
p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2023. № 4 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2023. № 4 

 
 

© Osadchyi S. І., Zozulia V. A., Kalich V. M., Timoshenko A. S.,  2023 
DOI 10.15588/1607-3274-2023-4-18  
 

УПРАВЛІННЯ  
У ТЕХНІЧНИХ СИСТЕМАХ 

 
СОNТROL  

IN TECHNICAL SYSTEMS 
 

 
UDC 62.505:629.524 
 

THE FREQUENCY METHOD FOR OPTIMAL IDENTIFICATION OF 
CLOSE-LOOP SYSTEM ELEMENTS 

 
Osadchyi S. І. – Dr. Sc., Professor, of the Department of Aircraft Construction, Aircraft Engines, and Airworthiness 

Maintenance, Flight Academy of the National Aviation University, Kropyvnytskyi, Ukraine. 
Zozulya V. A. – PhD, Associate Professor of the Department of Digital Economy and System Analysis, State Uni-

versity of Trade and Economics, Kyiv, Ukraine. 
Kalich V. M. – PhD, Professor of the Department of Automation of Production Processes, Central Ukrainian Na-

tional Technical University, Kropyvnytskyi, Ukraine. 
Timoshenko A. S. – Senior Lecturer of the Department of Aeronautics, Meteorology and Air Traffic Management, 

Flight Academy of the National Aviation University, Kropyvnytskyi, Ukraine. 
 

ABSTRACT 
Context. The article is devoted to overcoming the contradictions between the assumptions adopted in known methods of closed-

loop control system identification and the design and conditions of its operation. The article presents a new method of identifying the 
transfer functions matrix of a two-level closed-loop control system element, which functions under the conditions of multidimen-
sional stationary centered random influences. 

Objective. The purpose of the study, the results of which are presented in this paper, is to extend the indirect identification meth-
od to the case of estimating one of the two-level closed-loop control system elements’ dynamics model based on passive experiment 
data. 

Method. To solve the optimal identification problem, a variational method for minimizing the quality functional on the class of 
fractional-rational transfer function matrices was used. 

Results. As a result of the research, the identification problem formulation was formalized, the rules for obtaining experimental 
information about the input and output signals were determined, the rules for identifying the transfer functions matrix  of a two-level 
closed-loop control system element, which minimizes the sum of the variances of identification errors in the frequency domain, and 
the verification of these rules was carried out. 

Conclusions. Justified rules allow to correctly determine transfer functions matrices of the closed-loop systems selected element 
when fulfilling the defined list of conditions. The closed-loop systems control paths signals analysis proves the possibility of the 
effect of changing these signals statistical means, even under conditions of only centered stationary input influences actions on the 
system. Based on this, the further development of research can be aimed at overcoming such effects. 

KEYWORDS: Identification, transfer function matrix, spectral density, error variance, quality functional. 
 

NOMENCLATURE 
M1 is a matrix of dimension m×n, the elements of 

which are polynomials from the differentiation operator 
; 

m is a number of signals at the output of the local con-
trol system; 

N0 is a matrix of results of dividing the polynomials of 
the numerators by the polynomials of the denominator of 
the product on the right side of the expression; 

N+ is a matrix of fractional rational functions whose 
poles are located in the left half-plane of the complex 
plane; 

N– is a matrix of fractional rational functions with 
poles in the right half-plane; 

n  is a number of inputs of the local system; 

Omn  is a zero matrix of size m×n; 
P1  is a matrix of dimension m×m; 
R is an additionally defined weight matrix; 
r is a vector of programme signals; 
S'

rr is a transposed spectral density matrix of the vector 
r; 

'
xxS

nn
 is a transposed spectral density matrix of the 

vector xn; 

'
xS  is a transposed matrix of mutual spectral densities 

between the generalised input vector ζ and the vector xn; 

'
xS  is a transposed matrix of mutual spectral densi-

ties between the vectors xn and ζ; 
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S'
  is a transposed matrix of spectral densities of un-

correlated white noise of single intensity; 
S'  is a transposed spectral density matrix of meas-

urement noise; 
'

00S  is a transposed spectral density matrix of the 

dummy noise vector φ0; 
S'ψψ is a transposed matrices of spectral densities of 

disturbances; 
S'
 is a transposed spectral density matrix of the gen-

eralised input vector; 
u1 is a vector of input signals of the local system; 
un is a mismatch vector; 
Wn is a matrix of transfer functions that determines the 

relationship between the operator’s reactions to changes 
in the components of the misalignment vector un; 

Wp is a matrix of transfer functions that determines the 
relationship between the operator’s actions to prevent and 
probe pulses δ; 

x1 is a vector of signals at the output of the local con-
trol system; 

xn is a vector of control signals; 
y  is a vector of master feedback signals; 
Ф is a block matrix of transfer functions of size 

n×(n+m); 
δ is a vector of sensing pulses; 
εx is the vector of identification errors; 
φ is a vector of measurement noise; 
φ0 is a dummy measurement noise vector; 
ρ is a vector of additional signals; 
 is a vector of disturbances with m components; 
 is a generalised vector of input influences. 

 
INTRODUCTION 

According to the definition given in the well-known 
article [1], one of the central problems in systems theory 
is the problem of identification. According to L. Zadeh, 
this problem is “determination, on the basis of observa-
tion of input and output, of a system within a specified 
class of systems to which the system under test is equiva-
lent; determination of the initial or terminal state of the 
system under test”. If we limit ourselves to considering 
the works [2, 3] devoted to the determining automatic 
control systems elements dynamics models, it is obvious 
that the whole set of such studies is divided into two 
parts. The first part is, for example, works [3–5], which 
are devoted to determining open-loop systems and their 
elements dynamics models. The second part, for example 
works [2, 6–8], combines studies aimed at solving the 
closed-loop control system elements identification prob-
lem. Despite the large number of papers devoted to solv-
ing the latter problem, the search for new methods and 
means of determining the dynamics models of closed-
loop control system elements is still relevant. 

This relevance is due to the existence of contradictions 
between the assumptions made when formulating the 
identification method and the design and operating condi-
tions of a closed-loop control system. In the context of the 

fourth industrial revolution, there is a rapid increase in the 
diversity of control objects and, accordingly, systems. 
Therefore, the requirements of practice require bringing 
the identification procedures into line with the conditions 
of the closed-loop control system design tasks. 

The object of study in this paper is a two-level 
closed-loop control system. 

The subject of study is identification of a transfer 
functions matrix of a two-level closed-loop control sytem 
element.  

The purpose of the work is to substantiate the rules 
for estimating two-level closed-loop control system’s one 
of the elements dynamics model based on passive ex-
periment data.  

 
1 PROBLEM STATEMENT 

As a rule, modern control systems have physical sub-
systems with many inputs and outputs as objects. These 
subsystems operate under the influence of vector stochas-
tic useful signals, measurement noise, and interference. 
For example, the flight control system of an unmanned 
aerial vehicle or aircraft. Thus, of all considered. identifi-
cation methods [1–8], only the indirect and joint methods 
remain. They allow identifying a multidimensional 
closed-loop control system if its structure can be repre-
sented as shown in Fig. 1, and the sensors have low iner-
tia and low intensity of measurement noise. 

 

 
Figure 1 – Architecture of a closed-loop (local) control system 

 
However, the development of the principles of con-

trolling such objects has led to the emergence of closed-
loop systems that have two control loops (Fig. 2) [4, 16]. 

The external loop is used to generate a vector of con-
trol signals that are transmitted to the local control sys-
tem. This vector is generated by the master controller as a 
result of comparing the vectors of program signals and 
master feedback signals. The master feedback signals 
differ slightly from the controlled variables due to the 
influence of measurement noise and the inertial properties 
of the master sensors. The relationship between the con-
trolled variables and the signals at the output of the con-
trol object is characterised by a kinematic link. If the con-
trol object is a moving vehicle, this link solves the inverse 
kinematics problem [17]. 
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Thus, the use of the known indirect and joint methods 
of identification to solve the problem of determining the 
system (Fig. 2) elements dynamics  models requires mod-
ification of these methods. 

We will assume that, due to preliminary experiments 
and the use of known identification methods, a linearized 
model of the dynamics of the local control system has 
been determined and presented as a system of ordinary 
differential equations with constant coefficients of the 
form 
 

 1111 uMxP , (1)
 
where P1 is a dimension matrix m×m, the elements of 
which are polynomials from the differentiation operator 
 

dt

d
p  , 

 
m is the number of signals at the output of the local con-
trol system; x1 is a vector of signals at the output of the 

local control system (Output signals); M1 is a matrix of 
dimension m×n, the elements of which are polynomials 
from the differentiation operator p; n is the number of 
inputs of the local system; u1 is a vector of input signals 
of the local system; ψ is a vector of disturbances with m 
components. In this case, the architecture of a two-level 
closed-loop control system is transformed into a block 
diagram (Fig. 3). As you can see, this diagram has two 
parts. 

The first part combines the main controller and the 
communication system with the main sensors (Fig. 3). 
Three vectors act on the inputs of the main controller 
(Fig. 3): program signals r, main feedback signals y, and 
additional signals ρ. The origin and effect of additional 
signals depend on the purpose and design of the control 
system. At the outputs of the master controller, a vector of 
control signals xn is formed. This vector  is simultane-
ously the local control system input signals vector u1. Re-
lationship between  these  vectors  is  characterised  by  
two  transfer function matrices  Wn and Wp.  For example, 

 

 

 
Figure 2 – Architecture of a two-level closed-loop control system 

 

 
Figure 3 – Block diagram of a two-level closed-loop control system  
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if the control system is designed to ensure the movement 
of an unmanned aerial vehicle along a given trajectory, 
then the central part of the master controller is the pilot-
operator. Its dynamic properties are characterised by two 
transfer functions matrices [9, 10]. The first Wn deter-
mines the relationship of the operator’s reactions to 
changes in the components of the misalignment vector un. 
The second matrix Wp describes the relationship between 
the operator’s actions to prevent (remnant) and the sens-
ing impulses of his nervous system δ. 

The block diagram (Fig. 3) second part combines the 
local control system, the kinematic link, and the main 
sensors (Fig. 2). Its inputs are also three vectors: control 
signals u1, disturbances ψ, and measurement noise φ. The 
output of the second part is a vector of main feedback 
signals y. The effect of changing the components of the 
signal vector at the output of the local system x1 on the 
components of the vector y is characterised by the transfer 
function matrix W1. 

The structure and parameters of the transfer function 
matrix W1 and the model of measurement noise dynamics 
can be determined separately from the system (Fig. 3) as a 
result of dynamic sensor certification according to the 
methodology given, for example, in monograph [4].  

At the same time, it is possible to determine the trans-
fer function matrices of the master controller, which it has 
in real operating conditions, only as a result of solving the 
problem of identifying a closed-loop control system in an 
appropriate manner. 

Taking into account the statement of Peter Eykhoff, 
substantiated in article [11], about the possibility of un-
ambiguous identification of only the transfer function of 
an element of a closed-loop control system, the following 
identification problem is formulated. 

Let the polynomial matrices P1, M1, the transfer func-
tion matrix W1, the transposed spectral density matrices of 

disturbances '
S  and measurement noise '

S  be given, 

and it is known that all signals in the control loops of the 
system (Fig. 4) are centred stationary random signals. It is 
also assumed that the vectors r, un, xn are measured with 
sufficient accuracy. The optimal identification task is that, 
as a result of processing experimental data (records of 
vectors r, un, xn) and a priori information about those ele-
ments of the system in the Fig. 4, the dynamics of which 
is known, to find algorithm of searching for such matrices 
Wn and Wp, at which the identification error vector εx 
components weighted variances sum  would be minimal.  

 
2 REVIEW OF THE LITERATURE 

The analysis of methods for identifying closed-loop 
control systems based on the study of such literature 
sources as [2, 6–8] and [12], allows dividing them into 
four parts (Fig. 4). 

Direct Methods [6, 12] are used to determine the mod-
el of the dynamics of the control object and sometimes the 
disturbances acting during the experiment, while ignoring 
the presence of feedback. The main restrictions on the use 
of this set of methods are:  

– the requirement of a low intensity of disturbances 
with a high intensity of the useful signal;  

– requirement of knowledge of the disturbance dy-
namics models; 

– the requirement of low sensor inertia and high sig-
nal-to-noise ratio; 

– the need to pre-determine the order of the control 
object; 

– limitation of the control object dynamics to stable 
dynamic links only. 

 

  
Figure 4 – Types of methods for identifying elements of closed-

loop systems  
 

An attempt to overcome the shortcomings of direct 
methods led to the development of a variational method 
for identifying the dynamics of multidimensional control 
objects, which is described in [13]. This method does not 
require a priori information about the model of distur-
bance dynamics and the order of the control object. 

Indirect Method [6, 12] involves conducting an ex-
periment, obtaining records of signals acting on the inputs 
and outputs of the system, identifying the dynamics mod-
el of a closed-loop system, calculating the dynamics mod-
el of an equivalent open system, and searching for the 
dynamics model of the control object. Algorithms that 
implement this method have an advantage over the direct 
method due to the absence of the requirement to have a 
model of the dynamics of disturbances. At the same time, 
the main disadvantages of these methods include: 

– the need for prior knowledge of the controller’s con-
trol law (transfer function);  

– limitation of the class of systems that can be identi-
fied to one-dimensional ones; 

– requirement of low sensor inertia and high signal-to-
noise ratio; 

– the need to pre-determine the order of the control 
object. 

An attempt to overcome the disadvantages of indirect 
methods led to the development of a variational method 
for identifying the dynamics of multidimensional control 
objects, which is described in [14, 15]. This method over-
comes all the disadvantages of the indirect method, but 
limits the class of useful signals, disturbances, and inter-
ferences that act during the experiment. All these signals 
must belong to centred stationary random processes or to 
an additive mixture of a stationary random process and a 
deterministic time function. 
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Joint input-output method [6] involves combining the 
signals acting at the input and output of the system into a 
single signal vector. This vector is considered to be the 
output of some imaginary dynamic system, at the input of 
which there is a virtual test signal with the known dynam-
ics, for example, “white noise”. It is believed [12] that the 
main advantage of this method is associated with the ab-
sence of the need for a priori information about the sys-
tem and disturbances. However, it also has certain limita-
tions (disadvantages): 

– the need to measure all useful signals, disturbances 
and interferences that are present during the experiment; 

– the experiment must reproduce real conditions of the 
system; 

– the requirement of low sensor inertia and high sig-
nal-to-noise ratio; 

– the need to pre-determine the order of the control 
object. 

Two Stage Method [6, 8] consists of reducing a 
closed-loop system to an equivalent open system and then 
parametrically identifying this open system. The main 
difficulty in applying this method is the need to fulfil sev-
eral requirements: 

– having a priori knowledge of the system’s block dia-
gram; 

– the block diagram should have one input and one 
output; 

– sensors must have low inertia and measurement 
noise; 

– the controller must follow a linear control law. 
The purpose of the study, the results of which are pre-

sented in this article, is to extend the indirect identifica-
tion method to the case of estimating the dynamics model 
of one of the elements of a two-level closed-loop control 
system based on passive experiment data. 

To achieve this goal, we solved the problem of deter-
mining the set of necessary a posteriori information about 
the signal vectors in the control paths of the system (Fig. 
4), as well as the substantiation of the algorithm for iden-
tifying the dynamics of one of the elements of a closed-
loop system, provided that the identified dynamics model 
delivers an extreme of the selected quality indicator. 

 
3 MATERIALS AND METHODS 

According to the problem statement and the block di-
agram (Fig. 3), the identification error vector must satisfy 
the equation 
 

εx = xn  , (2)
 

where Ф is a block matrix of transfer functions of size 
×(n+m) type 
 

=[11 12], (3)
 

that relate the output of the identified master controller 
model (the reconstructed vector xn ) to the input vectors , 
r, ψ, φ,  is a generalised input vector of the form 













0r

, (4)

 
where 0 is a dummy measurement noise vector equal to 
 

  










 
mEPW 1

110 . (5)

 
The sum of the weighted variances of identification er-

rors can be determined in the frequency domain [18] by 
applying the Wiener-Khinchin theorem in vector form 
[19] to expression (2) as 
 

   ,
1

*
''

*
'' dsRSSxSxxStr

j
J

j

j
xnnn

 



  (6)

 

where '
xxS

nn
 is a transposed matrix of spectral densities 

of the vector xn determined as a result of statistical proc-

essing of records of the components of this vector; '
xS   is 

a transposed matrix of mutual spectral densities between 
the generalised input vector  and the vector xn 

 







 
''''

0xSxSxSS
nnn rx , (7)

 
The index * denotes the Hermitian conjugation of the 

matrix; '
xS  is a transposed matrix of cross spectral densi-

ties between the vectors xn and , which is equal to 
 

 
*

''
xx SS  ; 

 
S'  is a transposed spectral density matrix of the general-
ised input vector (4), which has the following form in the 
case of vectors’ δ, r, ψ, φ different and  independent ori-
gin sources  
 



















 ''

'
'

00
SSO

OS
S

rrnm

mn
; (8)

 
Omn is a zero matrix of size m×n; R is a positively de-
fined weight matrix.  

The transposed matrices of spectral densities S'rr and 
cross spectral densities S'

x from expressions (7), (8) can 
be found as a result of approximating the estimates of 
these matrices obtained, for example, using the CPSD 
function of the Matlab package [20], on the class of frac-
tional rational functions of complex argument [16]. The 
transposed spectral density matrix of the fictitious noise 
vector 0, obtained by using the Wiener-Khinchin theo-
rem applied to the vector (5), can be represented as 
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'
*1

1
*1

'1
11

'
00 





  SWPSPWS . (9)

 
The expression for calculating the transposed cross 

spectral densities matrix '
0 nxS , is determined as a result 

of the structural scheme (Fig. 3) transformations by the 
following equation 
 

'
*1

1
*1*1

'''
0 nnnnnn rxxu SWPMxSxSxS  

 ; (10)

 
where the transposed matrices of spectral and cross spec-

tral densities '
xS

nnx , '
xS

nnu , '
nrxS , as well as the matrix 

S'x can be estimated from  the records of the components 
of the vectors r, un, xn. 

The only difficulty is to find the equation of the rela-

tionship between the transposed matrix '
nxS  and the orig-

inal data of the identification task. The analysis of the 
block diagram in Fig. 3 shows the equation  

 

   
pnnn WxMPrWx 1

1
10 . (11)

 
In addition, the control systems statistical dynamics pos-

tulates [21] allow proving the following identity for the 
transfer function matrix Wp (Fig. 1): 

 

  *
''1''

ppx WSWxSSS
nn 


 


. (12)

 
Thus, as a result of applying Wiener-Khinchin theorem 

to the left and right sides of equation (11), taking into 
account identity (12), the following matrix coupling equa-
tion is determined 

 

   
  ,*

1'

'1''''1''

00
ASA

SSSxxSxSSS rxrrrxx nnnnnn










  (13)

 
where 

 
'

*1
1

*1*1
''

nnnnn rxxxxu SWPMSSA   . 

 
Factoring the right-hand side of equation (13) on the left 

[22] along with taking into account the known form of the 
spectral density matrix of uncorrelated white noises of 
single intensity S'

, allows finding the transposed matrix 
'

nxS . The materials presented in [14] prove that there is a 

connection between matrices Ф11, Ф12 and other matrices 
from the structural diagram (Fig. 3). It is formalised by 
the following equations: 

 

pWF 1
111
 , (14)

nWF 1
112
 , (15)

 
where 

 
1

111
 PWWEF nn . (16)

 
Equations (14)–(16), given the known matrices Ф11 

and Ф12, allow uniquely finding the matrices of the trans-
fer functions Wn and Wp. Thus, the problem of optimal 
identification of the closed-loop system elements is re-
duced to finding the transfer functions matrix Ф corre-
sponding to a physically possible system while the func-
tional (6) being minimal, given the known matrices of 

spectral and cross spectral densities '
nnxxS  and S'x. 

The solution to the problem was found by the well-
known Wiener-Kolmogorov method of minimising the 
quadratic functional (6) on the class of transfer function 
matrices of physically possible systems Ф in the fre-
quency domain. In accordance with the chosen method, 
the first variation of the functional (6) was found in the 
following form 

 

 

  .
1

1

*
''

*
''



















j

j
x

j

j
x

dsRSRStr
j

dsSRRStr
j

J

 (17)

 

The search for physically possible Lyapunov variational 
matrices requires factorisation of the weight matrix R on 
the right and factorisation of the transposed spectral den-
sity matrix of the generalised input vector (8) on the left 
[22]. As a result of these operations, the stable matrices Г 
and D, together with their inverses, are found to satisfy by 
the equations 
 

R* ,  '
*  SDD . (18)

 

Substituting the obtained equations (18) into the varia-
tion of (17) allows representing the latter as 

 

  

  





















j

j
x

j

j
x

dsDSDDtr
j

dsDDDStr
j

J

.
1

1

****
'1

**
1

*
'

*

 (19)

 

As a result of the separation (splitting) of the product of 

matrices 1
*

' 
 DS x  is represented as the sum of three 

matrices: 
 

1
*

'
_0


  DSNNN x , (20)
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where N0 is the matrix of the results of dividing the poly-
nomials of the numerators by the polynomials of the de-
nominators of the product on the right side of the expres-
sion (20); N+ is the matrix of fractional rational functions 
of the complex argument s = j, with the poles located in 
the left half-plane of the complex plane; N_ is the matrix 
of fractional rational functions with poles in the right half-
plane. 

Substituting the result (20) into the variation of (19) al-
lows obtaining the following result: 
 

  

  

    .
1

11

1

****

**0***

**0*

































j

j

j

j

j

j

j

j

dsDNtr
j

dsD

NNDtr
j

dsDNtr
j

dsDDNNtr
j

J

(21)

 
According to the Cauchy residual theorem, the second 

and fourth integrals in expression (21) are zero, and the 
condition for ensuring the minimum of the functional (6) 
on the class of stable and minimally phase variations of Ф 
is as follows: 

 
  NND 0 . (22)

 
The solution of equation (22) with respect to the trans-

fer function matrix Ф: 
 

  1
0

1 


  DNN , (23)

 
allows determining the blocks Ф11 and Ф12 on the basis of 
relation (3) and proceed to the search for the matrices of 
transfer functions Wn and Wp. Substituting expression (16) 
into relation (15) allows writing the following rule for 
identifying the transfer function matrix Wn: 

 

  1
121

1
1112

  MPWEW mn . (24)

 
The transformation of equations (14) and (16) defines 

the rule for identifying the transfer function matrix Wp in 
the following form: 

 

  111
1

11   MPWWEW nmp . (25)

 
Thus, equations (7)–(10) and (13) have been defined, 

which allow forming a set of a posteriori information 
about signal vectors in the control paths of a closed-loop 
system necessary for identification. In addition, the rules 
(23)–(25) are substantiated, which define an algorithm for 
identifying two-level closed-loop control system’s one of 
the elements dynamics model based on passive experi-
ment data, on the condition that the identified dynamics 

model delivers an extremum of the quadratic quality in-
dex (6). Thus, it is optimal [23]. 

 
4 EXPERIMENTS 

The basis for checking the correctness of the new 
identification rules is the principle of comparing the given 
transfer functions Wn0 and Wp0 of the form: 

 
 
s

s
Wn

23.0
0


 , 

053.0

032.0
0 


s
Wp , (26)

 
with the transfer functions Wn and Wp calculated as a re-
sult of applying algorithms (24), (25). As the initial data 
for identification, we used the structural diagram of the 
system (Fig. 3) with the following dynamic characteristics 
of it’s known elements: 

 
21 M ,  2.0101  sP , 11 W ,  (27)

 
as well as the following spectral densities 

 

01.0

01.0
2

'




s
Srr  , 

1

1.0
2

'




s
S , 001.0' S , 

1' S . 

(28)

 
Let us assume that the following spectral and cross 

spectral densities are obtained as a result of processing the 
statistical data on the records of signals r, un, xn: 

 

   
   

5

22

22
'

109.0

12.026.0053.01

1.73.5057.035.0









ssss

ssss

xxS
nn , (29)

 

  
 12.026.01.0

2.02003.0
22

'






sss

ss
xS

nr , 

 

(30)

 

   

   
 .004.011.016.3

06.013.01.0053.0

99.121.008.00003.0

22

22

2
'









sss

ssss

sss
xuS

nn
 (31)

 
In this case, to form the transposed matrix (8), the fol-

lowing spectral density '

00S  was found as a result of 

substituting the corresponding data from (27) and (28) 
into expression (9): 

 

   .
2.01.0

143.1001.0
22

'

00 


 ss

ss
S  (32)
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Thus, the transposed spectral density matrix of the 
generalised input vector, compiled in accordance with 
expression (9), taking into account the result of (32), is as 
follows: 

 

  
   



















2

2'

2.01.0

38.0148.3001.0
0

01

ss

ssS . (33)

 

From expression (7), it follows that to determine the 
transposed matrix of mutual spectral densities between 
the generalised input vector  and the vector xn, it is nec-

essary to find the spectral densities '

0xS
n  and '

xS
n . 

Substitution of the corresponding matrices from relations 
(27), (29)–(31) into expression (10) allows us to deter-
mine that 

 

 

   22

22
'

1.012.026.02.0

143.120003.0

0 




ssss

sss

xS
n

. (34)

 

The calculation of the right-hand side of the coupling 
equation (13) and taking into account the value of S'

, 
from expressions (28) substantiates the following rela-
tionship: 

 

  22

2
''

12.026.0053.0

2.0000997.0







sss

s
xSxS

nn
. (35)

 

Factoring the right-hand side of equation (35) from the 

left provided the spectral density '
xS

n  in the following 

form 
 

 
  12.026.0053.0

2.0032.0
2

'






sss

s
xS

n
. 

 

(36)

 

Thus, the transposed matrix of mutual spectral densi-
ties between the generalised input vector  and the vector 
xn, taking into account relations (7), (30), (34) and (36), is 
represented as 

 

 
  
   

   





















22

2

2
'

1.012.026.02.0

38.0148.320003.0

12.026.0053.0

2.0032.0

ssss

sss

sss

s
S x

. (37)

 
Since vector xn has only one component, the weighting 

coefficient is used instead of the weighting matrix R: 
 

R=1. (38)
 

From expression (38) and the definition of the factori-
sation operation of the fractional rational function on the 
right [22], it follows that 

Г=1. (39)
 

The left factorisation of matrix (33) allowed defining 
the following fractional rational matrix D, all features of 
which are located in the left half-plane of the complex 
variable s=jω, 

 

  
   
















2.01.0

38.0148.3032.0
0

01

ss

ssD . (40)

 

The initial data for separation were determined by ex-
pression (20), taking into account the results of (37), (39), 
(40) in the following form 

 

 
  

   
   



















 

12.026.01.0

38.02148.30095.0

12.026.0053.0

2.0032.0

2

20

sss

sss

sss

s
NNN

. (41)

 

Since the fractional rational functions on the right-
hand side of equation (41) have features with a negative 
real part, the result of the separation coincides with the 
initial data for it, namely 

 

  NNNNN 00 . (42)
 

Substituting the results (39), (40), (42) into rule (23) 
allows finding the following matrix Ф, which ensures the 
minimum of the functional (6), 

 

 
  

  
 


















12.026.0

22.03.0

12.026.0053.0

2.0032.0

2

2

ss

ss

sss

s

. (43)

 

The analysis of the right-hand side of equation (43) 
shows that two relations are fulfilled: 

 

 
  12.026.0053.0

2.0032.0
211






sss

s
; (44)

  
 12.026.0

22.03.0
212






ss

ss
. (45)

 
They provide possibility of finding optimal estimates 

of the transfer functions Wn and Wp. Using equation (24), 
taking into account the given data (27) and the result (45), 
we prove that 

 

 
s

s
Wn

23.0 
 . (46)

 
At the same time, substituting data from (27), (44) and 

(46) into the relation (25) allowed identifying the second 
transfer function in the form of 

 

053.0

032.0




s
Wp . (47)
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Comparison of the obtained transfer functions (46) 
and (47) with the given transfer functions (26) proves the 
correctness of the rules justified in the problem solution 
process. 

Thus, the research goal has been achieved. The rules 
that extend the effect of the indirect identification method 
to the case of estimating the  two-level closed-loop con-
trol system’s one of the elements dynamics model based 
on passive experiment data have been determined. 

 

5 RESULTS 
As a result of the research, the identification problem 

was formalized, equations (7)–(10) and (13) which allow 
forming a set of a posteriori information about the input-
output signals necessary for identification are defined,. 

The rules (23)–(25) for identifying the two-level 
closed-loop control system’s one of the elements dynam-
ics model, which minimizes the sum of the identification 
errors variances in the frequency domain (6), are obtained 
and verified.  

 
6 DISCUSSION 

The conditions and restrictions on the use of the new 
frequency method for closed-loop system elements opti-
mal identification were  determined as follows: 

– the system operates under the influence of one-
dimensional or multidimensional centred stationary useful 
signals, disturbances and measurement noises, the dynam-
ics of which may differ from white noise; 

– models of dynamics of system elements that are not 
subject to identification should be known in advance; 

– models of the dynamics of external influences on the 
system that act during the identification experiment must 
be specified; 

– it is necessary to ensure the possibility of measuring 
the input-output signals of the closed-loop system element 
to be identified. 

The signals in the control paths of closed-loop systems 
analysis proves the  possibility of these signals mathe-
matical expectations changing effect, even under the con-
ditions of existence only centred stationary input influ-
ences on the system. On this basis, further development of 
research can be directed at overcoming such effects. 

 

CONCLUSIONS 
The urgent problem of mathematical support devel-

opment is solved for identifying the two-level closed-loop 
control system’s one of the elements dynamics model 
with the minimum of  the identification errors variances 
sum. 

The application of the Wiener-Kolmogorov ideas al-
lows overcoming the contradictions between the assump-
tions made in the formulation of the identification method 
and a two-level closed-loop system design and operating 
conditions by developing and applying new rules for op-
timal identification of this system elements.  

The scientific novelty of obtained results is that a re-
sult of the study, a new method for identifying a complex 
multidimensional element of a two-level closed-loop con-
trol system was determined for the first time. The justified 

method has two main distinguishing features. The first 
feature is that to solve the identification problem it is 
enough to measure one of the two vectors at the inputs of 
the identification object and the vector of signals at its 
outputs. The second distinctive feature is that as a result 
of solving the identification problem, two transfer func-
tion matrices are determined. The first characterizes the 
influence of the vector of controlled input signals on the 
output signals of the object, and the second determines the 
influence of the vector of uncontrolled input signals on 
the output of the object. 

The practical significance of the results lies in the 
fact that the a priori conditions for obtaining initial data 
for identifying the elements of a closed-loop control sys-
tem are substantiated. This allows for effective planning 
of an identification experiment, as well as justifying the 
list of signals that are to be recorded during this experi-
ment. 

Prospects for further research are to develop meth-
ods and rules for overcoming the effect of violation of 
stationarity in closed-loop control systems, which occurs 
even under the action of centered stationary random influ-
ences, when carrying out identification. 
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AНОТАЦІЯ 

Актуальність. Стаття присвячена подоланню протиріч між припущеннями, прийнятими при формулюванні методу іде-
нтифікації, та конструкцією і умовами функціонування замкненої системи керування. У статті здійснено приведення архіте-
ктури дворівневої замкненої систем керування до структурної схеми, яка має дві частини. Перша частина поєднує у собі 
головний контролер та систему зв’язку з головними сенсорами. Друга частина складається з локальної систему керування, 
кінематичної ланки та головних сенсорів. 

Мета роботи. Метою дослідження, результати якого представлені у цій статті, є поширення дії непрямого методу іден-
тифікації на випадок оцінювання моделі динаміки головного контролера дворівневої замкненої системи керування за дани-
ми пасивного експерименту. 

Метод. У статті використано метод ідентифікації в частотній області багатовимірних стохастичних систем стабілізації 
рухомих об’єктів з довільною динамікою. Початкова інформація про зміни сигналів «вхід-вихід» отримана за даними паси-
вного експерименту під час натурних випробувань, яка спотворена недосконалістю вимірювальних приладів та системи 
реєстрації.  

Результати. Визначено новий метод ідентифікації елементів дворівневої замкненої системи керування, яка функціонує 
в умовах дії багатовимірних стаціонарних центрованих випадкових впливів.  
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Висновки. Обґрунтовані правила дозволяють коректно визначати матриці передатних функцій обраного елемента за-
мкненої системи при виконанні визначеного переліку умов. Проведений аналіз сигналів контурів керування замкнутими 
системами доводить можливість існування ефекту зміни цих сигналів статистичними засобами навіть за умов дії на систему 
лише зосереджених стаціонарних вхідних впливів. Виходячи з цього, подальший розвиток досліджень може бути спрямова-
ний на подолання таких ефектів. 

КЛЮЧОВІ СЛОВА: ідентифікація, матриця передавальних функцій, спектральна щільність, дисперсія похибки, функ-
ціонал якості. 
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