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ABSTRACT 
Context. Autonomous vehicles are becoming increasingly popular, and one of the important modern challenges in their 

development is ensuring their effective navigation in space and movement within designated lanes. This paper examines a method of 
spatial orientation for vehicles using computer vision and artificial neural networks. The research focused on the navigation system 
of an autonomous vehicle, which incorporates the use of modern distributed and parallel computing technologies. 

Objective. The aim of this work is to enhance modern autonomous vehicle navigation algorithms through parallel training of 
artificial neural networks and to determine the optimal combination of technologies and nodes of devices to increase speed and 
enable real-time decision-making capabilities in spatial navigation for autonomous vehicles. 

Method. The research establishes that the utilization of computer vision and neural networks for road lane segmentation proves 
to be an effective method for spatial orientation of autonomous vehicles. For multi-core computing systems, the application of 
parallel programming technology, OpenMP, for neural network training on processors with varying numbers of parallel threads 
increases the algorithm’s execution speed. However, the use of CUDA technology for neural network training on a graphics 
processing unit significantly enhances prediction speeds compared to OpenMP. Additionally, the feasibility of employing PyTorch 
Distributed Data Parallel (DDP) technology for training the neural network across multiple graphics processing units (nodes) 
simultaneously was explored. This approach further improved prediction execution times compared to using a single graphics 
processing unit. 

Results. An algorithm for training and prediction of an artificial neural network was developed using two independent nodes, 
each equipped with separate graphics processing units, and their synchronization for exchanging training results after each epoch, 
employing PyTorch Distributed Data Parallel (DDP) technology. This approach allows for scalable computations across a higher 
number of resources, significantly expediting the model training process. 

Conclusions. The conducted experiments have affirmed the effectiveness of the proposed algorithm, warranting the recommen-
dation of this research for further advancement in autonomous vehicles and enhancement of their navigational capabilities. Notably, 
the research outcomes can find applications in various domains, encompassing automotive manufacturing, logistics, and urban trans-
portation infrastructure. The obtained results are expected to assist future researchers in understanding the most efficient hardware 
and software resources to employ for implementing AI-based navigation systems in autonomous vehicles. Prospects for future inves-
tigations may encompass refining the accuracy of the proposed parallel algorithm without compromising its efficiency metrics. Fur-
thermore, there is potential for experimental exploration of the proposed algorithm in more intricate practical scenarios of diverse 
nature and dimensions. 

KEYWORDS: computer vision, neural networks, navigation methods, CUDA technology, PyTorch DDP technology. 
 

ABBREVIATIONS 
NN is a Neural Network; 
OpenMP is an Open Multi-Processing; 
CUDA is a Compute Unified Device Architecture; 
DDP is a Distributed Data Parallel; 
LiDAR is a Light Detection and Ranging; 
ACO is an Ant Colony Optimization; 
CNN is a Convolutional Neural Network; 
IoT is an Internet of Things; 
FPN is a Feature Pyramid Network; 
CPU is a central processing unit; 
GPU is a graphics processing unit. 

 

NOMENCLATURE 
N  is the number of records in the dataset; 
p  is the cores count; 

1()T  іs an execution time of a sequential algorithm; 

()pT  іs an execution time of a parallel algorithm. 
 

INTRODUCTION 
With the advancement of autonomous vehicles, the 

demand for high-precision navigation systems and 

efficient algorithms is becoming increasingly crucial. 
Optimization and enhancement of existing artificial 
intelligence methods to improve navigation accuracy, 
along with the application of parallel computing to boost 
algorithm speed, have the potential to unlock new 
opportunities and contribute significantly to the 
development of the autonomous transportation 
sector [1, 2]. Algorithm and navigation method 
optimization can contribute to ecological and economic 
development as autonomous vehicles have the potential to 
reduce fuel costs and facilitate efficient infrastructure 
utilization. 

Improvements in navigation algorithms can have a 
positive impact on various sectors, including logistics, 
automated warehouses, and robotics, where precise 
localization and navigation are critically important for 
effective operations [3, 4]. 

Since autonomous vehicles must react to real-time 
road situations, parallel computing helps ensure the swift 
execution of algorithms, which is vital for road safety and 
efficiency [5]. 
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This work investigates the effectiveness of 
parallelizing the training and prediction algorithm of an 
artificial neural network for road lane segmentation across 
various devices: processor, graphics processing unit 
(GPU), and two GPUs simultaneously. Different 
distributed and parallel computing technologies are 
considered, including OpenMP [6], CUDA [7], and 
PyTorch DDP [8]. 

The object of this research is the navigation system 
of an autonomous vehicle, which encompasses various 
contemporary distributed and parallel computing 
technologies. 

The subject of investigation comprises existing 
algorithms utilized for enhancing spatial navigation in 
autonomous vehicles, as well as parallel computing 
technologies aimed at improving the performance of these 
algorithms. 

The purpose of this work is to enhance current 
navigation algorithms for autonomous vehicles in space 
by means of parallel training of artificial neural networks, 
and to determine the optimal combination of technologies 
and devices to increase speed and enable real-time 
decision-making capabilities. 

 
1 PROBLEM STATEMENT 

Let 1{( , )}N
train i i iD x y   be the training dataset, 

where ix  denotes the input data and iy  denotes the cor-

responding ground truth lane segmentation labels for S  

samples, i.e., , 1{ }S
i i s sx x   and , 1{ }S

i i s sy y  , by analogy 

let testD  be the test dataset. 

Suppose   represents the parameters of the artificial 
neural network model, C  represents the configuration 
space, encompassing parameters such as thread counts 
and parallel programming methodologies. 

The functions ( , , )trainJ D C  and ( , , )testJ D C  

quantify the optimization criterion for the training and test 
dataset, encapsulating metrics that measure the efficiency 
of the parallelized algorithm. These metrics include 
aspects such as training duration, and prediction error. 

In summary, the problem is to determine optimal pa-
rameters of the artificial neural network model   and 
configuration space C  that lead to the most efficient 
parallelization of the artificial neural network-based lane 
segmentation on test dataset, so that 

( , , ) min.testJ D C   

 
2 REVIEW OF THE LITERATURE 

During the analysis of scientific papers and sources, a 
list of facts that served as the foundation for this research 
was identified. The first fact is that artificial intelligence 
methods are finding increasing applications in 
autonomous vehicles. This is due to their potential to 
significantly enhance road safety and make vehicle 
control more efficient and comfortable for drivers. 
According to a study, the use of autonomous vehicles 

with a 50% share can reduce the number of road accidents 
by 29% [9]. The second fact is that spatial navigation in 
autonomous vehicles relies on a combination of various 
technologies, including computer vision and artificial 
neural networks [10]. The third fact is that different 
parallel computing technologies are employed for training 
artificial neural networks [11, 12]. Other navigation 
methods for autonomous vehicles that utilize artificial 
intelligence include deep learning and image recognition-
based techniques, such as the use of LiDAR sensors and 
cameras to gather environment data and create a 3D road 
map. This enables the vehicle to determine its location 
and identify surrounding objects [10]. 

Convolutional neural networks are effective when 
working with input data like images, including those from 
autonomous vehicle cameras [13]. Convolutional 
encoder-decoder architectures, on the other hand, are used 
to reduce the dimensionality of images and are often 
employed for image segmentation tasks [14].  

For training neural networks used in autonomous 
vehicles, large datasets are required, particularly images 
of roads and road markings. One way to increase data 
volume is through data augmentation, which involves 
applying random transformations to images, such as 
scaling and rotation [15]. When using neural networks for 
vehicle navigation, factors like changes in lighting and 
atmospheric conditions must be considered. To address 
this, neural network models with additional layers 
responsible for data normalization (Batch Normalization) 
and the introduction of random noise to input data can be 
used [16]. To combine data from different sensors, 
Kalman filters and enhanced versions of these filters can 
be employed [17]. 

In [18], a method for lane boundary detection is pre-
sented, which operates by extracting candidate lane seg-
ments from an image and subsequently selecting the most 
prominent lane using dynamic programming. The authors 
utilize real road videos for experiments, demonstrating the 
effectiveness of their proposed approach. However, this 
method is considered outdated and does not account for 
factors such as changes in lighting and atmospheric condi-
tions.  

In [19], authors propose a hybrid approach based on 
Ant Colony Optimization (ACO) for line detection in 
images, using the Canny edge detection method and 
Hough transform for line extraction. The proposed system 
operates quickly but, as noted by the authors, is confi-
dently applicable only on straight roads.  

In [20], authors address road scene segmentation for 
RGB images using recent advancements in semantic seg-
mentation through convolutional neural networks (CNN) 
and convolutional encoder-decoders. They introduce sev-
eral architecture improvements that balance segmentation 
quality and computational speed. Experimental results 
indicate that their model provides accurate lane predic-
tions in the original image size.. 

In [21], the authors addressed the problem of lane 
detection using an Internet of Things (IoT) system for 
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interaction between different modules, including the car 
module, cloud module, and remote car controller. The 
method for lane detection and tracking is executed 
initially on the car module and then transmitted to the 
cloud module for additional processing. The authors 
achieved a processing speed of approximately 31 ms per 
frame. An explicit drawback of this approach is the 
requirement for the car to be within the cellular network 
coverage area and have access to the internet, which is not 
always guaranteed, particularly on remote highways.  

In [22], the authors utilize deep learning to tackle the 
lane segmentation problem, employing deep 
convolutional neural networks. The system achieves a 
respectable accuracy of 96%, but it requires 132 ms for 
processing a single frame. 

One of the limitations of the previously presented 
algorithm and many others analyzed by us is that authors 
consider training and operating neural networks on a 
single powerful node (video processor) for lane 
segmentation, which can significantly limit the speed of 
learning and predictions of such networks in real-world 
scenarios. Our approach involves multiple independent 
nodes with separate video processors for parallel training 
and prediction, ensuring greater scalability and speed. 
Additionally, our approach utilizes PyTorch DDP 
technology for efficient communication and 
synchronization between nodes.  

In summary, while the literature review reveals 
several promising approaches to lane segmentation in 
autonomous driving, most of them do not explore multi-
node (video processor) training. Our proposed algorithm, 
based on parallel training and prediction on multiple 
independent nodes with separate video processors and 
PyTorch DDP communication, represents significant 
progress in terms of efficiency and scalability. 

 
3 MATERIALS AND METHODS 

To solve image processing tasks, CNNs 
(Convolutional Neural Networks) are widely used, 
including for object segmentation in images [13]. CNN 
consists of a sequence of convolutional and pooling 
layers, allowing the model to automatically identify 
important features of images at different levels.  

Convolutional layers perform the convolution 
operation, which involves moving filters (of varying sizes 
and shapes) over the image to extract different image 
features such as edges, corners, textures, and more. The 
result of convolution is a feature map that highlights 
important regions of the image. Pooling layers reduce the 
size of the feature map and retain the most important 
features from each region, reducing the number of 
network parameters and preventing overfitting. CNNs 
leverage internal pixel relationships within the image for 
effective object segmentation. Operations of this type 
form the basis of convolutional encoders-decoders and 
Feature Pyramid Networks (FPN), which are used to 
address the lane segmentation task in the present study. 

This network was proposed in 2017 with the aim of 
improving the object segmentation process in images. 
FPN (Feature Pyramid Network) consists of several con-
volutional layers that interact with the object in the image 
at different scales [23].  

For the segmentation task, a slightly modified version 
of the FPN network is used, where each FPN level is 
gradually increased using convolutional functions and 
bilinear upscaling until it reaches a scale of 1/4. Then, 
these outputs are added and finally transformed into pixel-
level output [24]. In general, the use of the FPN network 
for segmentation tasks allows for improved accuracy of 
results by optimally utilizing features at different scales of 
image resolution. 

The time complexity of the convolutional encoder-
decoder (FPN network) depends on the size of the input 
and output data, as well as the number of layers and filters 
in the network. In general, the time complexity can be 
expressed as a function of the number of operations re-
quired to process the input data.  

Assuming that the convolutional encoder-decoder has 
L  layers, filters with a size of F F at each layer, and 
input data with a size of D D , then the general time 
complexity of the algorithm is: 

 
2 2( ).O N L D F    

 
Due to the fact that for each layer, the input data is 

processed by filters of size F F , each of size and this 
process is repeated L times (number of layers). 

During parallelization using the CPU, the time 
complexity decreases proportionally to the number of 
physical threads engaged in computing mathematical 
operations during training (for example, calculating 
activation functions), where / .N N THREADS  

During parallelization using a GPU, the time 
complexity decreases proportionally to the number of 
computational units (CUDA cores) on the graphics 
processor and their speed, where / _ .N N GRID SIZE  

During parallelization using GPU and additionally 
PyTorch DDP, the time complexity decreases 
proportionally to the CUDA cores and is further divided 
by the number of nodes with video processors used, since 
the data (N) is shared among them for processing, where 

/ ( _ _ ).N N GRID SIZE N DEVIES   

For training the neural network, the PyTorch library 
was utilized, which achieves parallelization of the training 
process through OpenMP. During the course of the re-
search, the specific directives that were employed and the 
manner in which basic operations are parallelized during 
training were analyzed, specifically: 

– To determine the number of used threads, the func-
tion omp_set _num_ threadsሺሻ  is employed; 

– The #pragma	omp	parallel	for  directive is used 

for parallelizing the ReLU activation function;	
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– The  #pragme	omp	parallel	for	schedule static  

directive is utilized for parallelizing the loop of the Adam 
optimizer; 

– The #pragma	omp	parallel  directive is applied for 

parallelizing the operations of the convolutional layer; 
– Matrix multiplication operations (batch_matmul) are 

parallelized using the 

 #pragma	omp	parallel	for	collapse 2  directive. 

Regarding the parallelization of the algorithm using 
CUDA technology, in our case, we utilized the CUDA 
kernel implementation in PyTorch, which, in turn, 
leverages existing NVIDIA solutions such as CUBLAS 
and CUDNN. 

Since we have a single kernel, PyTorch by default 
employs the following values for constructing the grid: 

 



THREADS _PER _BLOCK 	512;

BLOCKS _PER _SM 	4;
 

 
As a result of parallelizing the algorithm using CUDA 

technology:  
– For parallelizing the operations of the convolutional 

layer, cudnnConvolutionBackwardFilter was used, which 
is a part of CUDNN; 

– For parallelizing pooling operations, we utilize 
cudnnPoolingForward, which is provided with an array of 
tensors; 

– For batch normalization, we employ cudnnBatch-
NormalizationForward and cudnnBatchNormalization-
Backward. 

The PyTorch DistributedDataParallel (DDP) technol-
ogy allows distributing computations across multiple de-
vices, such as servers or GPUs, to accelerate the training 
speed of models. PyTorch DDP employs an asynchronous 
approach to data and computation distribution among 
devices. It utilizes collective communication mechanisms, 
enabling each device to exchange data with others in the 
group. Additionally, PyTorch DDP ensures automatic 
parameter synchronization among devices during training. 
With PyTorch DDP, computations can be distributed 
across multiple servers or nodes, thereby enhancing com-

putational power and reducing model training time. 
Moreover, PyTorch DDP supports automatic scaling of 
computational resources based on demand, facilitating 
efficient utilization of limited resources. DDP follows the 
CUDA algorithm, with the only difference being that the 
dataset is evenly split between two nodes, and the weights 
are synchronized using gradient aggregation at the end of 
each epoch, resulting in a 2x acceleration. 

In the process of training machine learning models, 
input data plays a significant role. The quality and quan-
tity of data can impact the accuracy and performance of 
the model. Therefore, it is crucial to properly select and 
prepare input data for model training.  

One of the most popular applications for creating 
datasets for autonomous driving models is the CARLA 
Simulator [25]. This open-source software allows simulat-
ing urban traffic and autonomous vehicles. CARLA en-
ables the creation of diverse scenarios for model training 
and testing, including simulations of various weather con-
ditions, road traffic, pedestrian behavior, and other objects 
on the road.  

The dataset created using the CARLA Simulator con-
sists of images of road lanes with markings and other road 
elements. Each image is sized 1024x512 pixels and is 
presented in color. The total size of the dataset is 
2.05 GB.  

The images for training are captured by a camera 
mounted on a simulated vehicle. The annotated images 
provide segmentation masks. Each pixel in the annotated 
image is classified as: 

– part of the left lane boundary; 
– part of the right lane boundary; 
– none of the above (background). 
The dataset was intentionally divided into a training 

and validation set: 3075 images for training and 129 for 
validation, along with 3075 and 129 corresponding mask 
images, respectively.  

The challenge associated with this dataset is to train 
the model to accurately predict the segmentation masks 
for the validation dataset (see Fig. 1). 

 

 

 
a b 

Figure 1 – The example of training samples: 
a – original image; b – corresponding image-mask 
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Data augmentation can be used to increase the amount 
of training data and improve the quality of the model [26]. 
For example, images can be altered using techniques such 
as cropping, different positioning, color adjustments, 
resizing, and other transformations. Data augmentation 
can be particularly useful when working with limited 
data. In cases where the dataset lacks sufficient data for a 
specific task, augmentation can create new data by 
manipulating existing examples. This can help prevent 
overfitting, provide a more diverse dataset, and enhance 
the model’s generalization ability.  

One tool for data augmentation is the Python library 
“imgaug”. It offers a variety of functions for image 
transformations, including rotation, scaling, color 
changes, noise addition, and more. Additionally, there are 
other libraries and tools available for data augmentation 
that can be used to enhance the quality of both data and 
machine learning models. 

The developed algorithm performs data augmentation 
before training the network to enhance the accuracy of 
network training (an example of this is illustrated in 
Figure 2). The operations used in this sequence are as 
follows: 

– ShiftScaleRotate: shifts, scales, and rotates the 
image with random parameters. 

– IAAAdditiveGaussianNoise: adds Gaussian noise 
to the image with a probability of 0.2. 

– CLAHE: applies the Contrast Limited Adaptive 
Histogram Equalization algorithm to enhance image 
contrast. 

– RandomBrightness: changes the brightness of the 
image by a random amount. 

– RandomGamma: adjusts the gamma of the image 
to a random value. 

– IAASharpen: sharpens the image. 
– Blur: applies blurring to the image to reduce 

sharpness. 
– MotionBlur: adds motion blur to the image. 
– RandomContrast: changes the contrast of the 

image by a random amount. 
– HueSaturationValue: changes the hue and 

saturation of the image to random values. 
After applying this sequence of operations, the images 

will slightly differ from each other, which allowed us to 
improve the model’s performance on the validation data-
set. 

Step-by-Step Description of the Proposed Algorithm: 
1. Import necessary libraries. 

 
Figure 2 – Resulting augmented input image (left) and corresponding masks (right) 
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2. Declare the class CarlaLanesDataset with methods 
`__init__`, `__getitem__`, and `__len__`, which will be 
used to retrieve and preprocess the data. 

3. Load the dataset into memory (training and 
validation sets). 

4. Declare methods get_training_augmentation, 
get_validation_augmentation, and get_preprocessing to 
define transformations for data augmentation and 
preprocessing. 

5. Apply augmentation to the loaded training dataset. 
6. Initialize the artificial neural network model object. 
7. Initialize the loss function and optimizer objects. 
8. Parallel execution of the training process: 
– On CPU using OpenMP technology. 
– On GPU using CUDA technology. 
– On multiple GPUs using CUDA technology and 

PyTorch DDP. 
9. Validate on the testing dataset. 
Next step taken is to calculate the theoretical 

acceleration and efficiency metrics for parallel algorithms 
using different numbers of threads when parallel 
computations are performed on the CPU. Additionally, 
we calculated the acceleration metrics for parallel 
algorithms on the GPU. To compute these metrics, we 
used the following formulas: 

 

1( )
( ) ,

( )
p

p

T N
S N

T N
 (1)

 

( )
( ) . p

p
S N

E N
p

 (2)

 

Here, Equation (1) is used to calculate the speedup, 
and Equation (2) – the efficiency. 

First, let’s perform a theoretical speedup estimation 
for various numbers of processors used for training the 
neural network. It should be noted that calculating the 
theoretical speedup for training a model on the GPU is 
analytically impossible since the number of graphic cores 
used during training is unknown. 

2 2
1

2
2 22

(3075) (3075 )
( ) 2,

3075(3075)
2

  
  

    
 

T O L D F
S N

T
O L D F

 

2 2
1

4
2 24

(3075) (3075 )
( ) 4,

3075(3075)
4

  
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    
 
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T
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8
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8

  
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 
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T
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Let’s derive the theoretical estimates of efficiency: 

2
2

( )
( ) 1,

2
 

S N
E N  

4
4

( )
( ) 1,

4
 

S N
E N  

8
8

( )
( ) 1.

8
 

S N
E N  

It should be noted that the provided estimates apply to 
a system with p  processor (core) computational units. 

 

4 EXPERIMENTS 
During the research, the training of the neural network 

was conducted on a CPU using the OpenMP technology. 
For this purpose, a computer with an Intel(R) Xeon(R) 
CPU @ 2.20GHz processor with 2 cores and 4 threads 
was utilized. The network training was carried out over 5 
epochs.  

Parallelization was achieved through the inter-op 
functionality of OpenMP – a specific thread pool is 
allocated for performing individual tasks, such as 
processing one of the input parameters. Inter-op allows us 
to handle micro-operations like pooling, batch operations, 
or matrix multiplication by dividing sub-tasks among 
threads. As a result of inter-op, the tasks of an iteration 
are synchronized, marking its completion.  

The results of training the neural network on the CPU 
using OpenMP technology revealed a test dataset 
accuracy of approximately 96%. The network’s prediction 
results are depicted in Fig. 3. 

 
Figure 3 – The prediction results of the trained neural network. The first column displays images from the test dataset, the middle 

column shows the corresponding ground truth lane masks, and the left column presents the predicted lane masks 
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The training algorithm was also parallelized on GPU 
using CUDA technology. Specifically, the network 
training was conducted on an NVIDIA T4 graphics card, 
a professional GPU released in 2018 designed for high-
performance computing and artificial intelligence 
applications. It is built on the Nvidia Turing architecture 
and boasts 2560 CUDA cores, enabling it to handle large 
datasets and perform tasks such as deep learning and 
machine learning with high precision. The GPU comes 
equipped with 16 gigabytes of fast video memory.  

PyTorch leverages pre-existing NVIDIA cores along 
with CUBLAS and CUDNN frameworks. These cores 
receive requests for executing intra-op tasks from 
CUBLAS and inter-op tasks from the CUDNN 
framework, and then perform these operations using 
available CUDA cores.  

By utilizing PyTorch DDP technology, we were able 
to utilize a second device with a similar GPU module, 
effectively harnessing a total of 5120 CUDA cores for 
training. This parallel execution approach not only allows 
us to combine different GPUs but also avoids being 
restricted to a single physical device [27], which might 
limit the number of GPUs that can be attached. This 
approach enables us to scale the network to any desired 
size. The primary device serves as a synchronization 
point, while other nodes are launched with specified IP 
addresses, and they receive work ranges and necessary 
computation data from the controlling device to perform 
calculations. 

 
5 RESULTS 

In Table 1, we will present the time costs of sequential 
and parallel implementations on CPU using OpenMP 
technology, on GPU with CUDA, and on GPU with 

PyTorch DDP technology. The results of Table 1 are also 
visualized in Fig. 4. 

 
Table 1 – Training Time of Neural Network on CPU, Single 

GPU, and Dual GPUs (in minutes) 

CPU + OpenMP Sequential 
excution 

2 4 8 

GPU + 
CUDA 

2xGPU + 
DDP 

333.5 144 123.6 144.6 9.1 4.8 

 
From Table 1 and Figure 4, it is evident that the 

results of multi-threaded training demonstrate that 
increasing the number of threads up to 4 leads to 
improved performance, followed by a decline at 8 threads. 
Transitioning from 1 to 2 threads doubles the speed due to 
the presence of only 2 physical cores, indicating the 
validity of the obtained results. Moving from 2 to 4 
threads results in a slight speed increase since the number 
of physical cores remains the same, but the logical cores 
provide additional cache memory for the threads. 
However, utilizing 8 threads depletes the available cache 
memory, prompting the processor to reload data to allow 
both threads to share a cache memory, resulting in cache 
miss penalties.  

 
6 DISCUSSION 

Considering the achieved speedup through the use of 
OpenMP technology, it can be concluded that employing 
OpenMP for neural network training on CPU is an 
effective method to reduce training time, especially in 
cases where GPU usage is not feasible.  

Training the neural network using GPU is 36.6 times 
more efficient than sequential CPU training and 14 times 
more efficient than CPU training with 4 threads. With two 
GPUs,  the  training  time  per  epoch   is  reduced  to  4.8 

 
 

Figure 4 – Comparative diagram illustrating the training time dependency of a neural network on CPU with the involvement of 
threads, on a single GPU, and on two GPUs 
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minutes, which is 1.86 times more efficient compared to 
using a single GPU. However, the acceleration is not 
precisely twofold, as each device has independent video 
memory, and we need to synchronize training results 
between the devices in our local network of compute 
nodes after each epoch, which consumes some time. 

 

Table 2 – Actual acceleration metrics of the parallel algorithm 
depending on the number of utilized threads on CPU, as well as 
the parallel algorithm on GPU and on two GPUs simultaneously 

CPU, number of threads 

2 4 8 

GPU 2xGPU 

2.33 2.69 2.31 36.6 69.5 
 

From Table 2, we observe that we achieved higher 
acceleration metrics for two threads compared to the 
theoretical values, which is due to the specifics of the 
Linux kernel scheduler prioritizing tasks with multiple 
active threads, thereby resulting in a single-threaded 
program having significantly lower computational speed 
than expected.  

Since the process with one thread resulted in reduced 
performance, parallel execution with two threads yielded 
higher acceleration metrics.  

When transitioning from 2 to 4 threads, the efficiency 
growth is marginal, as the number of physical cores 
remains unchanged, but the logical cores provide 
additional cache memory for threads.  

With the utilization of 8 threads, the available cache 
memory is exhausted, prompting the processor to reload 
data to allow both threads to use the same cache memory, 
resulting in cache miss penalties.  

Consequently, training the neural network using DDP 
is 69.5 times more efficient than sequential CPU training 
and 25.8 times more efficient than CPU training with 4 
threads. Furthermore, it is 1.86 times more efficient than 
training with a single GPU. 

 
Table 3 – Actual efficiency metrics of the parallel algorithm 

depending on the number of threads used on CPU 
Number of threads 

2 4 8 

1.16 0.67 0.29 

 
Analyzing the results of Table 3, it can be observed 

that the actual efficiency metrics do not align with the 
theoretical ones. This discrepancy arises from the fact that 
the considered CPU has only 2 physical cores, but 4 
logical cores provide additional cache memory for 
threads. However, as the number of threads increases to 8, 
the overhead of supporting these threads becomes 
predominant. Hence, the obtained results are reliable. 

 
 
 

CONCLUSIONS 
The paper analyzes contemporary approaches and 

methods for solving the problem of road lane 
segmentation to localize vehicles. During the analysis of 
scientific articles and sources, a list of facts was identified 
upon which this research is based.  

It has been found that the utilization of modern 
parallel and distributed computing technologies on both 
CPU and GPU can significantly reduce the training time 
of neural networks for addressing the problem outlined in 
this study. 

The scientific novelty of the obtained results lies in 
the introduction of a parallel algorithm for solving the 
road lane segmentation task using multiple GPUs with 
CUDA technology and PyTorch DDP. It has been 
established that the use of DDP expands computational 
capabilities by adding new independent nodes that can 
utilize both GPUs and CPUs. Therefore, this technology 
allows bypassing the limitations of calculations on a 
single device and achieving acceleration by orders of 
magnitude, sacrificing time only for exchanging 
intermediate training results between nodes. 

In this work, based on the proposed algorithm, it was 
possible to achieve approximately a 90% increase in 
acceleration when using training on two nodes with 
NVIDIA T4 GPUs compared to one node. This is around 
25 times faster compared to using the OpenMP 
technology for multi-core computer systems. 

Furthermore, it was found that the time required for 
lane prediction for a single road frame by the model 
reached 19 ms, which is 1.63 times faster than in [20] and 
6 times faster than in [21]. 

The algorithm employed in this study enabled 
achieving an accuracy of 96%, which is similar to [22]. 
However, it can be confidently stated that without 
compromising accuracy, significant acceleration of 
solving the road lane segmentation task for vehicle 
localization was achieved, specifically by a factor of 7. 

The practical significance of the obtained results lies 
in the development of software that implements the 
proposed algorithm, as well as conducting a series of 
numerical experiments aimed at comparing the use of 
modern distributed and parallel computing technologies 
for autonomous vehicle navigation. The findings of this 
research can have a positive impact on road safety, cost-
effectiveness, environmental friendliness, and 
transportation accessibility. Furthermore, they can 
contribute to the advancement of smart cities, integration 
of transportation systems, and enhance the 
competitiveness of automotive manufacturers. This 
research can also provide insights into the most efficient 
hardware and software tools to employ for implementing 
AI-based navigation systems in autonomous vehicles, 
depending on the situation [28]. 

The prospects for further research involve exploring 
the proposed parallel algorithm for a wide range of 
practical tasks. 
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AНОТАЦІЯ 
Актуальність. Автономні автомобілі стають все більш популярними і одним з важливих сучасних завдань розробки та-

ких автомобілів є забезпечення ефективної навігації останніх у просторі та їх руху у своїй виділеній проїзній смузі. У даній 
роботі розглянуто метод орієнтування у просторі автомобіля за допомогою комп’ютерного зору та штучних нейронних ме-
реж. Об’єктом дослідження була система навігації автономного автомобіля, що включає в себе використання сучасних тех-
нологій розподілених та паралельних обчислень. 

Мета роботи – вдосконалення сучасних алгоритмів навігації автономного автомобіля у просторі на основі паралельного 
навчання штучних нейронних мереж та визначення найоптимальнішої комбінації технологій та пристроїв для збільшення 
швидкості та можливості отримання рішення в режимі реального часу. 

Метод. У роботі встановлено, що використання комп’ютерного зору та нейронних мереж для сегментації смуги дорож-
нього руху є ефективним методом орієнтації автономного автомобіля у просторі. При цьому для багатоядерних обчислюва-
льних систем застосування технології паралельного програмування OpenMP для тренування нейронної мережі на процесорі 
з різним числом паралельних потоків збільшує швидкість виконання алгоритму. Проте використання технології CUDA для 
навчання нейронної мережі на відеопроцесорі дозволило значно збільшити швидкість передбачень в порівнянні з OpenMP. 
Також досліджено можливість використання технології PyTorch DDP для навчання нейронної мережі на декількох відеоп-
роцесорах (вузлах) одночасно, що , в свою чергу, ще більш покращило час виконання передбачень в порівнянні з викорис-
танням одного відеопроцесора. 

Результати. Розроблено алгоритм навчання та передбачення штучної нейронної мережі на двох незалежних вузлах з 
окремими відеопроцесорами та їх синхронізацією задля обміну результатами навчання після кожної епохи із використанням 
технології PyTorch DDP, що дозволяє масштабувати розрахунки при наявності більшої кількості потужностей і значно при-
швидшити навчання моделі. 

Висновки. Проведені експерименти підтвердили ефективність запропонованого алгоритму і дозволяють рекомендувати 
дане дослідження для подальшого розвитку автономних автомобілів та покращення їх навігаційних можливостей. Зокрема 
результати дослідження можуть знайти застосування у різних сферах, включаючи автомобільну транспортну промисловість, 
логістику та транспортну інфраструктуру міст. Отримані результати повинні допомогти наступним дослідникам зрозуміти, 
які апаратні та програмні засоби найефективніше використовувати для реалізації навігаційних систем на основі штучного 
інтелекту в автономних автомобілях. Перспективами подальших досліджень може бути покращення точності запропонова-
ного паралельного алгоритму не погіршуючи показників ефективності, а також експериментальне дослідження запропоно-
ваного алгоритму на більш складних практичних задачах різної природи та розмірності. 

КЛЮЧОВІ СЛОВА: комп’ютерний зір, нейронні мережі, методи навігації, технологія CUDA, технології PyTorch DDP. 
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