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ABSTRACT

Context. Autonomous vehicles are becoming increasingly popular, and one of the important modern challenges in their
development is ensuring their effective navigation in space and movement within designated lanes. This paper examines a method of
spatial orientation for vehicles using computer vision and artificial neural networks. The research focused on the navigation system
of an autonomous vehicle, which incorporates the use of modern distributed and parallel computing technologies.

Objective. The aim of this work is to enhance modern autonomous vehicle navigation algorithms through parallel training of
artificial neural networks and to determine the optimal combination of technologies and nodes of devices to increase speed and
enable real-time decision-making capabilities in spatial navigation for autonomous vehicles.

Method. The research establishes that the utilization of computer vision and neural networks for road lane segmentation proves
to be an effective method for spatial orientation of autonomous vehicles. For multi-core computing systems, the application of
parallel programming technology, OpenMP, for neural network training on processors with varying numbers of parallel threads
increases the algorithm’s execution speed. However, the use of CUDA technology for neural network training on a graphics
processing unit significantly enhances prediction speeds compared to OpenMP. Additionally, the feasibility of employing PyTorch
Distributed Data Parallel (DDP) technology for training the neural network across multiple graphics processing units (nodes)
simultaneously was explored. This approach further improved prediction execution times compared to using a single graphics
processing unit.

Results. An algorithm for training and prediction of an artificial neural network was developed using two independent nodes,
each equipped with separate graphics processing units, and their synchronization for exchanging training results after each epoch,
employing PyTorch Distributed Data Parallel (DDP) technology. This approach allows for scalable computations across a higher
number of resources, significantly expediting the model training process.

Conclusions. The conducted experiments have affirmed the effectiveness of the proposed algorithm, warranting the recommen-
dation of this research for further advancement in autonomous vehicles and enhancement of their navigational capabilities. Notably,
the research outcomes can find applications in various domains, encompassing automotive manufacturing, logistics, and urban trans-
portation infrastructure. The obtained results are expected to assist future researchers in understanding the most efficient hardware
and software resources to employ for implementing Al-based navigation systems in autonomous vehicles. Prospects for future inves-
tigations may encompass refining the accuracy of the proposed parallel algorithm without compromising its efficiency metrics. Fur-
thermore, there is potential for experimental exploration of the proposed algorithm in more intricate practical scenarios of diverse
nature and dimensions.

KEYWORDS: computer vision, neural networks, navigation methods, CUDA technology, PyTorch DDP technology.

ABBREVIATIONS
NN is a Neural Network;
OpenMP is an Open Multi-Processing;
CUDA is a Compute Unified Device Architecture;
DDP is a Distributed Data Parallel;
LiDAR is a Light Detection and Ranging;
ACO is an Ant Colony Optimization;
CNN is a Convolutional Neural Network;
0T is an Internet of Things;
FPN is a Feature Pyramid Network;
CPU is a central processing unit;
GPU is a graphics processing unit.

NOMENCLATURE
N is the number of records in the dataset;
p is the cores count;

T;() is an execution time of a sequential algorithm;

Tp () is an execution time of a parallel algorithm.

INTRODUCTION
With the advancement of autonomous vehicles, the
demand for high-precision navigation systems and
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efficient algorithms is becoming increasingly crucial.
Optimization and enhancement of existing artificial
intelligence methods to improve navigation accuracy,
along with the application of parallel computing to boost
algorithm speed, have the potential to unlock new

opportunities and contribute significantly to the
development of the autonomous transportation
sector [1,2].  Algorithm and navigation method

optimization can contribute to ecological and economic
development as autonomous vehicles have the potential to
reduce fuel costs and facilitate efficient infrastructure
utilization.

Improvements in navigation algorithms can have a
positive impact on various sectors, including logistics,
automated warchouses, and robotics, where precise
localization and navigation are critically important for
effective operations [3, 4].

Since autonomous vehicles must react to real-time
road situations, parallel computing helps ensure the swift
execution of algorithms, which is vital for road safety and

efficiency [5].
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This work investigates the effectiveness of
parallelizing the training and prediction algorithm of an
artificial neural network for road lane segmentation across
various devices: processor, graphics processing unit
(GPU), and two GPUs simultaneously. Different
distributed and parallel computing technologies are
considered, including OpenMP [6], CUDA [7], and
PyTorch DDP [8].

The object of this research is the navigation system
of an autonomous vehicle, which encompasses various
contemporary  distributed and parallel computing
technologies.

The subject of investigation comprises existing
algorithms utilized for enhancing spatial navigation in
autonomous vehicles, as well as parallel computing
technologies aimed at improving the performance of these
algorithms.

The purpose of this work is to enhance current
navigation algorithms for autonomous vehicles in space
by means of parallel training of artificial neural networks,
and to determine the optimal combination of technologies
and devices to increase speed and enable real-time
decision-making capabilities.

1 PROBLEM STATEMENT
Let  Dyain ={(Xj, yi)}i’\il be the training dataset,
where X; denotes the input data and Y; denotes the cor-
responding ground truth lane segmentation labels for S

samples, i.e., X; = {xi,s}gzl and y; = {yi,s}gzl , by analogy
let D, be the test dataset.

test

Suppose O represents the parameters of the artificial
neural network model, C represents the configuration
space, encompassing parameters such as thread counts
and parallel programming methodologies.

The functions J(D,,,,60,C) and J(D..6,C)
quantify the optimization criterion for the training and test
dataset, encapsulating metrics that measure the efficiency
of the parallelized algorithm. These metrics include
aspects such as training duration, and prediction error.

In summary, the problem is to determine optimal pa-
rameters of the artificial neural network model 6 and
configuration space C that lead to the most efficient
parallelization of the artificial neural network-based lane
segmentation on test dataset, SO that
J(Diegt» 0, C) — min.

rain > est >

2 REVIEW OF THE LITERATURE

During the analysis of scientific papers and sources, a
list of facts that served as the foundation for this research
was identified. The first fact is that artificial intelligence
methods are finding increasing applications in
autonomous vehicles. This is due to their potential to
significantly enhance road safety and make vehicle
control more efficient and comfortable for drivers.

According to a study, the use of autonomous vehicles
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with a 50% share can reduce the number of road accidents
by 29% [9]. The second fact is that spatial navigation in
autonomous vehicles relies on a combination of various
technologies, including computer vision and artificial
neural networks [10]. The third fact is that different
parallel computing technologies are employed for training
artificial neural networks [11, 12]. Other navigation
methods for autonomous vehicles that utilize artificial
intelligence include deep learning and image recognition-
based techniques, such as the use of LiDAR sensors and
cameras to gather environment data and create a 3D road
map. This enables the vehicle to determine its location
and identify surrounding objects [10].

Convolutional neural networks are effective when
working with input data like images, including those from
autonomous vehicle cameras [13]. Convolutional
encoder-decoder architectures, on the other hand, are used
to reduce the dimensionality of images and are often
employed for image segmentation tasks [14].

For training neural networks used in autonomous
vehicles, large datasets are required, particularly images
of roads and road markings. One way to increase data
volume is through data augmentation, which involves
applying random transformations to images, such as
scaling and rotation [15]. When using neural networks for
vehicle navigation, factors like changes in lighting and
atmospheric conditions must be considered. To address
this, neural network models with additional layers
responsible for data normalization (Batch Normalization)
and the introduction of random noise to input data can be
used [16]. To combine data from different sensors,
Kalman filters and enhanced versions of these filters can
be employed [17].

In [18], a method for lane boundary detection is pre-
sented, which operates by extracting candidate lane seg-
ments from an image and subsequently selecting the most
prominent lane using dynamic programming. The authors
utilize real road videos for experiments, demonstrating the
effectiveness of their proposed approach. However, this
method is considered outdated and does not account for
factors such as changes in lighting and atmospheric condi-
tions.

In [19], authors propose a hybrid approach based on
Ant Colony Optimization (ACO) for line detection in
images, using the Canny edge detection method and
Hough transform for line extraction. The proposed system
operates quickly but, as noted by the authors, is confi-
dently applicable only on straight roads.

In [20], authors address road scene segmentation for
RGB images using recent advancements in semantic seg-
mentation through convolutional neural networks (CNN)
and convolutional encoder-decoders. They introduce sev-
eral architecture improvements that balance segmentation
quality and computational speed. Experimental results
indicate that their model provides accurate lane predic-
tions in the original image size..

n [21], the authors addressed the problem of lane
detection using an Internet of Things (IoT) system for
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interaction between different modules, including the car
module, cloud module, and remote car controller. The
method for lane detection and tracking is executed
initially on the car module and then transmitted to the
cloud module for additional processing. The authors
achieved a processing speed of approximately 31 ms per
frame. An explicit drawback of this approach is the
requirement for the car to be within the cellular network
coverage area and have access to the internet, which is not
always guaranteed, particularly on remote highways.

In [22], the authors utilize deep learning to tackle the
lane  segmentation  problem, employing deep
convolutional neural networks. The system achieves a
respectable accuracy of 96%, but it requires 132 ms for
processing a single frame.

One of the limitations of the previously presented
algorithm and many others analyzed by us is that authors
consider training and operating neural networks on a
single powerful node (video processor) for lane
segmentation, which can significantly limit the speed of
learning and predictions of such networks in real-world
scenarios. Our approach involves multiple independent
nodes with separate video processors for parallel training
and prediction, ensuring greater scalability and speed.
Additionally, our approach utilizes PyTorch DDP
technology  for  efficient = communication  and
synchronization between nodes.

In summary, while the literature review reveals
several promising approaches to lane segmentation in
autonomous driving, most of them do not explore multi-
node (video processor) training. Our proposed algorithm,
based on parallel training and prediction on multiple
independent nodes with separate video processors and
PyTorch DDP communication, represents significant
progress in terms of efficiency and scalability.

3 MATERIALS AND METHODS

To solve image processing tasks, CNNs
(Convolutional Neural Networks) are widely used,
including for object segmentation in images [13]. CNN
consists of a sequence of convolutional and pooling
layers, allowing the model to automatically identify
important features of images at different levels.

Convolutional layers perform the convolution
operation, which involves moving filters (of varying sizes
and shapes) over the image to extract different image
features such as edges, corners, textures, and more. The
result of convolution is a feature map that highlights
important regions of the image. Pooling layers reduce the
size of the feature map and retain the most important
features from each region, reducing the number of
network parameters and preventing overfitting. CNNs
leverage internal pixel relationships within the image for
effective object segmentation. Operations of this type
form the basis of convolutional encoders-decoders and
Feature Pyramid Networks (FPN), which are used to
address the lane segmentation task in the present study.
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This network was proposed in 2017 with the aim of
improving the object segmentation process in images.
FPN (Feature Pyramid Network) consists of several con-
volutional layers that interact with the object in the image
at different scales [23].

For the segmentation task, a slightly modified version
of the FPN network is used, where each FPN level is
gradually increased using convolutional functions and
bilinear upscaling until it reaches a scale of 1/4. Then,
these outputs are added and finally transformed into pixel-
level output [24]. In general, the use of the FPN network
for segmentation tasks allows for improved accuracy of
results by optimally utilizing features at different scales of
image resolution.

The time complexity of the convolutional encoder-
decoder (FPN network) depends on the size of the input
and output data, as well as the number of layers and filters
in the network. In general, the time complexity can be
expressed as a function of the number of operations re-
quired to process the input data.

Assuming that the convolutional encoder-decoder has
L layers, filters with a size of FxF at each layer, and
input data with a size of DxD, then the general time
complexity of the algorithm is:

O(N *L*D? *F?).

Due to the fact that for each layer, the input data is
processed by filters of size FxF , each of size and this
process is repeated L times (number of layers).

During parallelization using the CPU, the time
complexity decreases proportionally to the number of
physical threads engaged in computing mathematical
operations during training (for example, calculating
activation functions), where N = N /THREADS.

During parallelization using a GPU, the time
complexity decreases proportionally to the number of
computational units (CUDA cores) on the graphics
processor and their speed, where N = N /GRID _ SIZE.

During parallelization using GPU and additionally
PyTorch DDP, the time complexity decreases
proportionally to the CUDA cores and is further divided
by the number of nodes with video processors used, since
the data (N) is shared among them for processing, where

N =N/(GRID SIZE =N DEVIES).

For training the neural network, the PyTorch library
was utilized, which achieves parallelization of the training
process through OpenMP. During the course of the re-
search, the specific directives that were employed and the
manner in which basic operations are parallelized during
training were analyzed, specifically:

— To determine the number of used threads, the func-
tion omp_set_num_threads() is employed;

— The #pragma omp parallel for directive is used
for parallelizing the ReLU activation function;
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— The #pragme omp parallel for schedule(static)

directive is utilized for parallelizing the loop of the Adam
optimizer;

— The #pragma omp parallel directive is applied for
parallelizing the operations of the convolutional layer;

— Matrix multiplication operations (batch_matmul) are
parallelized using the

#pragma omp parallel for collapse(Z) directive.

Regarding the parallelization of the algorithm using
CUDA technology, in our case, we utilized the CUDA
kernel implementation in PyTorch, which, in turn,
leverages existing NVIDIA solutions such as CUBLAS
and CUDNN.

Since we have a single kernel, PyTorch by default
employs the following values for constructing the grid:

THREADS_PER_BLOCK = 512;
BLOCKS_PER_SM = 4;

As a result of parallelizing the algorithm using CUDA
technology:

— For parallelizing the operations of the convolutional
layer, cudnnConvolutionBackwardFilter was used, which
is a part of CUDNN;

— For parallelizing pooling operations, we utilize
cudnnPoolingForward, which is provided with an array of
tensors;

— For batch normalization, we employ cudnnBatch-
NormalizationForward and cudnnBatchNormalization-
Backward.

The PyTorch DistributedDataParallel (DDP) technol-
ogy allows distributing computations across multiple de-
vices, such as servers or GPUs, to accelerate the training
speed of models. PyTorch DDP employs an asynchronous
approach to data and computation distribution among
devices. It utilizes collective communication mechanisms,
enabling each device to exchange data with others in the
group. Additionally, PyTorch DDP ensures automatic
parameter synchronization among devices during training.
With PyTorch DDP, computations can be distributed
across multiple servers or nodes, thereby enhancing com-
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putational power and reducing model training time.
Moreover, PyTorch DDP supports automatic scaling of
computational resources based on demand, facilitating
efficient utilization of limited resources. DDP follows the
CUDA algorithm, with the only difference being that the
dataset is evenly split between two nodes, and the weights
are synchronized using gradient aggregation at the end of
each epoch, resulting in a 2x acceleration.

In the process of training machine learning models,
input data plays a significant role. The quality and quan-
tity of data can impact the accuracy and performance of
the model. Therefore, it is crucial to properly select and
prepare input data for model training.

One of the most popular applications for creating
datasets for autonomous driving models is the CARLA
Simulator [25]. This open-source software allows simulat-
ing urban traffic and autonomous vehicles. CARLA en-
ables the creation of diverse scenarios for model training
and testing, including simulations of various weather con-
ditions, road traffic, pedestrian behavior, and other objects
on the road.

The dataset created using the CARLA Simulator con-
sists of images of road lanes with markings and other road
elements. Each image is sized 1024x512 pixels and is
presented in color. The total size of the dataset is
2.05 GB.

The images for training are captured by a camera
mounted on a simulated vehicle. The annotated images
provide segmentation masks. Each pixel in the annotated
image is classified as:

— part of the left lane boundary;

— part of the right lane boundary;

— none of the above (background).

The dataset was intentionally divided into a training
and validation set: 3075 images for training and 129 for
validation, along with 3075 and 129 corresponding mask
images, respectively.

The challenge associated with this dataset is to train
the model to accurately predict the segmentation masks
for the validation dataset (see Fig. 1).

100
200
300

400

500
0 200 400 600 800 1000

Figure 1 — The example of training samples:
a — original image; b — corresponding image-mask
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Data augmentation can be used to increase the amount
of training data and improve the quality of the model [26].
For example, images can be altered using techniques such
as cropping, different positioning, color adjustments,
resizing, and other transformations. Data augmentation
can be particularly useful when working with limited
data. In cases where the dataset lacks sufficient data for a
specific task, augmentation can create new data by
manipulating existing examples. This can help prevent
overfitting, provide a more diverse dataset, and enhance
the model’s generalization ability.

One tool for data augmentation is the Python library
“imgaug”. It offers a variety of functions for image
transformations, including rotation, scaling, color
changes, noise addition, and more. Additionally, there are
other libraries and tools available for data augmentation
that can be used to enhance the quality of both data and
machine learning models.

The developed algorithm performs data augmentation
before training the network to enhance the accuracy of
network training (an example of this is illustrated in
Figure 2). The operations used in this sequence are as
follows:

— ShiftScaleRotate: shifts, scales, and rotates the

image with random parameters.
Image

— TAAAdditiveGaussianNoise: adds Gaussian noise
to the image with a probability of 0.2.

— CLAHE: applies the Contrast Limited Adaptive
Histogram Equalization algorithm to enhance image
contrast.

— RandomBrightness: changes the brightness of the
image by a random amount.

— RandomGamma: adjusts the gamma of the image
to a random value.

— IAASharpen: sharpens the image.

— Blur: applies blurring to the image to reduce
sharpness.

— MotionBlur: adds motion blur to the image.

— RandomContrast: changes the contrast of the
image by a random amount.

— HueSaturationValue: changes the
saturation of the image to random values.

After applying this sequence of operations, the images
will slightly differ from each other, which allowed us to
improve the model’s performance on the validation data-
set.

Step-by-Step Description of the Proposed Algorithm:

1. Import necessary libraries.

hue and

Label

Label

Label

Figure 2 — Resulting augmented input image (left) and corresponding masks (right)
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2. Declare the class CarlaLanesDataset with methods
‘init °, " getitem  °, and °_ len ', which will be
used to retrieve and preprocess the data.

3.Load the dataset into memory (training and
validation sets).

4. Declare  methods  get training augmentation,
get_validation_augmentation, and get preprocessing to
define transformations for data augmentation and
preprocessing.

5. Apply augmentation to the loaded training dataset.

6. Initialize the artificial neural network model object.

7. Initialize the loss function and optimizer objects.

8. Parallel execution of the training process:

— On CPU using OpenMP technology.

— On GPU using CUDA technology.

— On multiple GPUs using CUDA technology and
PyTorch DDP.

9. Validate on the testing dataset.

Next step taken is to calculate the theoretical
acceleration and efficiency metrics for parallel algorithms
using different numbers of threads when parallel
computations are performed on the CPU. Additionally,
we calculated the acceleration metrics for parallel
algorithms on the GPU. To compute these metrics, we
used the following formulas:

Ti(N)
Sp(N)=—1—2, 1
p Tp(N) (1)
S,(N
Ep(N)= pN). )

Here, Equation (1) is used to calculate the speedup,
and Equation (2) — the efficiency.

First, let’s perform a theoretical speedup estimation
for various numbers of processors used for training the
neural network. It should be noted that calculating the
theoretical speedup for training a model on the GPU is
analytically impossible since the number of graphic cores
used during training is unknown.

Ground Truth Mask

Ground Truth Mask

Ground Truth Mask

T,(3075)  0(3075%L*D*xF?)

SH(N) = = 5
T23075) 0(30275*L*D2*F2]
2 2
54(N):T1(3075) _ 03075*L*D”*F*) .
T4(3075) 0[3075*L*D2*|:2j
4
2 2
Sg(N):T1(3075) _ O@B075*L*D”*F~) N

To(3075) 0(3075 cLsD? % Fz)
8

Let’s derive the theoretical estimates of efficiency:

e =20,
E4(N):@:19
EﬂN):%:l.

It should be noted that the provided estimates apply to
a system with p processor (core) computational units.

4 EXPERIMENTS

During the research, the training of the neural network
was conducted on a CPU using the OpenMP technology.
For this purpose, a computer with an Intel(R) Xeon(R)
CPU @ 2.20GHz processor with 2 cores and 4 threads
was utilized. The network training was carried out over 5
epochs.

Parallelization was achieved through the inter-op
functionality of OpenMP — a specific thread pool is
allocated for performing individual tasks, such as
processing one of the input parameters. Inter-op allows us
to handle micro-operations like pooling, batch operations,
or matrix multiplication by dividing sub-tasks among
threads. As a result of inter-op, the tasks of an iteration
are synchronized, marking its completion.

The results of training the neural network on the CPU
using OpenMP technology revealed a test dataset
accuracy of approximately 96%. The network’s prediction
results are depicted in Fig. 3.

Predicted Mask

Predicted Mask

Predicted Mask

Figure 3 — The prediction results of the trained neural network. The first column displays images from the test dataset, the middle
column shows the corresponding ground truth lane masks, and the left column presents the predicted lane masks
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The training algorithm was also parallelized on GPU
using CUDA technology. Specifically, the network
training was conducted on an NVIDIA T4 graphics card,
a professional GPU released in 2018 designed for high-
performance computing and artificial intelligence
applications. It is built on the Nvidia Turing architecture
and boasts 2560 CUDA cores, enabling it to handle large
datasets and perform tasks such as deep learning and
machine learning with high precision. The GPU comes
equipped with 16 gigabytes of fast video memory.

PyTorch leverages pre-existing NVIDIA cores along
with CUBLAS and CUDNN frameworks. These cores
receive requests for executing intra-op tasks from
CUBLAS and inter-op tasks from the CUDNN
framework, and then perform these operations using
available CUDA cores.

By utilizing PyTorch DDP technology, we were able
to utilize a second device with a similar GPU module,
effectively harnessing a total of 5120 CUDA cores for
training. This parallel execution approach not only allows
us to combine different GPUs but also avoids being
restricted to a single physical device [27], which might
limit the number of GPUs that can be attached. This
approach enables us to scale the network to any desired
size. The primary device serves as a synchronization
point, while other nodes are launched with specified IP
addresses, and they receive work ranges and necessary
computation data from the controlling device to perform
calculations.

5 RESULTS
In Table 1, we will present the time costs of sequential
and parallel implementations on CPU using OpenMP
technology, on GPU with CUDA, and on GPU with

‘ I r\

CPU: 1 THREAD

CPU: 2 THREADS CPU: 4 THREADS CPU: 8 THREADS GPU

PyTorch DDP technology. The results of Table 1 are also
visualized in Fig. 4.

Table 1 — Training Time of Neural Network on CPU, Single
GPU, and Dual GPUs (in minutes)

Sequential CPU + OpenMP GPU + 2xGPU +
excution CUDA DDP
2 4 8
3335 144 | 123.6 | 144.6 9.1 4.8

From Table 1 and Figure 4, it is evident that the
results of multi-threaded training demonstrate that
increasing the number of threads up to 4 leads to
improved performance, followed by a decline at 8 threads.
Transitioning from 1 to 2 threads doubles the speed due to
the presence of only 2 physical cores, indicating the
validity of the obtained results. Moving from 2 to 4
threads results in a slight speed increase since the number
of physical cores remains the same, but the logical cores
provide additional cache memory for the threads.
However, utilizing 8 threads depletes the available cache
memory, prompting the processor to reload data to allow
both threads to share a cache memory, resulting in cache
miss penalties.

6 DISCUSSION

Considering the achieved speedup through the use of
OpenMP technology, it can be concluded that employing
OpenMP for neural network training on CPU is an
effective method to reduce training time, especially in
cases where GPU usage is not feasible.

Training the neural network using GPU is 36.6 times
more efficient than sequential CPU training and 14 times
more efficient than CPU training with 4 threads. With two
GPUs, the training time per epoch is reduced to 4.8

I : :
| —

2XGPU

Figure 4 — Comparative diagram illustrating the training time dependency of a neural network on CPU with the involvement of
threads, on a single GPU, and on two GPUs
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minutes, which is 1.86 times more efficient compared to
using a single GPU. However, the acceleration is not
precisely twofold, as each device has independent video
memory, and we need to synchronize training results
between the devices in our local network of compute
nodes after each epoch, which consumes some time.

Table 2 — Actual acceleration metrics of the parallel algorithm
depending on the number of utilized threads on CPU, as well as
the parallel algorithm on GPU and on two GPUs simultaneously

CPU, number of threads

GPU | 2xGPU

2 4 8

233 2.69 231 36.6 69.5

From Table 2, we observe that we achieved higher
acceleration metrics for two threads compared to the
theoretical values, which is due to the specifics of the
Linux kernel scheduler prioritizing tasks with multiple
active threads, thereby resulting in a single-threaded
program having significantly lower computational speed
than expected.

Since the process with one thread resulted in reduced
performance, parallel execution with two threads yielded
higher acceleration metrics.

When transitioning from 2 to 4 threads, the efficiency
growth is marginal, as the number of physical cores
remains unchanged, but the logical cores provide
additional cache memory for threads.

With the utilization of 8 threads, the available cache
memory is exhausted, prompting the processor to reload
data to allow both threads to use the same cache memory,
resulting in cache miss penalties.

Consequently, training the neural network using DDP
is 69.5 times more efficient than sequential CPU training
and 25.8 times more efficient than CPU training with 4
threads. Furthermore, it is 1.86 times more efficient than
training with a single GPU.

Table 3 — Actual efficiency metrics of the parallel algorithm
depending on the number of threads used on CPU
Number of threads

2 4 8

1.16 0.67 0.29

Analyzing the results of Table 3, it can be observed
that the actual efficiency metrics do not align with the
theoretical ones. This discrepancy arises from the fact that
the considered CPU has only 2 physical cores, but 4
logical cores provide additional cache memory for
threads. However, as the number of threads increases to 8,
the overhead of supporting these threads becomes
predominant. Hence, the obtained results are reliable.
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CONCLUSIONS

The paper analyzes contemporary approaches and
methods for solving the problem of road lane
segmentation to localize vehicles. During the analysis of
scientific articles and sources, a list of facts was identified
upon which this research is based.

It has been found that the utilization of modern
parallel and distributed computing technologies on both
CPU and GPU can significantly reduce the training time
of neural networks for addressing the problem outlined in
this study.

The scientific novelty of the obtained results lies in
the introduction of a parallel algorithm for solving the
road lane segmentation task using multiple GPUs with
CUDA technology and PyTorch DDP. It has been
established that the use of DDP expands computational
capabilities by adding new independent nodes that can
utilize both GPUs and CPUs. Therefore, this technology
allows bypassing the limitations of calculations on a
single device and achieving acceleration by orders of
magnitude, sacrificing time only for exchanging
intermediate training results between nodes.

In this work, based on the proposed algorithm, it was
possible to achieve approximately a 90% increase in
acceleration when using training on two nodes with
NVIDIA T4 GPUs compared to one node. This is around
25 times faster compared to using the OpenMP
technology for multi-core computer systems.

Furthermore, it was found that the time required for
lane prediction for a single road frame by the model
reached 19 ms, which is 1.63 times faster than in [20] and
6 times faster than in [21].

The algorithm employed in this study enabled
achieving an accuracy of 96%, which is similar to [22].
However, it can be confidently stated that without
compromising accuracy, significant acceleration of
solving the road lane segmentation task for vehicle
localization was achieved, specifically by a factor of 7.

The practical significance of the obtained results lies
in the development of software that implements the
proposed algorithm, as well as conducting a series of
numerical experiments aimed at comparing the use of
modern distributed and parallel computing technologies
for autonomous vehicle navigation. The findings of this
research can have a positive impact on road safety, cost-
effectiveness, environmental friendliness, and
transportation accessibility. Furthermore, they can
contribute to the advancement of smart cities, integration
of transportation systems, and enhance the
competitiveness of automotive manufacturers. This
research can also provide insights into the most efficient
hardware and software tools to employ for implementing
Al-based navigation systems in autonomous vehicles,
depending on the situation [28].

The prospects for further research involve exploring
the proposed parallel algorithm for a wide range of

practical tasks.
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TEXHOJIOT'TI ITAPAJIEJIBHUX I PO3HNOAITEHNX OBUMCJIEHD JJIsI ABTOHOMHOI HABITAIIIT
TPAHCIIOPTHHX 3ACOBIB

Mouypan JI. I. — kaHA. TeXH. HayK, JOLEHT, JOLEHT KadeOpH CHCTEM IITYYHOIO IHTENEKTY HAlllOHAIBLHOTO YHIBEpPCHTETY
«JIpBiBCHKA TOMITEXHIKaY, JIBBIB, YKpaiHa.

Mamuyp M. B. — cTyneHT xadeapu CHCTEM MITyYHOTO iHTEJIEKTY HAIiOHAJIBHOTO YHIBEPCHUTETY «JIbBIBCHKa MOMITEXHIKay,
JIbBiB, YKpaiHa.

AHOTAIIA

AKTyaJIbHiCTB. ABTOHOMHI aBTOMOO1JIi CTalOTh BCe OLTBII HOIYJISIPHUMH 1 OJJHUM 3 Ba)XKJIMBUX CyYacHHX 3aBJaHb pO3pOOKH Ta-
KHX aBTOMOOLIIB € 3a0e3nedeHHs e()eKTHBHOI HaBiralii OCTaHHIX y IPOCTOpi Ta IX pyxy y CBOIH BUALIEHIN IPOi3HIH cMy3i. ¥V naHiit
Ppo6OTi PO3IIIAHYTO METOZ OPIEHTYBAaHHS y IPOCTOPi aBTOMOOLNIS 32 JOMOMOI0I0 KOMIT IOTEPHOr0 30py Ta IITYYHUX HEHPOHHUX Me-
pex. O6’ekToM jociipKeHHs Oya cucTeMa HaBirauii aBTOHOMHOTO aBTOMOOLIIS, 110 BKJIFOYAE B ceOe BUKOPHCTAHHS CYyYaCHUX TEX-
HOJIOT1H PO3NOAICHUX Ta MapalieIbHIX 0O0YHCIICHb.

Meta po60TH — BIOCKOHAJICHHS CyYacHUX AJITOPUTMIB HaBiraIllii aBTOHOMHOTO aBTOMOOIJIS y TIPOCTOPi HA OCHOBI MapajieabHOTO
HaBYaHHS MITYYHUX HEHPOHHUX MEPEeX Ta BH3HAUCHHS HAMONTHMAJbHIIIOI KOMOIHAIIT TEXHOJIOTIH Ta MPHUCTPOIB Ul 30LIBIICHHS
IIBAAKOCTI Ta MOXKJIMBOCTI OTPUMAHHS PIlICHHS B PEXKHMI PEabHOTO Jacy.

Metoa. Y poGOTi BCTaHOBJIEHO, 0 BUKOPHCTAHHS KOMIT FOTEPHOTO 30pY Ta HEHPOHHUX MEpEeX VIS CerMEeHTalii CMyTH JJOPOXK-
HBOTO PyXy € e()eKTHBHUM METOJIOM Opi€HTaIlii aBTOHOMHOT0 aBToMOO011s1 y mipocTopi. [Ipu 1ipomMy 11 6aratosiepHUX 00YHCITIOBA-
JIBHUX CHCTEM 3aCTOCYBaHHs TEXHOJIOTII mapaienbHoro mporpamyBanus OpenMP s TpeHyBaHHS HEHpPOHHOT Mepexi Ha IpoLecopi
3 Pi3HUM YHCJIOM HapajieibHUX MOTOKIB 301IbIIY€ MIBUAKICT BUKOHAHHS anroputMy. IIpore Bukopucranus texxonorii CUDA mis
HaBYaHHS HEHPOHHOI Mepeski Ha BiZCOMPOLECOpPi JO3BOIMIO 3HAUYHO 30UIBIINTH MIBHAKICTH MepeadadeHs B mopiBHsIHHI 3 OpenMP.
Takox DOCHIIKEHO MOIMBICTh BUKOpHUCTaHHS TexHoJorii PyTorch DDP mis HaB4aHHS HEHPOHHOT Mepexki Ha AEKUIBKOX BiJ€OI-
poriecopax (By3iax) OJHOYAaCHO, IO , B CBOIO Yepry, Iie OLIBII IMOKPANIUIo Yac BUKOHAHHS Iepea0dadeHb B HOPIBHIHHI 3 BUKOPHUC-
TaHHSIM OJJHOTO BiJ€OIpOoIIecopa.

PesyabTaTn. Po3pobieHo anroputM HaBYaHHS Ta nepenbadeHHs MITyYHOI HEHPOHHOI Mepexi Ha JIBOX HE3aJeHHHUX By3Jax 3
OKPEMHMH BiJICONpoLecOpaMu Ta iX CHHXPOHI3aLi€I0 3311 0OMiHYy pe3yJbTaTaMH HaBUYAHHS IICJISI KOXKHOT €MOXH 13 BUKOPUCTAHHSIM
texuouorii PyTorch DDP, 1o no3Bossie MactabyBaTy po3paxyHKH OPH HAsIBHOCTI OUIBIIOI KiITBKOCTI MOTYKHOCTEH 1 3HAYHO TIPH-
IIBU/ILINTH HABYaHHSA MOJIEIII.

BucnoBxku. [IpoBeaeHi ekciepuMeHTH MiATBEPAMIHN €()EeKTHBHICTD 3aPONOHOBAHOTO AITOPUTMY 1 TO3BOJISIOTH PEKOMEHIYBATH
JaHEe TOCIIHKEHHS s OAAJbIIOr0 PO3BUTKY aBTOHOMHUX aBTOMOOLTIB Ta MOKPALICHHS iX HaBiramiHMX MOMJIMBOCTEH. 30Kpema
Ppe3yJIbTaTH AOCITIPKEHHSI MOXKYTh 3HAHTH 3aCTOCYBaHHS y Pi3HUX cepax, BKIIOYAI0UN aBTOMOOUIBHY TPAaHCIOPTHY HPOMHCIIOBICTD,
JIOTICTHKY Ta TPAHCIIOPTHY iHPpacTpyKTypy MicT. OTpHMaHi pe3yIbTaTH MOBHHHI JOIOMOTITH HACTYITHUM JOCIITHHKAM 3PO3yMiTH,
SIKi armaparHi Ta mporpaMHi 3aco0u Hale(eKTHBHIIIe BUKOPHCTOBYBATH ISl peastizanii HaBirauifHUX CHCTEM Ha OCHOBI LITYYHOT'O
IHTEJIEKTYy B aBTOHOMHHX aBTOMOOUIX. [lepcrieKTMBaMy MOJANBIIMX TOCHIIIKEHb MOXKe OyTH IOKpAIIeHHs. TOYHOCTI 3alpoIoHOBa-
HOTO MapajeibHOro ajJropuTMy He MOTIPIIYIOYH MOKa3HUKIB €()eKTUBHOCTI, @ TAKOXK SKCIEPHMEHTAIbHE JOCIIIPKSHHS 3apOIIOHO-
BAHOT'O aJIFOPUTMY Ha GLIbII CKIAJHKUX NIPAKTUYHUX 337a4ax Pi3HOT IPUPOJM Ta PO3MIPHOCTI.

KJIFOYOBI CJIOBA: xomn’oTepHH 3ip, HEUPOHHI MepeKi, MeToau Hasiramii, rexnosuoris CUDA, texnomnorii PyTorch DDP.
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