3 LR SMOTE 0.539394  0.850000
5 DT Undersampling 0.539394 0950000
10 KMM Oversampling 0.939394  0.950000
" KMNM SMOTE 0.539394  0.950000
12 SVM imbalance 0.539394  0.850000
13  SVM Undersampling 0.939394  0.950000
14 SVM Cversampling 0.539394 0950000
15 SWM SMOTE 0.939394 0250000
16 RF imbalance 0.539394 0950000
17 RF Undersampling 0.539394 0950000
18 RF Oversampling 0.938394  0.950000
19 RF SMOTE 0.539394 0950000
22 ME Oversampling 0.939394  0.930000
0 LR imbalance 0.908091  0.925000
8 KNN imbalance 0.909031 0925000
20 ME imbalance 0.902091  0.925000
21 NB Undersampling 0.9089091 0925000
23 NE SMOTE 0.908091 0525000
4 DT imbalance 0.908091 0.911538
7 DT SMOTE 0.908091 0911538
9  KMN Undersampling 0.909091 0.584615
6 DT Cversampling 0.8787858 0.886538
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suc_Test PrecisionScore_Test

Recallscore Test FlScore Test

0.666667 1.000000 0828571
0.866667 1.000000 0828571
0.666667 1.000000 0828571
0.666667 1.000000 0528571
0.866667 1.000000 0.92&5T1
0.866667 1.000000 0828571
0.866667 1.000000 0828571
0.568667 1.000000 0.92&5T1
0.666667 1.000000 0528571
0.86666T 1.000000 0828571
0.866667 1.000000 0828571
0.666667 1.000000 0528571
0.866667 1.000000 0.9285T1
0.666667 1.000000 0528571
0.866667 1.000000 0.828571
0.812300 1.000000 0.896552
0.812500 1.000000 0896552
0.812500 1.000000 0.896552
0.812500 1.000000 0896552
0.812500 1.000000 0896552
0.857143 0.923077 0883589
0.857143 0.923077 0883589
1.000000 0.769231 0.869565
0.800000 0.923077 0857143
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The metamodel was built using AdaBoostClassifier,
an adaptive boosting algorithm that combines several
weak models to create a strong one.

The results of the metamodel were as follows (Fig. 3):

— Accuracy: 0.98. This indicates that the metamodel
correctly classified 98% of the websites.

— Recall: For class 0 (non-fraudulent websites), it was
0.97, and for class 1 (fraudulent websites), it was 1.00.
This means that the metamodel identified 97% of non-
fraudulent websites and 100% of fraudulent websites.

— F1-score: For class 0, it was 0.98, and for class 1, it
was 0.95. The Fl-score is the harmonic mean between
precision and recall, providing an overall evaluation of
the model.

These results demonstrate improvement compared to
the previous individual models trained separately. The
metamodel delivers more accurate and consistent website
classification, making it an effective tool for detecting
fraudulent websites.

Next, we examine an example of using the metamodel
to forecast the label for the 16th observation in the test
dataset (Figure 3). Firstly, we obtain this observation and
its true label. The true label for this observation is 0, indi-
cating that the website is not fraudulent. Then, we get the
predicted labels for this observation from each model,
including logistic regression (LR), decision tree (DT), K-
nearest neighbors (KNN), support vector machine (SVM),
random forest (RF), and naive Bayes (NB) models.

Meta-Model Performance:

precision recall fl-score

@ 1.8 a.97 8.98

1 @.9%@ 1.80 2.95

accuracy .98
macro avg 8.95 8.98 .97
weighted avg 9.98 2.98 ©.98

Figure 2 — Metamodeling Results

True label: @
Predicted label from each model: [8, 1, 8, &, 1, 1,
Predicted label from meta-model: @

The predicted labels from these models range from 0
to 1, reflecting different predictions from different mod-
els. Finally, we obtain the predicted label from the meta-
model for this observation. The metamodel predicts a
label of 0, which aligns with the true label. This demon-
strates that the metamodel can correctly classify this ob-
servation, despite varying predictions from individual
models. This result underscores the effectiveness of the
metamodel in combining forecasts from different models
to improve overall prediction accuracy.

The metamodel exhibited high accuracy in classifying
websites, achieving an accuracy of 0.98. This means that
the metamodel correctly classified 98% of the websites in
the test dataset. Additionally, the metamodel demon-
strated high precision (0.95 for class 0 and 0.90 for class
1), recall (0.97 for class 0 and 1.00 for class 1), and F1-
score (0.98 for class 0 and 0.95 for class 1). These metrics
indicate that the metamodel performed well in classifying
both fraudulent and non-fraudulent websites. The exam-
ple prediction for the 16th observation also showed that
the metamodel can accurately classify websites, despite
diverse predictions from individual models. This confirms
that the metamodel can effectively leverage predictions
from different models to enhance the overall prediction
accuracy.

Thus, these results confirm that using a metamodel
can be an effective approach to improve the accuracy of
classification in fraud detection tasks for websites.

1, 1,0, 1,0, 8, 0, 8, @, 0, e, 1,0,0,8e,0,a8,8]

Figure 3 — Example of Applying the Metamodel to the 16th Row of the Dataset

6 DISCUSSION

In this study, we investigated the ensemble metamodel
approach for forecasting multi-dimensional non-stationary
signals. The proposed approach allows us to combine
predictions from different forecasting models to obtain
more accurate and reliable forecasts based on multiple
sources of information.

Firstly, we conducted a literature review and explored
various approaches to forecasting multi-dimensional non-
stationary signals. Traditional models such as ARIMAX
and exponential smoothing may be insufficiently effective
in non-stationary conditions. On the other hand, neural
networks such as LSTM and transformers exhibit high
adaptability and the ability to work with changing condi-
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tions, making them attractive candidates for use in meta-
model ensembles.

Next, we performed experiments with different fore-
casting models, such as ARIMAX, LSTM, SVM, Ran-
dom Forest, etc., and collected their forecasts as input
data for the metamodel. Using the method of Lagrange
multipliers, we found the optimal parameters for the
metamodel to achieve the best forecasting accuracy.

The results of the experiments showed that the pro-
posed ensemble of metamodels indeed helps improve
forecast accuracy. The metamodel based on combined
forecasts from different models demonstrated higher ac-
curacy compared to individual models. This approach
allows for balancing forecasts and reducing the risk of
overfitting or underfitting.
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Moreover, we compared various approaches to syn-
thesizing the second-level metamodel and found that util-
izing the adaptive Kachmazh-Widrow-Hoff (KWH) iden-
tification algorithm helps provide more accurate forecasts
based on the forecasts from the first-level models.

Overall, the research results confirmed the effective-
ness of the ensemble metamodel method for forecasting
multi-dimensional non-stationary signals. Using the en-
semble approach helps achieve more accurate results.

CONCLUSIONS

This research addressed the problem of adaptive fore-
casting of multi-dimensional non-stationary sequences,
considering the prior uncertainty regarding their structure,
through an ensemble approach. We developed the ensem-
ble metamodel method, where each ensemble member
processes predictions from different first-level forecasting
models. Then, by collecting the results of individual mod-
els’ forecasts, we applied a second-level metamodel to
obtain the optimal forecast.

The scientific novelty of this study lies in the devel-
opment and application of ensemble metamodels for fore-
casting multi-dimensional non-stationary signals. The use
of ensembles allows obtaining more accurate and reliable
forecasts based on multiple sources of information, reduc-
ing the impact of limitations of individual models.

The practical significance of our research is that the
proposed approach can be applied in various domains
where forecasting multi-dimensional non-stationary sig-
nals plays a crucial role. For example, this approach can
be used in financial analysis, weather forecasting, medical
diagnostics, and other fields where forecast accuracy and
reliability are essential.

The conducted research confirms that the proposed
ensemble metamodel has high accuracy in detecting
fraudulent websites. The metamodel demonstrated high
precision in website classification, correctly classifying
98% of websites in the test dataset. This demonstrates that
the proposed method can be an effective tool for identify-
ing fraudulent websites and can find practical applications
in the field of cybersecurity and combating online fraudu-
lent activities.

Regarding the prospects of this research, further im-
provement of the method can be achieved by expanding
the set of first-level forecasting models and using more
sophisticated learning algorithms for the second-level
metmodel. Additionally, this approach can be applied to
other types of non-stationary signals and forecasting tasks
in various domains of science and technology.
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AHCAMBJIb AJALITUBHUX NPEJIUKTOPIB JJIS1 BATATOBUMIPHUX HECTALIIOHAPHUX
MOCJIJOBHOCTEM TA MO0 OHJIAMH-HABYAHHS

Bopsinebkmii €.B. — 1-p TexH. Hayk, mpodecop, npodecop Kadeapu LITyYHOrO iHTENeKTy, XapKiBChbKHH Hal[iOHATbHHUN
YHIBEPCHUTET paaioeseKTpoHiku, XapkiB, YKpaiHa.

Jlinanina-I'onyapenko X. B. — kxaHx. TexH. HayK, AOIEHT, AOLUEHT Kadenpu iH(GOPMAaLifHO-KOMII IOTEPHUX CHCTEM Ta
yHpaBIiHHA, 3aXiTHOYKpPaiHCHKUH HalliOHATBHUI yHIBepcUTeT, TepHOIib, YKpaiHa.

Cauenko A. O. — 1-p TexH. HayK, npodecop, aupekrop HaykoBO-JOCTITHOrO iHCTUTYTY IHTEJICKTYaIbHUX KOMII FOTCPHUX CHC-
TeM, 3axiTHOyKpalHChKHI HaIllOHAIBHMH yHIBepcHuTeT, TepHomib, YKpaiHa.

AHOTAIIA

AKTYaJbHICTb. Y JaHOMY JTOCIIDKCHHI MU PO3IJISIAEMO aHCAaMOJIb METaMOICIICH, IKUil BAKOPUCTOBYE OAraTOBUMIPHI CHUTHAJIH
JUIsL TeHepaulii IpOrHo3iB. AHCaMONb BKJIIOYAaE pi3HI TpagulliiiHi MoJeni HpPOrHO3yBaHHs, Taki sSK OaraToBHMipHa perpecis,
eKcroHeHMiiHe 3raamkyBantst, ARIMAX, a Takox HeNiHiiHI CTPYKTYpH Ha OCHOBI LITYYHUX HEHPOHHHX MEPEX, Bil POCTUX MO-
BEPXHEBUX PEKYPEHTHHX MEPExX 10 MHOOKUX apxiTekTyp, Takux sik LSTM i tpanchopmepu.

Merta po6oTu. OCHOBHOIO METOIO LIBOTO JOCTIIKEHHS € PO3poOKa €()EeKTUBHOTO METOAY MMOEAHAHHS MPOTHO3IB IEKITBKOX MO-
JeNIei, 1110 YTBOPIOIOTh METaMOJEIi, Ul CTBOPEHHS €JMHOTO IPOTHO3Y, KU MEPEBUIIYE TOUHICTh OKPEMHUX MoJeneil. Mu mparte-
MO JIOCTIUTH e(hEeKTHBHICTh 3alPOIIOHOBAHOTO aHCAMOJIF0 B KOHTEKCTI 3a/1a4y POTHO3yBaHHS 3 HECTAlliOHAPHUMHU CHUTHAJIAMH.

Metoa. 3amponoHOBaHHH aHCaMOIb MeTamojeleil BHKOPUCTOBYE METOJ MHOXKHHUKIB Jlarpamka [Jisi OLIHKM HapaMeTpiB
metamozeni. Cucrema piBHsHb KyHa-Takkepa po3B’si3yeTbes A1 OTPUMaHHS HE3MIIEHNUX OLIHOK 32 JJOIOMOI'OI0 METOXy HaiMeH-
mwux kBaapatiB. KpiM TOro, Md BBOAMMO PEKypeHTHY (GOpMY alrOpUTMY HailMEHIIHMX KBaJpaTiB Ul aJanTHBHOI 0OpOOKH
HeCTaliOHAPHUX CUTHAIIB.

PesyabraTn. OliHKa 3amponoHOBaHOTO aHCAMOJIO METOIy 3IIMCHIOETHCS HA HAOOpi JaHWMX 4YacoBHMX psaiB. Meramonerni,
YTBOpEHI LIIAXOM IIO€AHAHHS PI3HHX OKPEMHX MOJENEH, IEMOHCTPYIOTh IIOKPAIEHY TOYHICTh HPOTHO3Y IOPIBHSHO 3
IHAWBiAyansHUMH MoaessiMu. Ilinxin mposiBise epeKTHBHICTh B YTPHUMaHHI HECTALIOHAPHUX MIAOJIOHIB Ta MOKpAIIECHHI 3arajJbHOT
TOYHOCTI IPOTHO3YBaHHSI.

BucHoBkH. AHCaMOJIb MeTaMOJeIeH, SIKHil BUKOPHCTOBY€ GaraTOBUMIpHi CUTHANH [Uisi GOPMYBaHHS IIPOTHO3iB, IIPOIOHYE Tep-
CNICKTUBHHUHN MiJXiJ JUTs DOCATHEHHS Kpamoi TOYHOCTI mporrodyBaHHs. LIIIsIXoM MOeIHAHHS Pi3HOMaHITHHX Mojesei, aHcaMOIb
MIPOSIBJISIE CTIMKICTB /10 HECTAI[IOHAPHOCTI Ta MOKpaIly€e HaaiiHiCTh IPOTHO3IB.

KJIFOYOBI CJIOBA: ancam6ib, MeTamozeni, OycTiHr, 6erinr, 6araToBUMipHi CUTHAJIM, HECTalliOHAPHICTb, TPOTHO3YBaHHSL.
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