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ABSTRACT 
Context. The problem of automating of the edge detection on natural images in intelligent systems is considered. The subject of 

the research is the deep learning convolutional neural networks for edge detection on natural images. 
Objective. The objective of the research is to improve the edge detection performance of natural images by structural tuning the 

richer convolutional features network architecture. 
Method. In general, the edge detection performance is influenced by a neural network architecture. To automate the design of the 

network structure in the paper a structural tuning of a neural network is applied. Computational costs of a structural tuning are 
incomparably less compared with neural architecture search, but a higher qualification of the researcher is required, and the resulting 
solution will be suboptimal. In this research it is successively applied first a destructive approach and then a constructive approach to 
structural tuning of the based architecture of the RCF neural network. The constructive approach starts with a simple architecture 
network. Hidden layers, nodes, and connections are added to expand the network. The destructive approach starts with a complex 
architecture network. Hidden layers, nodes, and connections are then deleted to contract the network. The structural tuning of the 
richer convolutional features network includes: (1) reducing the number of convolutional layers; (2) reducing the number of 
convolutions in convolutional layers; (3) removing at each stage the sigmoid activation function with subsequent calculation of the 
loss function; (4) addition of the batch normalization layers after convolutional layers; (5) including the ReLU activation functions 
after the added batch normalization layers. The obtained neural network is named RCF-ST. The initial color images were scaled to 
the specified size and then inputted in the neural network. The advisability of each of the proposed stages of network structural 
tuning was reseached by estimating the edge detection performance using the confusion matrix elements and Figure of Merit. The 
advisability of a structural tuning of the neural network as a whole was estimated by comparing it with methods known from the 
literature using the Optimal Dataset Scale and Optimal Image Scale. 

Results. The proposed convolutional neural network has been implemented in software and researched for solving the problem 
of edge detection on natural images. The structural tuning technique may be used for informed design of the neural network 
architectures for other artificial intelligence problems. 

Conclusions. The obtained RCF-ST network allows to improve the performance of edge detection on natural images. RCF-ST 
network is characterized by a significantly fewer parameters compared to the RCF network, which makes it possible to reduce the 
resource consumption of the network. Besides, RCF-ST network ensures the enhancing of the robustness of edge detection on texture 
background.  

KEYWORDS: natural image, edge detection, convolutional network, richer convolutional features, structural tuning, batch 
normalization. 

 
ABBREVIATIONS 

CNN is a convolutional neural network; 
RCF is a Richer convolutional features; 
HED is a Holistically-nested edge detection; 
LPCB is a Learning to predict crisp boundaries; 
BDCN is a Bi-directional cascade network; 
DexiNed is a Dense extreme inception network; 
DSCD is a Deep structural contour detection; 
PiDiNet is a Pixel difference network; 
ReLU is a rectified linear unit; 
RCF-ST is a Richer convolutional features with 

structural tuning; 
BSDS500 is a Berkeley Segmentation Dataset with 

500 images; 
FOM is a Figure of  Merit;  
ODS is an Optimal Dataset Scale;  
OIS is an Optimal Image Scale.   

 
NOMENCLATURE 

n is a number of rows of the image; 

m is a number of columns of the image; 
(x,y) are  coordinates of the image pixel; 
I(x,y) is a vector function representing an image by 

color components; 
IR(x,y), IG(x,y), IB(x,y) are the functions of intensity of 

the red, green, blue color components respectively; 
structRCF is an architecture of the RCF network; 
paramRCF is a set of parameters of the RCF network; 
WRCF is a subset of RCF network layer weights; 
BRCF  is a subset of RCF network bias values; 
xni  is a nth normalized output of the ith network layer; 
i is a compression of the xni ; 
i  is a shift of the xni ; 
yni  is a transformed with i and i  output of the 

network layer; 
TP is apercentage of image background pixels that are 

correctly labeled as background;  
TN is a percentage of image edge pixels that are 

correctly labeled as edge. 
Fβ is a Fβ-score;  
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β is a Fβ-score constant from 0 to infinity; 
Pr is a precision; 
Rc is a recall. 

 
INTRODUCTION 

The problem of edge detection on images remains 
relevant in the development of intelligence systems for a 
number of applications. These applications include 
technical and medical diagnostics, image search in 
databases and the Internet, face recognition, non-
destructive testing, process control. The selection of the 
object edge detector for the implementing an intelligent 
system is determined primarily by the properties of the 
processed images, the noise level, as well as the 
requirements for the edge detection performance. So, in 
systems for monitoring the environment, transport and 
infrastructure, searching for images in databases and the 
Internet, and others, it becomes necessary to process 
natural images. 

Natural images are characterized by a low level of 
noise. Objects on such images may contain texture areas 
or areas of smooth color change. When detecting the 
object edges on natural images, one should take into 
account not only color differences, but also the 
boundaries of texture areas. Then it is necessary to 
establish a correspondence between color differences and 
the boundaries of objects on natural images, ignoring the 
background texture and noisy pixels [1]. 

The object of research is the process of edge detection 
on natural images in intelligent systems. 

In recent years, considering the problems of thick 
image edge contour, inaccurate positioning, and poor 
detection accuracy, a variety of edge detection methods 
based on deep learning CNN have been proposed. With 
the development of technology, the CNN edge detection 
accuracy has been increased. However, at the same time, 
the depth of the networks has been deepened, leading to 
problems such as a very large number of parameters, 
training difficulties, and model complexity [1].  

For the effective use of a neural network, it is 
necessary to design its architecture and to train the weight 
coefficients. Network architectures are usually selected 
heuristically based on the experience of the developer. 
When image edge detecting, networks of too simple 
architecture are not able to adequately model the target 
dependence between the pixels of the original image and 
the edge map. Too complex architectures of neural 
networks imply an excessive number of free parameters, 
which in the learning process are tuned not only to restore 
the target dependence, but also noise [2]. One way to 
solve this problem is the structural tuning of CNN [3, 4]. 

The subject of the research is the structural tuning of 
the convolutional neural networks for edge detection on 
natural images. 

When processing images of real scenes, the  RCF 
network proved to be effective for edge detection [1]. 
However, the quality of the results of edge detection using 
this network is determined by the number of processing 
scales and by the network architecture. The latter implies 

the selection of such hyperparameters as the number and 
size of filter kernels in a layer, the adding and removing 
layers, including activation functions. 

The aim of the research is to improve the edge 
detection performance of natural images by structural 
tuning the RCF deep learning network architecture. 

 
1 PROBLEM STATEMENT 

The color natural image is represented as 
I(x,y)=(IR(x,y), IG(x,y), IB(x,y)}, where x=1, …, n; y=1, …, 
m. Then each pixel of the image is described by three 
features IR(x,y), IG(x,y), IB(x,y) which take values from the 
interval [0, 1]. To detect edges on the image, each pixel of 
the original image must be associated with the value of 
the target feature. There is a label of one of two classes, 
specifically, 0 for boundary pixels, 1 for pixels inside 
homogeneous areas. The values of the target feature for 
the natural image should be represented as a binary image 
which is the result of edge detection [5]. 

Let an RCF network RCF={structRCF, paramRCF} was 
preliminarily synthesized to detect the image edges. The 
set structRCF includes layers of the synthesized network 
with layer hyperparameters such as the size of the 
convolution kernel and the number of convolutions. The 
set paramRCF={WRCF, BRCF }[6]. 

The problem of structural tuning of the RCF network 
is as follows. It is necessary to make structural changes to 
the existing architecture of the RCF network structRCF. 
These changes should improve the image edge detection 
performance compared to the initial RCF network after 
training the parameters of the resulting network. At the 
same time, the number of parameters of the resulting 
network should not increase [2]. 
 

2 REVIEW OF THE LITERATURE 
To solve the problem of object edge detection on 

natural images, the deep learning CNN have been widely 
used recently. In [1] such methods in terms of model 
structure, technical difficulties, method advantages, and 
backbone networks are classified into three types. These 
are codec-based CNN,  network reconstruction-based 
methods, and multi-scale feature fusion-based CNN. 

Edge detection methods based on codec were 
introduced, as they can accept input images of any size 
and produce output images of the same size [7–9]. Since 
CNNs reduce the size of an image after convolutions and 
pooling, their final output in fact does not correspond to 
every pixel in the original image. Fully convolutional 
networks are used to retain better low-level edge 
information, suppress non-edge pixels, and provide 
detailed edge location [7]. The encoder layers are produce 
feature maps with semantic information. The decoder 
layers are transform the low-resolution feature maps 
which outputted by the encoder back to the size of the 
input image by pixel classification  [1]. 

Edge detection methods based on network 
reconstruction integrate various network modules based 
on deep learning [10–12]. Different modules show 
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different advantages for edge detection, so the 
combination of such modules through network 
reconstruction is an important way to improve the edge 
detection results [13, 14]. 

The edge detection methods based on multi-scale 
feature fusion combine features of different scales. The 
higher layer of the network has a larger perceptual field 
and a strong ability to characterize semantic information 
while the lower layer of the network has a smaller 
perceptual field but a strong ability to characterize 
geometric details. Then combining of the local and global 
information of the image improves the edge detection 
performance [1].  

This paper is focused on the edge detection methods 
based on multi-scale feature fusion. The backbone 
networks of these methods are the HED [15] and RCF 
[16]. The LPCB [17], BDCN [18], DexiNed [19], DSCD 
[20], PiDiNet [21] and other networks are proposed based 
on the HED and RCF networks, as well as by combining 
with the architectures of other networks to improve the 
edge detection performance. 

The HED algorithm is proposed in [15], where a fully 
convolutional network is used to resolve ambiguity in 
edge and object boundary detection. Deeply-supervised 
side replies were interpolated to initial image size and 
fused to obtain nested multi-scale features. Thus HED 
develops rich hierarchical representation automatically 
directed by deep supervision on side replies [15]. 

In [17] the HED network is improved to solve the 
problem of thick contour in edge detection. The obtained 
LPCB network is based on VGG16 network [22] and uses 
the fully convolutional network of bottom-up/top-down 
architecture [23]. Based on image similarity a new loss 
function is also proposed, which is very effective for 
classifying unbalanced data. The LPCB network resolves 
ambiguities in edge detection, and obtains accurate results 
without post-processing. Compared to the HED network, 
LPBC uses fewer parameters although the last network 
shows better edge detection performance. 

Inspired by HED [15] and Xception [24] networks, in 
[19] the deep learning-based edge detector DexiNed is 
elaborated to generate thin edges without prior training or 
finetuning process. DexiNed can be regarded as two sub-
networks: extremely dense initial network and up-
sampling block. This network includes six encoders, and 
each of them outputs the corresponding feature for 
generating intermediate edge maps using the up-sampling 
block, which consists mainly of convolutional and 
deconvolutional layers. All edge maps generated by the 
up-sampling block are connected at the end of the 
network to produce the fusion edges. 

In [16] the RCF network for accurate edge detection is 
designed as a fully convolutional network based on the 
VGG16 network [22], removing the fully connected layer 
and the fifth pooling layer. While RCF edge detection the 
network estimates multi-scale features of the image by 
convolutional layers which have different perceptual 
fields and pooling layers. Then fusing the layer level 
features, all the weight parameters are done by automatic 

learning. Thus RCF network bases on the pyramid 
architecture, and combines the underlying feature maps 
for edge detection [25].  

In [18] the BDCN network is proposed to detect edges 
using multiscale information of images. The basic 
components of BDCN are ID Blocks. Each ID Block is 
learned by a bidirectional cascade structure, thus the 
output of two edge detections is passed separately to the 
shallow and high-level structures of the network. To 
enhance the features output from each layer, a Scale 
Enhancement Module is used. It consists of multiple 
parallel convolutions with different perceptual field [26], 
and finally outputting the result to multiple multi-scale 
feature fusion. 

In [20] the proposed DSCD network uses a VGG16 
encoder [22] to extract multi-scale and multi-level 
features. On top of the encoder a super-convolutional 
module is constructed to directly abstract the high-level 
features and avoid overfitting problem. The decoder is 
fused the high-level features and restored them to the 
original image size. A novel loss function based on the 
structural similarity of two images is proposed to 
minimize the distance between predicted and true values. 
The DSCD network better classifies the background 
texture and noisy pixels as compared with another codec 
networks, and generates clear and accurate image edges. 

In [21] the elaborated PiDiNet integrates a novel pixel 
difference convolution into network convolutional layer. 
As a result this network can easily capture image gradient 
information conducive to edge detection, while retaining 
the powerful learning ability of deep CNN to extract 
information with semantic significance. Then the direct 
integration of the gradient estimation into the convolution 
operation results in the better robustness and edge 
detection accuracy. 

As a result of the analysis of the literature, the 
following was observed. Methods of the first type have a 
similar encoder-decoder architecture, which has been 
effectively used to solve a number of applied problems. 
This architecture assumes a relatively small number of 
parameters compared to other convolutional networks. 
However, the inclusion of pooling layers reduces the 
image edge detection performance. Therefore, it is 
advisable to use methods of the first type when solving 
problems that do not require a high edge detection 
performance, for example, for localizing objects on 
images. 

The methods of the second type are characterized by 
the use of additional modules that improve the edge 
detection performance after or together with the use of 
CNN. Difficulties arise in the development and 
configuration of these modules, as well as the combining 
of additional modules with the architecture of the basic 
CNN. However, with a rational choice of additional 
modules and architecture of the CNN, it is possible to 
achieve high image edge detection performance. 

Methods of the third type implement the ideas of the 
two previous types of methods. A set of scale values is 
defined, which depends on the size, as well as the content 
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of the image. For each scale value, the boundaries of 
objects of a certain size are identified. These methods do 
not require additional modules to improve the quality of 
the contour. But there is a need to elaborate an approach 
to evaluate multi-scale features and to fuse the results of 
edge detection at different scales. 

The analysis of edge detection methods based on 
multi-scale feature fusion showed that the directions for 
improving the existing basic HED and RCF architectures 
and their combination with other architectures are as 
follows. Firstly, it is the elaboration of the classifier with 
the best separation of pixel classes by changing the loss 
function, as in LPCB and DSCD. Secondly, this is the 
evaluation of features with the better class separation, 
since the result of edge detection is determined by the 
shape of pixel clusters and the presence of data outliers. 
Along the way, integration gradient estimation into the 
convolution identifying is offered, as in the PiDiNet 
network, or blocks that take into account information 
about the edges is added, as in BDCN and DexiNed. In 
this context in the paper it is proposed to use the structural 
tuning of the RCF network. This approach allows to select 
the features of natural images and a way of them fusion 
with the better separation of edge and background pixels. 
 

3 MATERIALS AND METHODS 
In general, the edge detection performance is 

influenced by a neural network architecture. A simple 
architecture network may not provide good performance 
owing to its limited information processing power. A 
network of complex architecture may have high 
implementation cost and some of its elements are 
redundant. At the last time neural architecture search is 
applied to automate the defining the network structure 
[27]. Although this technique yields an optimal solution, 
its computational cost is enormous. Therefore, a different 
technique is used in the paper. This is a structural tuning 
of a neural network. Computational costs of a structural 
tuning are incomparably less, but a higher qualification of 
the researcher is required, and the resulting solution will 
be suboptimal. 

To tune the network structure, constructive and 
destructive approaches can be used [28]. The constructive 
approach starts with a simple architecture network. 
Hidden layers, nodes, and connections are added to 
expand the network. The destructive approach starts with 
a complex architecture network. Hidden layers, nodes, 
and connections are then deleted to contract the network 
[28]. 

In this research author successively applies first a 
destructive approach and then a constructive approach to 
structural tuning of the based architecture of the RCF 
neural network (Fig. 1). 

Thus, as a structural tuning of the RCF network, the 
following is proposed: (1) reducing the number of 
convolutional layers; (2) reducing the number of 
convolutions in convolutional layers; (3) removing at 
each stage the sigmoid activation function with 
subsequent calculation of the loss function; (4) addition of 

the batch normalization layers after convolutional layers; 
(5) including the ReLU activation functions after the 
added batch normalization layers. Let’s explain these 
steps in more detail. 

 

 
Figure 1 – The RCF architecture [16] 

 
As a result of the destructive approach, the number of 

convolution layers and the number of convolutions in the 
remaining convolution layers were reduced (Fig. 2).  Such 
operation is known as thinning of CNN [29].  

Deep learning convolutional networks extract the 
image features in convolutional layers. For each such 
layer, the number of features to be evaluated is specified 
by the number of convolutions in the layer. Each feature 
is identified by a convolution kernel, as well as a kernel 
shift, and these same parameters determine the image 
scale on which this feature is extracted.  

The redundant or poorly informative features in the 
resulting set reduce the rate of convergence of the 
network training, in particular, increases the variance of 
network parameter estimates. To increase the edge 
detection performance the noisy features can been 
discarded, as well as similar features. The last are 
processed as one feature with a large weight. The feature 
space dimension can be reduct by reducing the number of 
convolutions of CNN. This makes it possible to use a 
smaller training set, reduce training time, and reduce the 
network overfitting probability. The evaluation of features 
for edge detection on images influences on the 
separability of image classes, taking into account the fact 
that the number of edge pixels differs significantly from 
the number of background pixels. Therefore, the 
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structural tuning of the RCF network in this paper 
includes altering the number of convolutional layers and 
the number of convolutions in convolutional layers. 

 

 
Figure 2 – The result of applying a destructive approach to the 

structural tuning of the RCF architecture  
 

In addition, the layer containing the sigmoid activation 
function, followed by the calculation of the loss function, 
was removed from the architecture of the basic RCF 
neural network at each stage of processing (Fig. 2). This 
is due to the following. At each stage of edge detection by 
the basic RCF network edge probability map was formed 
as result of applying the sigmoid activation function. 
Then all obtaining probability edge maps were bilinear 
interpolated to the size of the original image. Further, for 
each stage, the value of the loss function was calculated 
taking into account the result of interpolation of the edge 
probability map and the ground-truth image. The values 
of the loss function at different stages were summed 
during network training. 

Removing at each stage the layer containing the 
sigmoid activation function with subsequent calculation 

of the loss function avoids additional computational costs 
for determining the values of the loss function at different 
scales and introduces redundancy into the multiscale 
representation of the image. The latter contributes to an 
increase in the robustness of edge detection on natural 
images. In such images, it is often necessary to determine 
the intensity or color edges on the texture background. 
Natural images contain mostly statistical textures, which 
can be considered as noise and negatively affect the edge 
detection performance. 

Further in the process of structural tuning of the RCF 
neural network, a constructive approach was used after 
applying the destructive approach. Namely, the layers of 
batch normalization and nonlinearity in the form of the 
ReLU activation function were added after the 
convolutional layers. 

Batch normalization layer solves vanishing gradient 
problem. It is known that the error backpropagation 
algorithm converges faster if the input data is normalized 
(has zero mean and unit variance) [5, 30]. However, when 
a signal propagates through a neural network, its mean 
value and variance can change significantly. To avoid 
this, the standard normalization of the outputs of the 
convolutional layer is applied. Nevertheless, normalizing 
the output of a convolutional layer can change the 
representation of the data in the next layer. Therefore, two 
additional parameters i and i are adjusted in the learning 
process along with the rest of the parameters and 
transform xni as yni=ixni+i [5].  

The applying of batch normalization actually 
corresponds to edge contrasting which improves the edge 
detection performance. For CNNs, batch normalization 
reduces training time and reduces the chance of 
overfitting.  

The ReLU activation function returns 0 for a negative 
argument, and in the case of a positive argument, returns 
the same. The applying of this function actually 
corresponds to thresholding in gradient edge detection 
methods. ReLU sharps object edges on an image because 
the advantage of this function over the sigmoid is the 
sparseness of activation (fewer neurons being activated). 

The obtained neural network is named RCF-ST. It 
processes a three-channel image with a size of 320(480 
pixels. Therefore, the initial color images were scaled to 
the specified size and then each image was inputted to the 
proposed neural network (Fig. 3). It is assumed that 
deconvolution and transposed convolution are the same 
operations. The architecture of RCF-ST network for the 
edge detection is shown in Table 1.  

 
4 EXPERIMENTS 

For experimental research of the results of each stage 
of the structural tuning of the neural network, the edge 
detection performance was evaluated for natural images 
from the BSDS500 dataset [31]. The dataset contains a 
total of 500 images, including 200 training images and 
200 test images, and the remaining 100 validation images. 
The true values of the image edges are also presented on 
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ground-truth images which are binary images with 
contours selected by 5-8 experts (edge maps)  [31]. The 
performance of edge detection was evaluated by 
comparing edges obtained in the RGB color space using 
the proposed CNN, with edges labeled by experts. 

 

 
Figure 3 – The proposed  RCF-ST network architecture for three 

stages of processing. It is assumed that deconvolution and 
transposed convolution are the same operations 

 
The Adam method with an initial learning rate of 

0.005 was used to train the RCF-ST network. A cross-
entropy loss function was used, for which relative 
frequencies of the appearance of edge pixels and 
background pixels were taken into account [5].  

To characterize the edge detection results the   
elements of confusion matrix TP and TN were used. In 
addition the FOM value [5] was estimated for the edge 
detection results. The FOM value is varied from 0 to 1 

and normalized such that FOM=1 for a well detected 
edge.  

For evaluation of edge detection results ODS and OIS 
are the widely used [1]. The ODS and OIS are defined 
based on Fβ-score which is expressed as 

 

Fβ= (1+β2) Pr Rc / (β2Pr+Rc), 
 

where Pr = ТР/(ТР+FP), Rc = ТР/(ТР+FN). The degree 
of significance of precision Pr and recall Rc can be 
controlled by adjusting the value of β. ODS and OIS 
indicate different ways of setting the threshold β in this 
formula. ODS is equal to Fβ-score if a fixed threshold β is 
selected and applied to all images so that the Fβ-score on 
the whole dataset is maximized. OIS is estimated from Fβ-
score if a different threshold β is selected on each image 
that maximizes the Fβ-score of that image [1]. 

The experiment was conducted in accordance with the 
stages of structural tuning of the neural network. The 
advisability of each of the proposed stages was researched 
by estimating the edge detection performance using the 
TP, TN, FOM. The advisability of a structural tuning of 
the neural network as a whole was estimated by 
comparing it with methods known from the literature 
using the ODS and OIS. 

First of all, as part of the experiment, the advisability 
of addition of the batch normalization layers after 
convolutional layers, and including the ReLU activation 
functions after the added batch normalization layers is 
researched. For this the proposed RCF-ST network, and 
RCF network were used to detect the object edges on 
natural images [31].  A number of stages of the RCF-ST 
network, and RCF network is varied from 3 to 5.  

Further, the values of the selected indexes of the edge 
detection were evaluated depending on the number of 
convolutions in convolutional layers. 

At the next stage of the experiment, as an alternative 
to transposed convolution, bicubic interpolation of image 
feature maps at different scales was used. The 
interpolated feature maps (layers 6, 12, 19 from Table 1) 
were concatenated. Then 1x1 convolutional layer, 
Softmax activation function, and pixel classification layer 
(layers 21-24 from Table 1) were applied. 

Then the edge detection performance of the proposed 
RCF-ST network, and methods known from the literature 
is compared using ODS and OIS. 

At the last part of experiment a number of parameters 
and the processing time of the edge detection on 
BSDS500 images was estimated for networks with 
considered architectures. 
 

5 RESULTS 
The elements of confusion matrices and FOM values 

for the results of 3, 4, 5 processing stages with the 
proposed RCF-ST network, and RCF network is shown in 
Table 2. Values in this table were obtained by averaging 
the FOM, TP, and TN for the edge detection on BSDS500 
natural images. 
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Table 1 – The proposed RCF-ST network architecture 
Layer 

number 
Type Comment Activations Learnables 

1 Image input 3204803 image with zero center 
normalization 

3204803 – 

2 Convolution 32 333 convolutions with stride [1 
1] and same padding 

32048032 
Weights: 33332 

Bias: 1132 

3 
Batch normalization and 

ReLU 
Batch normalization with 32 channels 

and activation function 32048032 
Offset: 1132 
Scale: 1132 

4 Convolution 32 3332 convolutions with stride [1 
1] and same padding 

32048032 
Weights: 333232 

Bias: 1132 

5 
Batch normalization and 

ReLU 
Batch normalization with 32 channels 

and activation function 32048032 
Offset: 1132 
Scale: 1132 

6 Convolution 2 1132 convolutions with stride [1 
1] and same padding 

3204802 
Weights: 11322 

Bias: 112 

7 Average pooling 22 average pooling with stride [2 2] 
and padding [0 0 0 0] 

16024032 – 

8 Convolution 64 3332 convolutions with stride [1 
1] and same padding 

16024064 
Weights: 333264 

Bias: 1164 

9 
Batch normalization and 

ReLU 
Batch normalization with 64 channels 

and activation function 16024064 
Offset: 1164 
Scale: 1164 

10 Convolution 64 3364 convolutions with stride [1 
1] and same padding 

16024064 
Weights: 336464 

Bias: 1164 

11 
Batch normalization and 

ReLU 
Batch normalization with 64 channels 

and activation function 16024064 
Offset: 1164 
Scale: 1164 

12 Convolution 2 1164 convolutions with stride [1 
1] and same padding 

1602402 
Weights: 11642 

Bias: 112 

13 Transposed convolution 2 222 transposed convolutions with 
stride [2 2] and output cropping [0 0] 

3204802 
Weights: 2222 

Bias: 112 

14 Average pooling 22 average pooling with stride [2 2] 
and padding [0 0 0 0] 

8012064 – 

15 Convolution 128 3364 convolutions with stride 
[1 1] and same padding 

80120128 
Weights: 3364128 

Bias: 11128 

16 
Batch normalization and 

ReLU 
Batch normalization with 128 channels 

and activation function 80120128 
Offset: 11128 
Scale: 11128 

17 Convolution 128 33128 convolutions with stride 
[1 1] and same padding 

80120128 
Weights: 33128128 

Bias: 11128 

18 
Batch normalization and 

ReLU 
Batch normalization with 128 channels 

and activation function 80120128 
Offset: 11128 
Scale: 11128 

19 Convolution 2 11128 convolutions with stride [1 
1] and same padding 

801202 
Weights: 111282 

Bias: 112 

20 Transposed convolution 2 442 transposed convolutions with 
stride [4 4] and output cropping [0 0] 

3204802 
Weights: 4422 

Bias: 112 

21 Concatenation 
Concatenate the resulting feature maps 
from the output of the layers 6, 13, 20 3204806 – 

22 Convolution 2 116 convolutions with stride [1 1] 
and same padding 

3204802 
Weights: 1162 

Bias: 112 
23 Softmax Activation function 3204802 – 

24 Pixel classification 
Class weighted cross-entropy loss with 

classes “edge” and “background” 
– – 

 
Table 2 – The values of TP, TN, and FOM for the results of edge 
detection with the RCF-ST network (with batch normalization), 

and RCF network (without batch normalization) 
Stages number TP TN FOM 

With batch normalization  
3 97.374 92.304 0.492 
4 99.368 91.621 0.512 
5 98.691 91.087 0.508 

Without batch normalization  

3 84.892 84.214 0.337 

4 82.369 78.315 0.301 

5 77.270 74.454 0.295 

 
 

 

 
Fig. 4 shows the initial BSDS500 images, the ground-

truth images, edge maps, obtained by RCF-ST network 
with transposed convolution, and edge maps, obtained by 
RCF-ST network with interpolation. The multi-scale 
representation of BSDS500 images obtained by RCF-ST 
network is shown on Fig. 5. It can be seen from the Fig. 4 
that edge detection by the RCF-ST network with 
transposed convolution is characterized by high 
performance. 

In Table 3 the results of edge detection by the RCF-ST 
network with three processing stages is shown.  The 
number of convolutions in convolutional layers is varied. 
The transposed convolution is applied for up-sampling of 
feature maps of initial image on different scales. 
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Figure 4 – The edge detection results by proposed RCF-ST network: 

a, e, i, m, q, u, y – the initial BSDS500 images; b, f, j, n, r, v, z – the ground-truth images; c, g, k, o, s, w, A – edge maps, obtained by 
RCF-ST network with transposed convolution; d, h, l, p, t, x, B– edge maps, obtained by RCF-ST network with interpolation  

 

129



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2023. № 4 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2023. № 4 

 
 

© Polyakova M. V., 2023 
DOI 10.15588/1607-3274-2023-4-12  
 

 
  

a b c 

   
d e f 

 
 

 

g h i 
   

Figure 5 – The multi-scale representation of BSDS500 images from Fig. 4 obtained by RCF-ST network: 
a, d, g – the fine scale images; b, e, h – the middle scale images;  c, f, i – the coarse scale images 

 

Table 3 – The results of edge detection by the RCF-ST network 
with the different number of convolutions in convolutional 

layers (three processing stages) 
 The number of 
convolutions in 

convolutional layers 

TP TN FOM 

8, 16, 32 96.423 86.705 0.343 
16, 32, 64 98.062 91.219 0.445 

32, 64, 128 97.374 92.304 0.492 

 
The results of edge detection performance by the 

RCF-ST network with bicubic interpolation of image 
feature maps at different stages are presented in Table 4. 
 

Table 4 – The values of TP, TN, and FOM for the results of edge 
detection with the RCF-ST network with interpolation 

Stages number TP TN FOM 
With batch normalization  

3 96.383 87.292 0.344 
4 95.149 87.026 0.377 
5 95.926 86.299 0.369 

Without batch normalization  

3 80.036 75.616 0.313 

4 79.693 79.211 0.308 

5 72.408 71.305 0.311 

 
For comparison, the results of edge detection by the 

RCF network with similar architecture and bicubic 
interpolation of image feature maps at different stages is 
shown as well.  The number of network processing stages 
is varied.  

The edge detection performance of the BSDS500 
images by the proposed RCF-ST network, and methods 
known from the literature are given in Table 5. 

 
Table 5 – The ODS and OIS obtained from the BSDS500 

images by the proposed RCF-ST network, and methods known 
from the literature [1, 21]  

Reference, publication year, network name ODS OIS 
[15], 2017, HED 0.788 0.808 
[16], 2017, RCF 0.808 0.823 

[17], 2018, LPCB 0.808 0.824 
[18], 2022, BDCN 0.820 0.838 

[19], 2020, DexiNed 0.831 0.845 
[20], 2020, DSCD 0.826 0.857 

[21], 2021, PiDiNet 0.807 0.823 

Proposed RCF-ST network, 3 stages 0.823 0.853 

Proposed RCF-ST network, 4 stages 0.887 0.894 

Proposed RCF-ST network, 5 stages 0.862 0.872 

 
For comparison, the edge detection performance of the 

Multicue dataset images by the methods known from the 
literature are given in Table 6. 

 
Table 6 – The ODS and OIS obtained from Multicue dataset 

[32] images by the methods known from the literature [21] 
Reference, publication year, network name ODS OIS 

[15], 2017, HED 0.851 0.864 
[16], 2017, RCF 0.857 0.862 

[18], 2022, BDCN 0.891 0.898 
[21], 2021, PiDiNet 0.858 0.863 
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6 DISCUSSIONS 
Analysis of the indexes given in Table 2 showed that 

the using of batch normalization improves the edge 
detection performance. Specifically, TP, TN, and FOM 
have increased  by 14–27%, 9–23%, 48–76% 
respectively. For reseached images more often 
background pixels were incorrectly assigned to the image 
edge. 

Analysing Table 3 it should be noted thе follow. If the 
number of convolutions in convolutional layers is 
decreased by two times then FOM are less by 9–32%. TP 
and TN mainly differed within the statistical error. 

In addition, it is preferable to use average pooling than 
max pooling. The latter can enhance TP and TN by 0.5–
1% depending on a number of processing stages. 

The using of the interpolation instead of transposed 
convoluton of image feature maps at different processing 
stages is not advisability because the edge detection 
performance reduces. Specifically, TP is less by up to 4%, 
TN is less by 4–5%, FOM is less by up to 33%. 

Analysis of the edge detection performance of the 
proposed RCF-ST network and the known  methods [15–
21] showed the following (Table 5). The ODS and OIS of 
the proposed RCF-ST network exceeds the known 
methods by 9–10% for BSDS500 images. The data given 
in Table 6 show that similar values of ODS and OIS are 
achievable by methods known from the literature, but on 
Multicue dataset [32]. 

A comparison of a number of parameters was made 
for the proposed RCF-ST network and RCF network with 
three processing stages. The basic RCF network with the 
architecture on Fig. 1 contains 1,758,600 parameters. The 
proposed RCF-ST network with the architecture in Table 
1 contains 288,456 parameters. Thus, the number of 
parameters of the proposed RCF-ST network is 6 times 
less than the number of parameters of the basic RCF 
network, provided that the number of processing stages is 
equal. 

A comparison of processing time was made for the 
edge detection on natural images by the proposed RCF-
ST network with different number of processing stages. 
The researched natural images were cutted to a size of 
320480 pixels. Then the processing time of the RCF-ST 
network was calculated on average per image when 
training the network using the Adam method. It was 
0.708–0.733;  0.921–0.982; 1.505–1.678 seconds per 
image when 3, 4, 5 processing stages are used 
correspondingly. The number of convolutions in 
convolutional layers was chosen as 32, 64, 128, 256, 512. 
The RCF network with similar architecture, that is, with 
the architecture as in Fig. 3, only without the batch 
normalization layers is also considered. It’s average 
processing time for one image with 3, 4, 5 processing 
stages was 0.563–0.571; 0.640–0.653; 0.708–0.771 
seconds correspondingly when trained by the Adam 
method. The research was performed using an Intel Core 
i5-7400 processor, 3 GHz CPU, 16GB memory, Windows 
10 operating system, 64 bit. Thus, the proposed  RCF-ST 

network requires on average 26–28, 44–50, 113–118 
percents more time to process one image with 3, 4, 5 
stages correspondingly than the RCF network. The 
number of training epochs of the RCF-ST network and 
RCF network for this edge detection problem is similar on 
average. 

 

CONCLUSIONS 
The actual scientific and applied problem of a 

structural tuning of a pre-synthesized neural network for 
edge detection on natural images has been solved. 

The scientific novelty is the proposed technique of 
structural tuning of a deep learning neural network, which 
uses a sequentially destructive and constructive approach. 
According to the proposed technique, the network 
thinning and then removing at each stage the sigmoid 
activation function with subsequent calculation of the loss 
function were first performed as part of the destructive 
approach. Then, as part of a constructive approach, the 
batch normalization and ReLU layers are added after 
convolutional layers. As a result of applying this 
technique, the obtained RCF-ST network allows to 
improve the performance of edge detection on natural 
images. RCF-ST network is characterized by a 
significantly fewer parameters compared to the RCF 
network, which makes it possible to reduce the resource 
consumption of the network. Besides, RCF-ST network 
ensures the enhancing of the robustness of edge detection 
on texture background.  

The practical significance of obtained results is that 
the software realizing the proposed RCF-ST network is 
developed, as well as experiments to research its edge 
detection performance are conducted. The experimental 
results allow to recommend the proposed  RCF-ST for use 
in practice, as well as to determine effective conditions 
for the application of this network. The structural tuning 
technique may be used for informed design of the neural 
network architectures for other artificial intelligence 
problems. 

Prospects for further research are to elaborate the 
postprocessing module which will thin and smooth the 
contours detected by the proposed RCF-ST network. 
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RCF-ST: СТРУКТУРНЕ НАЛАШТУВАННЯ НЕЙРОННОЇ МЕРЕЖИ З НАСИЧЕНІШИМИ ЗГОРТКОВИМИ 

ОЗНАКАМИ ДЛЯ ВИДІЛЕННЯ КОНТУРІВ НА ЗОБРАЖЕННЯХ РЕАЛЬНИХ СЦЕН  
 

Полякова М. В. – д-р техн. наук, доцент, професор кафедри прикладної математики та iнформаційних технологій 
Національного університету «Одеська політехніка», Одеса, Україна. 

 

AНОТАЦІЯ 
Актуальність. Розглянуто проблему автоматизації виділення контурів на зображеннях реальних сцен в інтелектуальних 

системах. Предметом дослідження є згорткові нейронні мережі глибокого навчання для виділення контурів на зображеннях 
реальних сцен. Метою дослідження є підвищення якості виділення контурів на зображеннях реальних сцен шляхом 
структурного налаштування архітектури нейронної мережі з насиченішими згортковими ознаками. 

Метод. Для автоматизації проектування архітектури нейронної мережи, що впливає на якість виділення контурів 
зображень, в роботі застосовано структурне налаштування. Обчислювальні витрати на структурне налаштування 
незрівнянно менші порівняно з пошуком нейронної архітектури, але потрібна більш висока кваліфікація дослідника, і 
отримане рішення буде субоптимальним. У цьому дослідженні послідовно застосовано спочатку деструктивний, а потім 
конструктивний підхід до структурного налаштування архітектури базової нейронної мережі RCF. Згідно конструктивному 
підходу для розширення мережі простої архітектури додаються приховані шари, вузли та з’єднання. Деструктивний підхід з 
мережі складної архітектури видаляє приховані шари, вузли та з’єднання щоб спростити мережу. Структурне налаштування 
нейронної мережі RCF з насиченішими згортковими ознаками включає: (1) зменшення кількості згорткових шарів; (2) 
зменшення кількості згорток у згорткових шарах; (3) видалення на кожному етапі сигмоїдної функції активації з подальшим 
обчисленням функції втрат; (4) додавання шарів пакетної нормалізації після згорткових шарів; (5) додавання функції 
активації ReLU після шарів пакетної нормалізації. Отримана нейронна мережа RCF-ST потребує масштабування початкових 
кольорових зображень до заданого розміру перед поданням на вхід мережі.  Доцільність кожного із запропонованих етапів 
структурного налаштування мережі досліджувано шляхом оцінки якості виділення контурів за допомогою елементів 
матриці помилок та критерія Претта. Доцільність структурного налаштування нейронної мережі в цілому оцінено шляхом її 
порівняння з відомими з літератури методами за допомогою Optimal Dataset Scale та Optimal Image Scale. 

Результати. Запропоновану згорткову нейронну мережу програмно реалізовано та досліджено для розв’язання завдання 
виділення контурів на зображеннях реальних сцен. Запропоновані етапи структурного налаштування можна 
використовувати під час обґрунтованого проектування архітектури нейронної мережі для розв’язання інших завдань 
штучного інтелекту. 

Висновки. Отримана мережа RCF-ST дозволяє підвищити якість виділення контурів на зображеннях. Мережа RCF-ST 
характеризується значно меншою кількістю параметрів у порівнянні з мережею RCF, що дозволяє знизити 
ресурсоспоживання мережі. Крім того, мережа RCF-ST забезпечує підвищення завадостiйкості видiлення контурiв на фоні 
текстури. 

КЛЮЧОВІ СЛОВА: зображення реальних сцен, виділення контурів, згорткова мережа, насиченіші згорткові ознаки, 
структурне налаштування, пакетна нормалізація.  
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