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ABSTRACT
Context. The problem of automating of the edge detection on natural images in intelligent systems is considered. The subject of
the research is the deep learning convolutional neural networks for edge detection on natural images.
Objective. The objective of the research is to improve the edge detection performance of natural images by structural tuning the
richer convolutional features network architecture.

Method. In general, the edge detection performance is influenced by a neural network architecture. To automate the design of the
network structure in the paper a structural tuning of a neural network is applied. Computational costs of a structural tuning are
incomparably less compared with neural architecture search, but a higher qualification of the researcher is required, and the resulting
solution will be suboptimal. In this research it is successively applied first a destructive approach and then a constructive approach to
structural tuning of the based architecture of the RCF neural network. The constructive approach starts with a simple architecture
network. Hidden layers, nodes, and connections are added to expand the network. The destructive approach starts with a complex
architecture network. Hidden layers, nodes, and connections are then deleted to contract the network. The structural tuning of the
richer convolutional features network includes: (1) reducing the number of convolutional layers; (2) reducing the number of
convolutions in convolutional layers; (3) removing at each stage the sigmoid activation function with subsequent calculation of the
loss function; (4) addition of the batch normalization layers after convolutional layers; (5) including the ReLU activation functions
after the added batch normalization layers. The obtained neural network is named RCF-ST. The initial color images were scaled to
the specified size and then inputted in the neural network. The advisability of each of the proposed stages of network structural
tuning was reseached by estimating the edge detection performance using the confusion matrix elements and Figure of Merit. The
advisability of a structural tuning of the neural network as a whole was estimated by comparing it with methods known from the
literature using the Optimal Dataset Scale and Optimal Image Scale.

Results. The proposed convolutional neural network has been implemented in software and researched for solving the problem
of edge detection on natural images. The structural tuning technique may be used for informed design of the neural network
architectures for other artificial intelligence problems.

Conclusions. The obtained RCF-ST network allows to improve the performance of edge detection on natural images. RCF-ST
network is characterized by a significantly fewer parameters compared to the RCF network, which makes it possible to reduce the
resource consumption of the network. Besides, RCF-ST network ensures the enhancing of the robustness of edge detection on texture
background.

KEYWORDS: natural image, edge detection, convolutional network, richer convolutional features, structural tuning, batch
normalization.

ABBREVIATIONS m is a number of columns of the image;

CNN is a convolutional neural network; (x,y) are coordinates of the image pixel;
RCF is a Richer convolutional features; I(x,y) is a vector function representing an image by
HED is a Holistically-nested edge detection; color components;
LPCB is a Learning to predict crisp boundaries; Ir(x,), 15(x,y), Ip(x,y) are the functions of intensity of
BDCN is a Bi-directional cascade network; the red, green, blue color components respectively;
DexiNed is a Dense extreme inception network; structgcr 18 an architecture of the RCF network;
DSCD is a Deep structural contour detection; parampcr 1s a set of parameters of the RCF network;
PiDiNet is a Pixel difference network; Wrcr is a subset of RCF network layer weights;
ReLU is a rectified linear unit; Brcr is a subset of RCF network bias values;
RCF-ST is a Richer convolutional features with X,; 1s a nth normalized output of the ith network layer;

structural tuning; v: is a compression of the x,;;
BSDS500 is a Berkeley Segmentation Dataset with B; is a shift of the x,,;;

500 images; yni is a transformed with y; and B; output of the
FOM is a Figure of Merit; network layer;
ODS is an Optimal Dataset Scale; TP is apercentage of image background pixels that are
OIS is an Optimal Image Scale. correctly labeled as background;

TN is a percentage of image edge pixels that are
NOMENCLATURE correctly labeled as edge.

n is a number of rows of the image; Fy is a Fy-score;
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B is a F-score constant from 0 to infinity;
Pr is a precision;
Rc is arecall.

INTRODUCTION

The problem of edge detection on images remains
relevant in the development of intelligence systems for a
number of applications. These applications include
technical and medical diagnostics, image search in
databases and the Internet, face recognition, non-
destructive testing, process control. The selection of the
object edge detector for the implementing an intelligent
system is determined primarily by the properties of the
processed images, the noise level, as well as the
requirements for the edge detection performance. So, in
systems for monitoring the environment, transport and
infrastructure, searching for images in databases and the
Internet, and others, it becomes necessary to process
natural images.

Natural images are characterized by a low level of
noise. Objects on such images may contain texture areas
or areas of smooth color change. When detecting the
object edges on natural images, one should take into
account not only color differences, but also the
boundaries of texture areas. Then it is necessary to
establish a correspondence between color differences and
the boundaries of objects on natural images, ignoring the
background texture and noisy pixels [1].

The object of research is the process of edge detection
on natural images in intelligent systems.

In recent years, considering the problems of thick
image edge contour, inaccurate positioning, and poor
detection accuracy, a variety of edge detection methods
based on deep learning CNN have been proposed. With
the development of technology, the CNN edge detection
accuracy has been increased. However, at the same time,
the depth of the networks has been deepened, leading to
problems such as a very large number of parameters,
training difficulties, and model complexity [1].

For the effective use of a neural network, it is
necessary to design its architecture and to train the weight
coefficients. Network architectures are usually selected
heuristically based on the experience of the developer.
When image edge detecting, networks of too simple
architecture are not able to adequately model the target
dependence between the pixels of the original image and
the edge map. Too complex architectures of neural
networks imply an excessive number of free parameters,
which in the learning process are tuned not only to restore
the target dependence, but also noise [2]. One way to
solve this problem is the structural tuning of CNN [3, 4].

The subject of the research is the structural tuning of
the convolutional neural networks for edge detection on
natural images.

When processing images of real scenes, the RCF
network proved to be effective for edge detection [1].
However, the quality of the results of edge detection using
this network is determined by the number of processing

scales and by the network architecture. The latter implies
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the selection of such hyperparameters as the number and
size of filter kernels in a layer, the adding and removing
layers, including activation functions.

The aim of the research is to improve the edge
detection performance of natural images by structural
tuning the RCF deep learning network architecture.

1 PROBLEM STATEMENT

The color natural image is represented as
10, =(Ir(x,), I6(x,y), Ip(x,))}, where x=1, ..., n; y=1, ...,
m. Then each pixel of the image is described by three
features Ig(x,y), I(x,y), Ig(x,y) which take values from the
interval [0, 1]. To detect edges on the image, each pixel of
the original image must be associated with the value of
the target feature. There is a label of one of two classes,
specifically, 0 for boundary pixels, 1 for pixels inside
homogeneous areas. The values of the target feature for
the natural image should be represented as a binary image
which is the result of edge detection [5].

Let an RCF network RCF={structrcr, parampcr} was
preliminarily synthesized to detect the image edges. The
set structgcr includes layers of the synthesized network
with layer hyperparameters such as the size of the
convolution kernel and the number of convolutions. The
set parampcr=1{ Wrcr, Brer $[6]-

The problem of structural tuning of the RCF network
is as follows. It is necessary to make structural changes to
the existing architecture of the RCF network structpcr.
These changes should improve the image edge detection
performance compared to the initial RCF network after
training the parameters of the resulting network. At the
same time, the number of parameters of the resulting
network should not increase [2].

2 REVIEW OF THE LITERATURE

To solve the problem of object edge detection on
natural images, the deep learning CNN have been widely
used recently. In [1] such methods in terms of model
structure, technical difficulties, method advantages, and
backbone networks are classified into three types. These
are codec-based CNN, network reconstruction-based
methods, and multi-scale feature fusion-based CNN.

Edge detection methods based on codec were
introduced, as they can accept input images of any size
and produce output images of the same size [7-9]. Since
CNNs reduce the size of an image after convolutions and
pooling, their final output in fact does not correspond to
every pixel in the original image. Fully convolutional
networks are used to retain better low-level edge
information, suppress non-edge pixels, and provide
detailed edge location [7]. The encoder layers are produce
feature maps with semantic information. The decoder
layers are transform the low-resolution feature maps
which outputted by the encoder back to the size of the
input image by pixel classification [1].

Edge detection methods based on network
reconstruction integrate various network modules based
on deep learning [10-12]. Different modules show
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different advantages for edge detection, so the
combination of such modules through network
reconstruction is an important way to improve the edge
detection results [13, 14].

The edge detection methods based on multi-scale
feature fusion combine features of different scales. The
higher layer of the network has a larger perceptual field
and a strong ability to characterize semantic information
while the lower layer of the network has a smaller
perceptual field but a strong ability to characterize
geometric details. Then combining of the local and global
information of the image improves the edge detection
performance [1].

This paper is focused on the edge detection methods
based on multi-scale feature fusion. The backbone
networks of these methods are the HED [15] and RCF
[16]. The LPCB [17], BDCN [18], DexiNed [19], DSCD
[20], PiDiNet [21] and other networks are proposed based
on the HED and RCF networks, as well as by combining
with the architectures of other networks to improve the
edge detection performance.

The HED algorithm is proposed in [15], where a fully
convolutional network is used to resolve ambiguity in
edge and object boundary detection. Deeply-supervised
side replies were interpolated to initial image size and
fused to obtain nested multi-scale features. Thus HED
develops rich hierarchical representation automatically
directed by deep supervision on side replies [15].

In [17] the HED network is improved to solve the
problem of thick contour in edge detection. The obtained
LPCB network is based on VGG16 network [22] and uses
the fully convolutional network of bottom-up/top-down
architecture [23]. Based on image similarity a new loss
function is also proposed, which is very effective for
classifying unbalanced data. The LPCB network resolves
ambiguities in edge detection, and obtains accurate results
without post-processing. Compared to the HED network,
LPBC uses fewer parameters although the last network
shows better edge detection performance.

Inspired by HED [15] and Xception [24] networks, in
[19] the deep learning-based edge detector DexiNed is
elaborated to generate thin edges without prior training or
finetuning process. DexiNed can be regarded as two sub-
networks: extremely dense initial network and up-
sampling block. This network includes six encoders, and
each of them outputs the corresponding feature for
generating intermediate edge maps using the up-sampling
block, which consists mainly of convolutional and
deconvolutional layers. All edge maps generated by the
up-sampling block are connected at the end of the
network to produce the fusion edges.

In [16] the RCF network for accurate edge detection is
designed as a fully convolutional network based on the
VGG16 network [22], removing the fully connected layer
and the fifth pooling layer. While RCF edge detection the
network estimates multi-scale features of the image by
convolutional layers which have different perceptual
fields and pooling layers. Then fusing the layer level
features, all the weight parameters are done by automatic
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learning. Thus RCF network bases on the pyramid
architecture, and combines the underlying feature maps
for edge detection [25].

In [18] the BDCN network is proposed to detect edges
using multiscale information of images. The basic
components of BDCN are ID Blocks. Each ID Block is
learned by a bidirectional cascade structure, thus the
output of two edge detections is passed separately to the
shallow and high-level structures of the network. To
enhance the features output from each layer, a Scale
Enhancement Module is used. It consists of multiple
parallel convolutions with different perceptual field [26],
and finally outputting the result to multiple multi-scale
feature fusion.

In [20] the proposed DSCD network uses a VGG16
encoder [22] to extract multi-scale and multi-level
features. On top of the encoder a super-convolutional
module is constructed to directly abstract the high-level
features and avoid overfitting problem. The decoder is
fused the high-level features and restored them to the
original image size. A novel loss function based on the
structural similarity of two images is proposed to
minimize the distance between predicted and true values.
The DSCD network better classifies the background
texture and noisy pixels as compared with another codec
networks, and generates clear and accurate image edges.

In [21] the elaborated PiDiNet integrates a novel pixel
difference convolution into network convolutional layer.
As a result this network can easily capture image gradient
information conducive to edge detection, while retaining
the powerful learning ability of deep CNN to extract
information with semantic significance. Then the direct
integration of the gradient estimation into the convolution
operation results in the better robustness and edge
detection accuracy.

As a result of the analysis of the literature, the
following was observed. Methods of the first type have a
similar encoder-decoder architecture, which has been
effectively used to solve a number of applied problems.
This architecture assumes a relatively small number of
parameters compared to other convolutional networks.
However, the inclusion of pooling layers reduces the
image edge detection performance. Therefore, it is
advisable to use methods of the first type when solving
problems that do not require a high edge detection
performance, for example, for localizing objects on
images.

The methods of the second type are characterized by
the use of additional modules that improve the edge
detection performance after or together with the use of
CNN. Difficulties arise in the development and
configuration of these modules, as well as the combining
of additional modules with the architecture of the basic
CNN. However, with a rational choice of additional
modules and architecture of the CNN, it is possible to
achieve high image edge detection performance.

Methods of the third type implement the ideas of the
two previous types of methods. A set of scale values is
defined, which depends on the size, as well as the content
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of the image. For each scale value, the boundaries of
objects of a certain size are identified. These methods do
not require additional modules to improve the quality of
the contour. But there is a need to elaborate an approach
to evaluate multi-scale features and to fuse the results of
edge detection at different scales.

The analysis of edge detection methods based on
multi-scale feature fusion showed that the directions for
improving the existing basic HED and RCF architectures
and their combination with other architectures are as
follows. Firstly, it is the elaboration of the classifier with
the best separation of pixel classes by changing the loss
function, as in LPCB and DSCD. Secondly, this is the
evaluation of features with the better class separation,
since the result of edge detection is determined by the
shape of pixel clusters and the presence of data outliers.
Along the way, integration gradient estimation into the
convolution identifying is offered, as in the PiDiNet
network, or blocks that take into account information
about the edges is added, as in BDCN and DexiNed. In
this context in the paper it is proposed to use the structural
tuning of the RCF network. This approach allows to select
the features of natural images and a way of them fusion
with the better separation of edge and background pixels.

3 MATERIALS AND METHODS

In general, the edge detection performance is
influenced by a neural network architecture. A simple
architecture network may not provide good performance
owing to its limited information processing power. A
network of complex architecture may have high
implementation cost and some of its elements are
redundant. At the last time neural architecture search is
applied to automate the defining the network structure
[27]. Although this technique yields an optimal solution,
its computational cost is enormous. Therefore, a different
technique is used in the paper. This is a structural tuning
of a neural network. Computational costs of a structural
tuning are incomparably less, but a higher qualification of
the researcher is required, and the resulting solution will
be suboptimal.

To tune the network structure, constructive and
destructive approaches can be used [28]. The constructive
approach starts with a simple architecture network.
Hidden layers, nodes, and connections are added to
expand the network. The destructive approach starts with
a complex architecture network. Hidden layers, nodes,
and connections are then deleted to contract the network
[28].

In this research author successively applies first a
destructive approach and then a constructive approach to
structural tuning of the based architecture of the RCF
neural network (Fig. 1).

Thus, as a structural tuning of the RCF network, the
following is proposed: (1) reducing the number of
convolutional layers; (2) reducing the number of
convolutions in convolutional layers; (3) removing at
each stage the sigmoid activation function with
subsequent calculation of the loss function; (4) addition of

© Polyakova M. V., 2023
DOI 10.15588/1607-3274-2023-4-12

the batch normalization layers after convolutional layers;
(5) including the ReLU activation functions after the
added batch normalization layers. Let’s explain these
steps in more detail.
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Figure 1 — The RCF architecture [16]

As a result of the destructive approach, the number of
convolution layers and the number of convolutions in the
remaining convolution layers were reduced (Fig. 2). Such
operation is known as thinning of CNN [29].

Deep learning convolutional networks extract the
image features in convolutional layers. For each such
layer, the number of features to be evaluated is specified
by the number of convolutions in the layer. Each feature
is identified by a convolution kernel, as well as a kernel
shift, and these same parameters determine the image
scale on which this feature is extracted.

The redundant or poorly informative features in the
resulting set reduce the rate of convergence of the
network training, in particular, increases the variance of
network parameter estimates. To increase the edge
detection performance the noisy features can been
discarded, as well as similar features. The last are
processed as one feature with a large weight. The feature
space dimension can be reduct by reducing the number of
convolutions of CNN. This makes it possible to use a
smaller training set, reduce training time, and reduce the
network overfitting probability. The evaluation of features
for edge detection on images influences on the
separability of image classes, taking into account the fact
that the number of edge pixels differs significantly from
the number of background pixels. Therefore, the
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structural tuning of the RCF network in this paper
includes altering the number of convolutional layers and
the number of convolutions in convolutional layers.
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Figure 2 — The result of applying a destructive approach to the
structural tuning of the RCF architecture

In addition, the layer containing the sigmoid activation
function, followed by the calculation of the loss function,
was removed from the architecture of the basic RCF
neural network at each stage of processing (Fig. 2). This
is due to the following. At each stage of edge detection by
the basic RCF network edge probability map was formed
as result of applying the sigmoid activation function.
Then all obtaining probability edge maps were bilinear
interpolated to the size of the original image. Further, for
each stage, the value of the loss function was calculated
taking into account the result of interpolation of the edge
probability map and the ground-truth image. The values
of the loss function at different stages were summed
during network training.

Removing at each stage the layer containing the
sigmoid activation function with subsequent calculation
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of the loss function avoids additional computational costs
for determining the values of the loss function at different
scales and introduces redundancy into the multiscale
representation of the image. The latter contributes to an
increase in the robustness of edge detection on natural
images. In such images, it is often necessary to determine
the intensity or color edges on the texture background.
Natural images contain mostly statistical textures, which
can be considered as noise and negatively affect the edge
detection performance.

Further in the process of structural tuning of the RCF
neural network, a constructive approach was used after
applying the destructive approach. Namely, the layers of
batch normalization and nonlinearity in the form of the
ReLU activation function were added after the
convolutional layers.

Batch normalization layer solves vanishing gradient
problem. It is known that the error backpropagation
algorithm converges faster if the input data is normalized
(has zero mean and unit variance) [5, 30]. However, when
a signal propagates through a neural network, its mean
value and variance can change significantly. To avoid
this, the standard normalization of the outputs of the
convolutional layer is applied. Nevertheless, normalizing
the output of a convolutional layer can change the
representation of the data in the next layer. Therefore, two
additional parameters y; and ; are adjusted in the learning
process along with the rest of the parameters and
transform x,; as y,=yx,+B;[5].

The applying of batch normalization actually
corresponds to edge contrasting which improves the edge
detection performance. For CNNs, batch normalization
reduces training time and reduces the chance of
overfitting.

The ReLU activation function returns 0 for a negative
argument, and in the case of a positive argument, returns
the same. The applying of this function actually
corresponds to thresholding in gradient edge detection
methods. ReLU sharps object edges on an image because
the advantage of this function over the sigmoid is the
sparseness of activation (fewer neurons being activated).

The obtained neural network is named RCF-ST. It
processes a three-channel image with a size of 320(480
pixels. Therefore, the initial color images were scaled to
the specified size and then each image was inputted to the
proposed neural network (Fig. 3). It is assumed that
deconvolution and transposed convolution are the same
operations. The architecture of RCF-ST network for the
edge detection is shown in Table 1.

4 EXPERIMENTS

For experimental research of the results of each stage
of the structural tuning of the neural network, the edge
detection performance was evaluated for natural images
from the BSDS500 dataset [31]. The dataset contains a
total of 500 images, including 200 training images and
200 test images, and the remaining 100 validation images.
The true values of the image edges are also presented on
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ground-truth images which are binary images with
contours selected by 5-8 experts (edge maps) [31]. The
performance of edge detection was evaluated by
comparing edges obtained in the RGB color space using

the proposed CNN, with edges labeled by experts.
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Figure 3 — The proposed RCF-ST network architecture for three
stages of processing. It is assumed that deconvolution and

transposed convolution are the same operations

The Adam method with an initial learning rate of
0.005 was used to train the RCF-ST network. A cross-
entropy loss function was used, for which relative
frequencies of the appearance of edge pixels and
background pixels were taken into account [5].

To characterize the edge detection results the
elements of confusion matrix 7P and 7N were used. In
addition the FOM value [5] was estimated for the edge
detection results. The FOM value is varied from 0 to 1
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and normalized such that FOM=1 for a well detected
edge.

For evaluation of edge detection results ODS and OIS
are the widely used [1]. The ODS and OIS are defined
based on Fp-score which is expressed as

Fy= (1+B%) PrRc / (B*Pr+Rc),

where Pr = TP/(TP+FP), Rc = TP/(TP+FN). The degree
of significance of precision Pr and recall Rc can be
controlled by adjusting the value of B. ODS and OIS
indicate different ways of setting the threshold B in this
formula. ODS is equal to F-score if a fixed threshold B is
selected and applied to all images so that the Fg-score on
the whole dataset is maximized. OIS is estimated from F-
score if a different threshold B is selected on each image
that maximizes the Fg-score of that image [1].

The experiment was conducted in accordance with the
stages of structural tuning of the neural network. The
advisability of each of the proposed stages was researched
by estimating the edge detection performance using the
TP, TN, FOM. The advisability of a structural tuning of
the neural network as a whole was estimated by
comparing it with methods known from the literature
using the ODS and OIS.

First of all, as part of the experiment, the advisability
of addition of the batch normalization layers after
convolutional layers, and including the ReLU activation
functions after the added batch normalization layers is
researched. For this the proposed RCF-ST network, and
RCF network were used to detect the object edges on
natural images [31]. A number of stages of the RCF-ST
network, and RCF network is varied from 3 to 5.

Further, the values of the selected indexes of the edge
detection were evaluated depending on the number of
convolutions in convolutional layers.

At the next stage of the experiment, as an alternative
to transposed convolution, bicubic interpolation of image
feature maps at different scales was used. The
interpolated feature maps (layers 6, 12, 19 from Table 1)
were concatenated. Then 1x1 convolutional layer,
Softmax activation function, and pixel classification layer
(layers 21-24 from Table 1) were applied.

Then the edge detection performance of the proposed
RCF-ST network, and methods known from the literature
is compared using ODS and OIS.

At the last part of experiment a number of parameters
and the processing time of the edge detection on
BSDS500 images was estimated for networks with
considered architectures.

5 RESULTS
The elements of confusion matrices and FOM values
for the results of 3, 4, 5 processing stages with the
proposed RCF-ST network, and RCF network is shown in
Table 2. Values in this table were obtained by averaging
the FOM, TP, and TN for the edge detection on BSDS500

natural images.
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Table 1 — The proposed RCF-ST network architecture

Layer Type Comment Activations Learnables
number
1 Image input 320x480x3 image w1_th zero center 300x48053 B
normalization
. 32 3x3x3 convolutions with stride [1 Weights: 3x3x3x32
2 Convolution 1] and same padding 32048032 Bias: 1x1x32
3 Batch normalization and Batch normalization with 32 channels 320x480x32 Offset: 1x1x32
ReLU and activation function XU Scale: 1x1x32
4 Convolution 32 3x3x32 convolutions w_ith stride [1 32048032 Welghts: 3x3x32x32
1] and same padding Bias: 1x1x32
5 Batch normalization and Batch normalization with 32 channels 320%480x32 Offset: 1x1x32
ReLU and activation function Scale: 1x1x32
6 Convolution 2 1x1x32 convolutions w1'th stride [1 320x480x2 Welghts: 1x1x32x2
1] and same padding Bias: 1x1x2
. 2x2 average pooling with stride [2 2] B
7 Average pooling and padding [0 0 0 0] 160x240x32
3 Convolution 64 3x3x32 convolutions Wlth stride [1 160x240x64 Welghts: 3x3x32x64
1] and same padding Bias: Ix1x64
9 Batch normalization and Batch normalization with 64 channels 160x240x64 Offset: 1x1x64
ReLU and activation function e Scale: 1x1x64
10 Convolution 64 3x3x64 convolutions w_1th stride [1 160x240x64 Welghts: 3x3x64x64
1] and same padding Bias: 1x1x64
1 Batch normalization and Batch normalization with 64 channels 160x240x64 Offset: 1x1x64
ReLU and activation function Scale: 1x1x64
12 Convolution 2 1x1x64 convolutions w1.th stride [1 160x240x2 Welgl.lts: 1x1x64x2
1] and same padding Bias: 1x1x2
. 2 2x2x2 transposed convolutions with Weights: 2x2x2x2
13 Transposed convolution stride [2 2] and output cropping [0 0] 3204802 Bias: 1x1x2
. 2x2 average pooling with stride [2 2] _
14 Average pooling and padding [0 0 0 0] 80x120x64
. 128 3x3x64 convolutions with stride Weights: 3x3x64x128
15 Convolution [1 1] and same padding 80120128 Bias: 1x1x128
16 Batch normalization and Batch normalization with 128 channels 30x120x128 Offset: 1x1x128
ReLU and activation function Scale: 1x1x128
. 128 3x3x128 convolutions with stride Weights: 3x3x128x128
17 Convolution [1 1] and same padding 80x120x128 Bias: 1x1x128
Batch normalization and Batch normalization with 128 channels Offset: 1x1x128
18 o . 80x120x128
ReLU and activation function Scale: 1x1x128
19 Convolution 2 1x1x128 convolutions Wlth stride [1 80x120x2 Welghts: 1x1x128%2
1] and same padding Bias: 1x1x2
. 2 4x4x2 transposed convolutions with Weights: 4x4x2x2
20 Transposed convolution stride [4 4] and output cropping [0 0] 3204802 Bias: 1x1x2
. Concatenate the resulting feature maps
21 Concatenation from the output of the layers 6, 13, 20 320x480x6 -
9 Convolution 2 1x1x6 convolutions w1§h stride [1 1] 320x480x2 Welghts: Ix1x6x2
and same padding Bias: 1x1x2
23 Softmax Activation function 320x480x2 -
24 Pixel classification Class welgjlted c”ross-intropy loss \thh B B
classes “edge” and “background

Table 2 — The values of 7P, TN, and FOM for the results of edge

detection with the RCF-ST network (with batch normalization),

and RCF network (without batch normalization)
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Fig. 4 shows the initial BSDS500 images, the ground-
truth images, edge maps, obtained by RCF-ST network
with transposed convolution, and edge maps, obtained by

Stages number With Latcthimalj atioZN [ _FoM RCF-ST network with interpolation. The multi-scale
3 97374 & 92.304 0.492 representation of BSDS500 images obtained by RCF-ST
4 99.368 91.621 0.512 network is shown on Fig. 5. It can be seen from the Fig. 4
5 98.691 91.087 0.508 that edge detection by the RCF-ST network with
Without batch normalization transposed convolution is characterized by high
3 84.892 84.214 0.337 perfomlance.
4 82.369 78.315 0.301 In Table 3 the results of edge detection by the RCF-ST
5 77.270 74.454 0.295 network with three processing stages is shown. The

number of convolutions in convolutional layers is varied.
The transposed convolution is applied for up-sampling of
feature maps of initial image on different scales.
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Figure 4 — The edge detection results by proposed RCF-ST network:
a, e, i, m, q, u, y — the initial BSDS500 images; b, f, j, n, r, v, z — the ground-truth images; c, g, k, o, s, w, A — edge maps, obtained by
RCEF-ST network with transposed convolution; d, h, 1, p, t, x, B— edge maps, obtained by RCF-ST network with interpolation
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Figure 5 — The multi-scale representation of BSDS500 images from Fig. 4 obtained by RCF-ST network:
a, d, g — the fine scale images; b, e, h — the middle scale images; c, f, i — the coarse scale images

Table 3 — The results of edge detection by the RCF-ST network
with the different number of convolutions in convolutional
layers (three processing stages)

The edge detection performance of the BSDS500
images by the proposed RCF-ST network, and methods
known from the literature are given in Table 5.

The number of P N FoM
Cogzgﬁ’tll‘;gf;ﬁa‘y‘;s Table 5 — The ODS and OIS obtained from the BSDS500
8. 16,32 96.423 36.705 0383 images by the proposed RCH—ST network, and methods known
16, 32, 64 98.062_| 91219 0.445 from the literature [1, 21]
32, 64, 128 97374 92.304 0.492 Reference, publication year, network name ODS OIS
[15],2017, HED 0.788 0.808
_ [16], 2017, RCF 0.808 0.823
The results of edge detection performance by the [17], 2018, LPCB 0.808 0.824
RCF-ST network with bicubic interpolation of image [18], 2022, BDCN 0.820 0.838
feature maps at different stages are presented in Table 4. [19], 2020, DexiNed 0831 | 0.845
[20], 2020, DSCD 0.826 0.857
Table 4 — The values of TP, TN, and FOM for the results of edge [21], 2021, PiDiNet 0807 0823
detection with the RCF-ST network with interpolation ’ ’
Stages number | TP | ™ | FOM Proposed RCF-ST network, 3 stages 0.823 0.853
With batch normalization Proposed RCF-ST network, 4 stages 0.887 0.894
i Zg?i; g;ggé 8;‘7“7‘ Proposed RCF-ST network, 5 stages 0.862 0.872
5 95.926 86.299 0.369 . .
Wihomt batch nommalzation For comparison, the edge detection performance of the
3 20036 5616 35 Multicue dataset images by the methods known from the
= 6'93 79'211 0.308 literature are given in Table 6.
72408 71305 0311 Table 6 — The ODS and OIS obtained from Multicue dataset

For comparison, the results of edge detection by the
RCF network with similar architecture and bicubic
interpolation of image feature maps at different stages is
shown as well. The number of network processing stages
is varied.
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[32] images by the methods known from the literature [21]

Reference, publication year, network name ODS OIS
[15], 2017, HED 0.851 0.864
[16],2017, RCF 0.857 0.862
[18], 2022, BDCN 0.891 0.898
[21], 2021, PiDiNet 0.858 0.863
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6 DISCUSSIONS
Analysis of the indexes given in Table 2 showed that
the using of batch normalization improves the edge
detection performance. Specifically, 7P, TN, and FOM

have increased by 14-27%, 9-23%, 48-76%
respectively. For reseached images more often
background pixels were incorrectly assigned to the image
edge.

Analysing Table 3 it should be noted the follow. If the
number of convolutions in convolutional layers is
decreased by two times then FOM are less by 9-32%. TP
and 7N mainly differed within the statistical error.

In addition, it is preferable to use average pooling than
max pooling. The latter can enhance 7P and TN by 0.5-
1% depending on a number of processing stages.

The using of the interpolation instead of transposed
convoluton of image feature maps at different processing
stages is not advisability because the edge detection
performance reduces. Specifically, 7P is less by up to 4%,
TN is less by 4-5%, FOM is less by up to 33%.

Analysis of the edge detection performance of the
proposed RCF-ST network and the known methods [15-
21] showed the following (Table 5). The ODS and OIS of
the proposed RCF-ST network exceeds the known
methods by 9—10% for BSDS500 images. The data given
in Table 6 show that similar values of ODS and OIS are
achievable by methods known from the literature, but on
Multicue dataset [32].

A comparison of a number of parameters was made
for the proposed RCF-ST network and RCF network with
three processing stages. The basic RCF network with the
architecture on Fig. 1 contains 1,758,600 parameters. The
proposed RCF-ST network with the architecture in Table
1 contains 288,456 parameters. Thus, the number of
parameters of the proposed RCF-ST network is 6 times
less than the number of parameters of the basic RCF
network, provided that the number of processing stages is
equal.

A comparison of processing time was made for the
edge detection on natural images by the proposed RCF-
ST network with different number of processing stages.
The researched natural images were cutted to a size of
320x480 pixels. Then the processing time of the RCF-ST
network was calculated on average per image when
training the network using the Adam method. It was
0.708-0.733;  0.921-0.982; 1.505-1.678 seconds per
image when 3, 4, 5 processing stages are used
correspondingly. The number of convolutions in
convolutional layers was chosen as 32, 64, 128, 256, 512.
The RCF network with similar architecture, that is, with
the architecture as in Fig. 3, only without the batch
normalization layers is also considered. It’s average
processing time for one image with 3, 4, 5 processing
stages was 0.563-0.571; 0.640-0.653; 0.708-0.771
seconds correspondingly when trained by the Adam
method. The research was performed using an Intel Core
15-7400 processor, 3 GHz CPU, 16GB memory, Windows
10 operating system, 64 bit. Thus, the proposed RCF-ST
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network requires on average 26-28, 44-50, 113-118
percents more time to process one image with 3, 4, 5
stages correspondingly than the RCF network. The
number of training epochs of the RCF-ST network and
RCF network for this edge detection problem is similar on
average.

CONCLUSIONS

The actual scientific and applied problem of a
structural tuning of a pre-synthesized neural network for
edge detection on natural images has been solved.

The scientific novelty is the proposed technique of
structural tuning of a deep learning neural network, which
uses a sequentially destructive and constructive approach.
According to the proposed technique, the network
thinning and then removing at each stage the sigmoid
activation function with subsequent calculation of the loss
function were first performed as part of the destructive
approach. Then, as part of a constructive approach, the
batch normalization and ReLU layers are added after
convolutional layers. As a result of applying this
technique, the obtained RCF-ST network allows to
improve the performance of edge detection on natural
images. RCF-ST network is characterized by a
significantly fewer parameters compared to the RCF
network, which makes it possible to reduce the resource
consumption of the network. Besides, RCF-ST network
ensures the enhancing of the robustness of edge detection
on texture background.

The practical significance of obtained results is that
the software realizing the proposed RCF-ST network is
developed, as well as experiments to research its edge
detection performance are conducted. The experimental
results allow to recommend the proposed RCF-ST for use
in practice, as well as to determine effective conditions
for the application of this network. The structural tuning
technique may be used for informed design of the neural
network architectures for other artificial intelligence
problems.

Prospects for further research are to elaborate the
postprocessing module which will thin and smooth the
contours detected by the proposed RCF-ST network.
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RCF-ST: CTPYKTYPHE HAJIAIITYBAHHSI HEHPOHHOI MEPEKH 3 HACHYEHIIIIAMM 3rOPTKOBUMH
O3HAKAMM JJIA BUAIJIEHHSA KOHTYPIB HA 305PA’KEHHAX PEAJIBHUX CIHEH

HoasikoBa M. B. — 51-p TexH. Hayk, JOLeEHT, npodecop kadenpu NpHKIagHO! MaTeMaTHKH Ta iH(QOpPMAaIiMHUX TEXHOJOTIH
HanionansHoro yHiBepcutety «Ojnecbka nojitextikay, Ozneca, Ykpaina.

AHOTAUIIA

AxTyanbHicTh. Po3rimsHyTo npobiemy aBroMaTH3alil BUAIIEHHS KOHTYPIB HA 300paKEHHSAX PEaIbHUX CLEH B IHTEIEKTyalbHUX
cucremax. [IpexmMeToM OCTIIKEHHS € 3rOPTKOBI HEHPOHHI Mepexki IITMO0KOro HaBUaHHS JUIsl BUIUICHHS KOHTYPIB Ha 300paKeHHIX
peanpHUX CieH. MeToro NOCHIUKEHHS € IiJBHMIIEHHS SKOCTI BHIUICHHS KOHTYPIB Ha 300paKeHHSX pealbHHX CLEH MUISIXOM
CTPYKTYpPHOT'O HaJAIITYBaHHs apXiTEKTYpH HEHPOHHOI Mepexki 3 HACHYEHIIIMMH 3rOPTKOBHMH O3HAKaMH.

Metoa. [{ns aBromMaru3awil NMPOEKTYBaHHsS apXiTEKTYpH HEHPOHHOI MepeXkH, IO BIUIMBAE HA SIKICTh BUJALICHHS KOHTYPIB
300pakeHb, B pOOOTI 3aCTOCOBAHO CTPYKTypHE HamamTtyBaHHs. OOYMCIIIOBaJIbHI BHTpAaTH Ha CTPYKTypHE HAaJaIliTyBaHHSI
HE3pIBHSHHO MEHIII MOPIBHSHO 3 MOIIYKOM HEWPOHHOI apXiTeKTypu, aje MOoTpiOHa Oinmbln BHCOKa KBamidikaiis IOCIiAHHKA, i
OoTprMaHe pinreHHs Oyae cyOonTHManbHUM. Y HBOMY JAOCTIKEHHI MOCHIJOBHO 3aCTOCOBAHO CIIOYATKY NECTPYKTHBHUM, a MOTIM
KOHCTPYKTHBHHUH MiJIXiJ 0 CTPYKTYPHOTO HaJAIITyBaHHS apXiTekTypu 0a3zoBoi HeliporHOI Mepeki RCF. 3rizHo KOHCTPYKTHBHOMY
MAXOMY AJISL PO3IIMPEHHS MEPeXi MPOCTOI apXiTeKTypH JOAAIOTHCS IPUXOBaHI MIapH, BY3JH Ta 3’ €AHAHHS. JleCTpyKTUBHMH Miaxifg 3
MepesKi CKIaaHOI apXiTeKTypH BHAAISE IPUXOBaHI IapH, By3IIH Ta 3 €JHAHHS 00 CIIPOCTUTH Mepexxy. CTpyKTypHe HaJaIlITyBaHHS
HeliponHol Mepexxi RCF 3 HacHyeHIIMMM 3rOpTKOBMMH O3HAaKaMM BKIIoYae: (1) 3MEHIIEHHs KUIBKOCTI 3rOPTKOBHUX miapis; (2)
3MEHIIEHHS KUIBKOCTI 3TOPTOK Y 3rOPTKOBUX IIapax; (3) BUIAICHHs Ha KOXKHOMY eTari CUrMoinHoi GyHKIiT akTHBaii 3 MoJaabliinm
obuncnenusM ¢GyHKIil BTpaT; (4) JomaBaHHs IIapiB IMAakeTHOI HOpMauizamii Mmicis 3ropTKoBHX wmapiB; (5) momaBaHHS (yHKIIT
aktuBauii ReLU micns mapis nakersoi Hopmaizauii. Orpumana neiiponHa mepexa RCF-ST notpebye MaciuTabyBaHHS MOYaTKOBHX
KOJIbOPOBUX 300pakeHb J0 33JaHOTO PO3Mipy Hepel MOJaHHSAM Ha BXiJ Mepexi. JomibHICTh KOKHOTO i3 3apPONOHOBAHMX €TAIliB
CTPYKTYPHOTO HAaJIAIITYBaHHA MEpEkXi IOCHIIKYBaHO MHUIIXOM OLIHKM SKOCTI BHAUIEHHS KOHTYpIB 3a JOMOMOTOIO EJIEMEHTIB
MaTpHIi MOMIIOK Ta Kputepis [Iperra. JIOMiNBHICTE CTPYKTYpPHOTO HANAIITYBAHHS HEHPOHHOT MEPEKi B LIIOMY OIL[IHEHO IILISIXOM 11
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