TECHNOLOGY FOR AUTOMATED CONSTRUCTION OF DOMAIN DICTIONARIES WITH SPECIAL PROCESSING OF SHORT DOCUMENTS

Kungurtsev O. B. – PhD, Professor, Professor of the Software Engineering Department, Odessa Polytechnic National University, Odessa, Ukraine.

Mileiko I. I. – Student of the Software Engineering Department, Odessa Polytechnic National University, Odessa, Ukraine.

Novikova N. O. – PhD, Associate Professor of the Department of Technical Cybernetics and Information Technologies named after professor R.V. Merct, Odessa National Maritime University, Odessa, Ukraine.

ABSTRACT

Context. The task of automating the construction of domain dictionaries in the process of implementing software projects based on the analysis of documents, taking into account their size and presentation form.

Objective. The goal of the work is to improve the quality of the dictionary based on the use of new technology, including special processing of short documents.

Method. A model of a short document is proposed, which presents it in the form of three parts: header, content, and final. The header and final parts usually contain information not related to the subject area. Therefore, a method for extracting content based on the use of many keywords has been proposed. The size of a short document (its content) does not allow determining the frequency characteristics of words and, therefore, identifying multi-word terms, the share of which reaches 50% of all terms. To make it possible to identify terms in short documents, a method for their clustering is proposed, based on the selection of nouns and the calculation of their frequency characteristics. The resulting clusters are treated as ordinary documents, since their size allows for the selection of multi-word terms. To highlight terms, it is proposed to select sequences of words containing nouns in the text. Analysis of the frequency of repetition of such sequences allows us to identify multi-word terms. To determine the interpretation of terms, a previously developed method of automated search for interpretations in dictionaries was used.

Results. Based on the proposed model and methods, software was created to build a domain dictionary and a number of experiments were conducted to confirm the effectiveness of the developed solutions.

Conclusions. The experiments carried out confirmed the performance of the proposed software and allow us to recommend it for use in practice for creating dictionaries of the subject area of various information systems. Prospects for further research may include the construction of corporate search systems based on dictionaries of terms and document clustering.

KEYWORDS: domain dictionary, information system, term, clustering, information technology, short document.

ABBREVIATIONS

DD is domain dictionary;
IS is information system;
FCA is Formal Concept Analysis;
LDA is Latent Dirichlet Allocation;
OS is organizational system.

NOMENCLATURE

di is a location of the document;
Cd(i) is a i-th cluster of the content of short documents;
di 1 is a document included in the cluster;
Ds is a set of short documents;
di 2 is a document;
Kdi is a coefficient of proximity of the document di with the central document of the cluster Cd;
kwi is a tuple of the set of keywords;
mKw is a lists (sets) of keywords;
M1 is a set of one-word terms of the document di ;
Nc is a number of the last words of the document;
Ncd is a number of words in the document;
Ncorp is a number of documents in the corpus;
Nh is a number of the first words of the document;
nm is a number of different terms in the document;
nmhi is a number of occurrences of the term hi in the document di ;
ns is a quantity of documents;
nw is a size of the document in words;
Nww is a number of “erroneous” words;
Qs is a quality of selection;
Qha is a quality of separating the content for the corpus of documents;
r1 is an index of the first word of the content of the document;
r2 is an index of the last word of the content of the document;
Tci is a concatenation of the texts of the documents included in it;
text is a text of the document;
ti is a term represented by a noun.

INTRODUCTION

The DD is one of the first artifacts that is created in the process of designing an IS. DD allows the Developer and the Customer to determine a common language of communication [1]. With its help, requirements for IS are formulated, user interfaces are created, instructions are written [2]. Such dictionary is recommended to be used in various subject areas [3]. The creation of DD primarily involves the definition of terms. The simplest way to highlight terms is to study the texts of documents [4] that represent the subject area of IS. Manual text analysis is a very time-consuming process that requires special knowledge in the field of linguistics. Therefore, in recent
years, more and more attention has been paid to the automated selection of terms and their interpretation [5]. The condition for a reasonable selection of a term is its repeated occurrence in the text of the analyzed document. Only in this case it is possible to distinguish stable phrases. The smaller the document size, the lower the probability of correct selection of terms in it.

Fig. 1 shows the existing technology for building DD, which does not provide for special processing of short documents.

A feature of the corpus of documents used to build DD is many short documents (letters, orders, instructions, etc.) related to different topics, in the structure of which a significant proportion is occupied by the heading and closing parts with terms that do not correspond to the topic of the document. The concept of a short document does not have a clear quantitative definition in terms of isolating terms from its text. Short documents often contain formal header and tail sections that need to be excluded from analysis. To build DD, it is necessary to develop a separate methodology for processing short documents.

1 PROBLEM STATEMENT

Suppose that there are many documents used to develop an automated information system –

\[D = Do \cup Ds, \]

where \(Do \) – is a regular document, and \(Ds \) – is a short. Since it is impossible to correctly extract a term from a short document, it is necessary to perform a number of transformations on the set \(Ds \):

\[Ds \Rightarrow Ds', \]

where \(Ds' \) – the set of short documents without header and tail parts;

\[Ds' \Rightarrow CDs, \]

where \(CDs \) – the set clusters of short documents.

A sufficiently large cluster text can be considered as a regular document. Then \(D' = Do \cup CDs \) – a virtual set of documents from which one can get a set of terms – Term, that define subject area: \(D' \Rightarrow Term \).

2 LITERATURE REVIEW

In [6], the problem of the low frequency of keywords in short documents was noted. An algorithm is proposed that uses the domain ontology to calculate the semantic distance between short documents. The question of ontology formation remained open. In articles [7,8] was proposed a method that uses thematic models that make short text less sparse and more thematically oriented for classification. These methods are difficult to apply to DD, which is created at the first stage of IS design. The task of analyzing short texts is relevant for Web applications such as social networks, forums, and blogs. To solve the problem, an extension of terms, also known as an extension of documents, was proposed [9], based on the classification of texts and their semantic analysis. The paper does not specify the way of obtaining the initial information, but the proposals deserve attention. In [10] a system that can perform automatic summation of several documents using semantic text analysis, clustering, based on the representation of a document as a set of triplets (subject, verb, object) is proposed. The disadvantage of this solution is the rather complicated text analysis and system configuration for a specific user. In [11], dynamic clustering is proposed, which allows you to track the time-varying distribution of topics across documents and words across topics. From the point of view of the formation of DD, the method is difficult to apply due to insufficient time and the number of texts for training. In article [12] is used the concept of weighted similarity scores of terms in Formal Concept Analysis and was explored its effectiveness for expanding terms. It is shown that the weighted measures of similarity of terms, when choosing the appropriate weight value, give a good result. The material is of practical interest and will be partially implemented in this work.

Analysis of the effectiveness of using two approaches to expand terms: weighted measures of similarity, studied in FCA, and a number of measures of correlation, often used in data mining was carried in [13]. It has been empirically shown that the cosine correlation measure is superior to other methods for short documents. The paper [14] describes an experiment comparing short document classifiers based on two methods: Latent Dirichlet Allocation (LDA) and Formal Concept Analysis (FCA). It has been shown that FCA leads to a much higher degree of correlation between terms than LDA, and initially gives a lower classification accuracy. The disadvantage of
the considered methods is a long and laborious learning process.

In [15], a preliminary clustering method is proposed, which allows one to limit oneself to only a corpus of documents representing the subject area of the designed IS. However, in this work, as well as in [16, 17], there is no clear definition of a short document.

Short documents used to build DD are significantly different from short texts on the Internet [18]. The workflow of most organizational structures is dominated by formalized documents [19] with heading and closing parts. The need to highlight the meaningful part of a short document was noted in [15], but a clear algorithm for solving this problem is not presented.

3 MATERIALS AND METHODS

Short document model.

In accordance with [15], we will assume that the corpus of all documents under study is presented in the form

\[D = \{d_i\}, \quad i = 1, n. \]

Let’s extend the previously used model to represent a single document. Since the documents based on which the DD is built can be located on different computers, disks and directories in the Customer’s organization, it is necessary to introduce the concept of an address for a document. To highlight the content of the document, you should limit the search area of the header and final parts of the document. Thus, document can be represented by a tuple

\[D_i = <addr, text_i, r1, r2, nw_i, Mt_i>, \]

\[Mt_i = \{<t_q, nm_q>\}, \quad q = 1, nm_c. \]

To apply the model, it was necessary to clarify the concept of a “short document”. As a result of the experiments (see the Results section), it was proposed to consider a document up to 1400 words as short. Thus, the set of short documents can be represented as

\[D_s = \{d_i \mid d_i \in D \land \text{nw}_i \leq 1400\}, \quad i = 1, ns. \]

A method for highlighting the content of a short document.

To highlight the meaningful part, it is necessary to have signs of the heading and closing parts. Such signs are certain “keywords” of these parts of the document. It should be noted that the list of all formalized documents for a certain state has hundreds of names. It is undesirable to use such a list in the algorithm for highlighting the content of a document, since the interpretation of keywords from one subject area may not coincide with their interpretation in another. Therefore, it makes sense to compose sets of keywords for the heading and closing parts in relation to the subject area (perhaps in the narrow sense of the word).

In general, within the framework of one project of IS, several lists of \(mKw \) (sets) of keywords can be created:

\[mKw = \{kw_i\}, \quad i = 1, q, \]

where \(kw_i \in mKwHead, mKwEnd \) is a tuple of the set of keywords in the header part of documents; \(mKwHead = \{w_{ij}\}, \quad j = 1, q\text{ih} \) and the corresponding set of keywords of the final part of the documents; \(mKwEnd = \{w_{ij}\}, \quad j = 1, q\text{e} \).

For example, for the personnel department of a university, the set \(mKw \) will look like:

\[mKw = \{\{labor contract, order\}, \{signature, date\}, \ldots\}. \]

Thus, a short document can be presented in the form

\[D_s = <mWhead, mWcontent, mWend>, \]

where the heading is \(mWhead \), represented by an ordered set of words

\[mWhead = \{w_1, w_2, \ldots, w_q\}, \]

and the final part \(mWend \), represented by an ordered set of words

\[mWend = \{w_r, w_{r+1}, \ldots, w_p\}, \]

at the same time

\[w_i | w_i \in mKwHead \land w_i \in mWhead; \]

and

\[w_j | w_j \in mKwEnd \land w_j \in mWend. \]

For example, the following heading keywords can be distinguished from personnel documentation: “Agreement”, “Order”, “Card”, “Order”, “Time sheet”, “Statement”, “Act”, “Schedule”, “Note” and the following the words of the final part: “Signature”/“Signatures”, “Acquainted”, “Approve”.

To highlight the content part, you need to determine its first and last words. To do this, it is proposed to determine the possible boundaries of the heading and closing parts by searching for terms from \(mKw \). Terms from \(mKwHead \) are searched from the beginning to the end of the document, and terms from \(mKwEnd \) are searched from the end to the beginning of the document. It is proposed to limit the search area of the heading and final parts of the document to reduce the probability of errors in the case when the document does not belong to the category of formalized ones. In addition, limiting the search area reduces the time for document analysis.

It is not possible to analytically determine the boundaries of the header and footer search for many different documents, so experimental studies were carried out on two sets of documents of various formats. 74 documents in Russian and 68 documents in English from the trade organization’s workflow were processed. The number of words for highlighting the heading part \(Nh \) and the closing part \(Nc \) was set equal to 5, 15, 25, 30, 35 and 50. The quality of highlighting the content part was assessed by an expert depending on the number of “extra” and “missing” words in the content part. Under the quality
of selection for a separate document, it is proposed to understand Q_{bs}, calculated by the formula:

$$Q_{bs} = \frac{100 \times (N_{cd} - N_{ww})}{N_{cd}}. \quad (7)$$

Quality of separating the content for the corpus of documents for certain values of Nh and Nc by the formula

$$Q_{sa} = \frac{\sum_{i=1}^{N_{corp}} Q_{si}}{N_{corp}}. \quad (8)$$

It has been experimentally shown that the best value for Nh is 35, and for $Nc = 25$ (see the Results section). Let us formulate the steps of the method.

1. Find among the first Nh words of the document the word w_i, $w_i \in mWhead$. If the word is found, then the index of the first word of the substantive part $StartInd = i + 1$ is, otherwise $StartInd = 0$.

2. Find the word among the last Nc words of the document w_j, $w_j \in mWend$. If the word is found, then the index of the last word of the substantive part $EndInd = j - 1$ is, otherwise $EndInd = Ncd$.

3. Crop the document at the edges – before the index $fInd$ and after the index $lInd$.

4. Find how many characters need to be further indented after the beginning of the truncated document to remove lines that have less than five words or less than 50 characters.

5. Crop the document according to the received data.

Clustering short documents.

In accordance with a previous study (Fig. 2), in short documents the average frequency of repetition of nouns is low, which does not allow to qualitatively distinguish verbose terms. Therefore, it is proposed to define terms not within a single document, but within a cluster of short documents. For this purpose, the preliminary clustering method was used [15]. The method allows you to calculate the proximity coefficient $K_{ij} = K_{1ij} + \gamma K_{2ij}$ of documents d_i and d_j, based on the relative number of matching nouns (component K_{1ij}) and the frequency of matching nouns (component γK_{2ij}). Optimization of the composition of clusters is ensured by adjusting their composition depending on the proximity of the document to the cluster core.

Let us represent the clustering process in the form

$$Ds \xrightarrow{\text{clustering}} \{Cd_i\}.$$

The practical use of the short document clustering method [13] showed that after the completion of clustering based on kernels, several clusters Cd_i are formed that contain only one document, that is

$$Cd_i = \{d_j\}, j = 1. \quad (9)$$

Therefore, an additional stage is introduced into the method, at which for each document d_j a cluster Cd_p is found to which it can be attached.

$$d_j \xrightarrow{\text{adj}} Cd_p.$$

In this case, the next condition is fulfilled

$$K_{s,j,p} = \max_{q=1,n,q\neq j} K_{s,j,q}.$$

Extracting terms from a cluster

Multword terms make up a significant part of all terms. The work [20] shows that 29.13% of the terms from the Internet request contain three or more words. In the documents of organizations, terms containing two and three words make up about 50% of all terms. This determines the need to extract multword terms from short documents.

Let us represent some cluster Cd_i in the form

$$Cd_i = \{d_j\}, j = 1, n_p.$$

Let’s form the text of the cluster Cd_i.

$$Tc_i = U_{d_j} d_j,$$

as a concatenation of the texts of the documents included in it.

Let’s represent the cluster text as a sequence of elements

$$Tc_i = e_1 e_2 \ldots e_k \ldots e_q e_q.$$

The text element can be a word or a punctuation mark. Let us denote the text element corresponding to the noun as eN, and the text of the cluster as

$$Tc_i = e_1 e_2 \ldots e_k \ldots e_q \ldots e_q.$$

To highlight multword terms in each sentence of the text, sequences of words containing nouns are selected. Let there be some sequence of words, which is bounded on the left and right by punctuation marks:

$$S = e_{k-2} e_{k-1} e_{k+1} e_{k+2} e_{k+3} e_{k+4}.$$

If we take a noun eN_i as a base, standing at the beginning or end of a term, the following sequences of words, which can be terms will be selected from S: $e_{k-2} e_{k-1} e_{k+1} e_{k+2} e_{k+3} e_{k+4}$. At the same time, the term cannot begin and end with a preposition and a numeral, and these parts of speech are not considered “important”. In this work, it was decided to limit the length of the term to three “important” words.

Definition of interpretations of the term.

Defining definitions for terms is a long and laborious process [21], which it is desirable to automate [22]. Since such a task is beyond the scope of this study, it is proposed to use a ready-made solution [23], which provides a detailed analysis of a dictionary entry, automated removal of redundant definitions, and a simple procedure for expanding the dictionary bank (software product DictionaryOfInterpretations).

Technology for creating DD with separate processing of short documents.

Given the large number of short documents in the corpus of documents to be analyzed for the construction of DDs, it is proposed to introduce additional procedures for processing short documents (Fig. 2).
According to Figure 2, the procedure for building an DD is as follows:
- The expert (representative of the customer) selects documents of the organizational system (OS) that are of interest to the designed IS.
- As a result of filtering, short documents are selected from the entire corpus of documents.
- From short documents, their substantive part stands out.
- Using the analyzer, nouns are highlighted in texts and the number of their occurrences in documents is counted.
- For short documents, clustering is performed, because of which clusters are formed according to the principle of belonging to one topic.

- From documents (large) and clusters of documents (short), terms (generally multiword) are distinguished.
- The expert analyzes and edits the list of terms in terms of their belonging to the subject area of the projected IS.
- Based on the received list of terms, the user himself or with the help of an external system performs the interpretation of the terms.

4 EXPERIMENTS

Development of a software product. To implement the proposed technology, the software product TerEx was developed, the general class diagram of which is shown in Fig. 3.
TerEx allows you to perform the following actions on documents:
- highlight individual words, conduct their morphological analysis, count the number of occurrences in texts;
- highlight the content of the document;
- perform clustering of documents;
- highlight single-word and multi-word terms from the text.

5 RESULTS

Definition of a short document. We studied a corpus of 381 documents in Ukrainian, English and Russian, containing from 15 to 1332 nouns. The results of the experiment are presented in the form of a graph (Fig. 4), based on which it was concluded that documents up to 1300–1400 words in size should be considered short. The experiment showed that the subject area and the language of the documents do not have a noticeable effect on the results obtained.

Determining the quality of highlighting the content of a short document.
To determine the dependence of the quality of highlighting the content of the document on the values of Nh and Nc, 74 short documents were analyzed. The results are shown in Table 1. The best quality is achieved with a limit of 35 words from the beginning of the document and 25 words from the end of the document.

<table>
<thead>
<tr>
<th>Nh</th>
<th>Qs</th>
<th>Nc</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>97.14</td>
<td>25</td>
<td>95.64</td>
</tr>
<tr>
<td>30</td>
<td>96.16</td>
<td>35</td>
<td>95.41</td>
</tr>
<tr>
<td>25</td>
<td>96.06</td>
<td>30</td>
<td>94.99</td>
</tr>
<tr>
<td>15</td>
<td>89.16</td>
<td>15</td>
<td>89.79</td>
</tr>
<tr>
<td>5</td>
<td>84.16</td>
<td>5</td>
<td>82.98</td>
</tr>
<tr>
<td>50</td>
<td>82.37</td>
<td>50</td>
<td>82.4</td>
</tr>
</tbody>
</table>

After setting these values, the average correctness of extracting the meaningful part of 96.39% was obtained.

Determining the quality of clustering. When requesting clustering, a new folder “ClusterizationResultFolder” is created in the directory selected for displaying the result, in which the file “totalTerms.txt”, containing a general list of terms from all clusters, as well as new folders – Cluster _1 ... Cluster _N , where N is the resulting number of clusters is created. An example of the contents of the “ClusterizationResultFolder” directory and the structure of the files before they are processed is shown in Figure 5. In the folder of each cluster is the file “_ terms.txt”, containing a list of terms in this cluster, as well as copies of all documents included in this cluster.

104 documents were subject to analysis. Five clusters were found. Analysis of the result showed that the documents in the selected clusters are really close to each other in terms of the nouns they contain. No errors were found.

Determining the quality of highlighting multi-word terms. A comparative analysis of the results of the work of the TerEx product and the well-known online service for text analysis SketchEngine [24] was carried out. A corpus of 100 documents was studied. The results of the experiment are presented in Table 2.

Defective terms are those that contain extraneous characters, cut words, prepositions, or are not words at all.
multiword selection, which was confirmed by the results (Table 2).

The study allowed to significantly improve the quality of short documents in information retrieval tasks. However, in this study, it allowed to significantly improve the quality of mult-word selection, which was confirmed by the results of comparative tests of TerEx and Sketch Engine (Table 2).

CONCLUSIONS

An information technology for constructing a dictionary of the subject area has been developed, which provides for special processing of short documents.

The scientific novelty of the research lies in:

- improvement of the mathematical model of a short document, by introducing indexing of the beginning and end of the content, as well as the address of the location of the document, which made it possible to further formalize operations for its processing;

- obtaining an experimentally substantiated definition of a short document, which allows you to sort documents quickly and efficiently for further processing;

- development of a method for highlighting the content of a short document that implements the exclusion from the document of the heading and ending parts that contain terms not related to the subject of the document, which made it possible to further improve the quality of DD;

- improvement of the method of preliminary clustering of short documents by introducing an additional stage of merging clusters containing 1 document, which made it possible to increase the frequency of terms in clusters.

The practical value of the work lies in combining the model and methods into a single technology for creating DD.

The conducted experiments confirmed the effectiveness of the theoretical results of the work.

The practical implementation of models and methods can be used to create DD in various subject areas.

REFERENCES

20. Lions K. Long-Tail Keywords: What They Are & How to Use Them for SEO. [Electronic resource], Access mode: https://www.semrush.com/blog/how-to-choose-long-tail-keywords/

Актуальність. Розглянуто завдання автоматизації побудови словников предметної галузі зі спеціальною обробкою коротких докumentів.

АНОТАЦІЯ

Актуальність. Розглянуто завдання автоматизації побудови словников предметної галузі зі спеціальною обробкою коротких докumentів.

Метод. Пропонується модель короткого докumentа, яка представляє його у вигляді трьох частин: заголовної, змістової та зв'язної. У заголовній і зв'язній частин зазначається інформація, що не має відношення до предметної області. Тому запропонований метод відділення змістової частини, заснований на використанні номінальних ключових слів. Розмір короткого документа (його змістової частини) не дозволяє визначити частотні характеристики слів і виявити багатослівні терміни, частка яких сягає 50% від усіх термінів. Для забезпечення можливості відділення термінів в коротких документах запропоновано метод із кластерізації, заснований на відмінності іменників та обчисленні їх частотних характеристик. Утворені кластери розглядаються як звичайні документи, оскільки їхній розмір дозволяє виділяти багатослівні терміни. Для виявлення термінів запропоновано виділяти в тексті послідовності слів, що містять іменники. Аналіз частот повторення таких послідовностей дозволяє визначити багатослівні терміни. Для визначення зламування термінів використано раніше розроблений метод автоматизованого пошуку тлумачень у словниках.

Результати. На основі запропонованої моделі та методів створено програмне забезпечення для побудови словника предметної галузі та проведено низку експериментів, що підтвердили ефективність розробленої рішень.

Висновки. Проведені експерименти підтвердили працездатність запропонованого програмного забезпечення та дозволяють рекомендувати його до використання на практиці для створення словников предметної галузі різних
інформаційних систем. Перспективи подальших досліджень можуть включати побудову корпоративних пошукових систем на основі словників термінів та класифікації документів.

КЛЮЧОВІ СЛОВА: словник предметної галузі, інформаційна система, термін, класифікація, інформаційна технологія, короткий документ.

ЛІТЕРАТУРА
20. Lions K. Long-Tail Keywords: What They Are & How to Use Them for SEO. [Електронний ресурс] / K. Lions. – Access mode: https://www.semrush.com/blog/how-to-choose-long-tail-keywords/