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ABSTRACT 
Context. The prediction of the time until failure of corroding hinge-rod structures is a crucial component in risk management 

across various industrial sectors. An accurate solution to the durability problem of corroding structures allows for the prevention of 
undesired consequences that may arise in the event of an emergency situation. Alongside this, the question of the effectiveness of 
existing methods for solving this problem and ways to enhance them arises. 

Objective. The objective is to refine the method of solving the durability problem of a corroding structure using an artificial neu-
ral network and establish accuracy control. 

Method. To refine the original method, alternative sets of input data for the artificial neural network which increase information 
about the change in axial forces over time are considered. For each set of input data a set of models is trained. Based on target metric 
values distribution among the obtained sets, a set is selected where the minimum value of the mathematical expectation of the target 
metric is achieved. For the set of models corresponding to the identified best set, accuracy control of the method is determined by 
establishing the relationship between the mathematical expectation of the target metric and the parameters of the numerical solution. 

Results. The conditions under which a lower value of the mathematical expectation of the target metric is obtained compared to 
the original method are determined. The results of numerical experiments, depending on the considered case, show, in average, an 
improvement on 43.54% and 9.67% in the refined method compared to the original. Additionally, the proposed refinement reduces 
the computational costs required to find a solution by omitting certain steps of the original method. An accuracy control rule of the 
method is established, which allows to obtain on average a given error value without performing extra computations. 

Conclusions. The obtained results indicate the feasibility of applying the proposed refinement. A higher accuracy in predicting 
the time until failure of corroding hinge-rod structures allows to reduce the risks of an emergency situation. Additionally, accuracy 
control enables finding a balance between computational costs and the accuracy of solving the problem. 

KEYWORDS: artificial neural networks, accuracy control, distribution, mathematical expectation, approximation, numerical 
methods, durability corroding structure. 

 
ABBREVIATIONS 

AE is an aggressive environment; 
ANN is an artificial neural network; 
CPU is a central process unit; 
DE is a differential equation; 
FEM is a finite elements method; 
GPU is a graphical process unit; 
MSE is a mean square error; 
HRS is a hinge-rod structure; 
PDCS is the problem of durability of a corroding 

structure; 
RMSE is a root mean square error; 
RPROP is a resilient propagation; 
SDE is a system of differential equations. 

 

NOMENCLATURE 
A0 is an initial area of the section; 
Ai is a cross-sectional area of the i-th structural ele-

ment; 
a is a coefficient of a polynomial of degree 3 ap-

proximating the dependence of axial forces Qj in struc-
tural elements on time t; 

B is a bias unit; 
b is a coefficient of a polynomial of degree 3 ap-

proximating the dependence of axial forces Qj in struc-
tural elements on time t; 

c is a coefficient of a polynomial of degree 3 ap-
proximating the dependence of axial forces Qj in struc-
tural elements on time t; 

D is a differentiation matrix; 
d is a number of neurons in the ANN input layer; 
E is an elasticity matrix; 
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i is an index of HRS element; 

0i  is an index of HRS element that first fails; 

j is a number of nodes of the finite-difference grid; 
K is a stiffness matrix; 
k is a coefficient of influence of stress on the rate of 

the corrosion process; 
N is a number of structural elements; 
n is both training and test dataset size; 
ntest is a number of samples in the test dataset; 
P0 is an initial perimeter of the section; 
Qi is a value of the axial force in the i-th structural 

element; 
Qj is values of  axial forces at nodal points of the ap-

proximate solution t~ ;  
R  is a vector of nodal loads; 
s is a number of neurons in the ANN hidden layer; 
Tj is a time values at j nodal points of the approximate 

solution t~ ; 
t is a time; 
t* is a reference numerical solution of the PDCS, ob-

tained at a large number of nodal points; 
t~  is a approximate numerical solution of the PDCS, 

obtained with lower computational costs than for the ref-
erence; 

*
it  is a reference solution of the PDCS for the i-th 

sample; 

)(* uti is an approximate solutions of the PDCS for the 

i-th sample; 
u  is vector of displacements; 
v0 is a corrosion rate in the absence of stress; 
Z is a number of weight coefficients; 
 is a shape parameter of the two-parameter inverse 

gamma distribution; 
 is a scale parameter of the two-parameter inverse 

gamma distribution; 
   is a gamma function. 

  is a vector of values of the depth of corrosion dam-
age of each structural element; 

 i(t) is a value of the depth of corrosion damage in the 
i-th structural element (damage parameter); 

  is a vector of deformations; 
i is a value of the target function for the i-th sample; 
 ui  is an output value of the model from Mu for the 

i-th sample; 
i is a current stress in the i-th structural element; 

0  is an initial stress; 

  is a vector of stresses; 
][  is an yield stress. 

 
INTRODUCTION 

In many strategic industrial sectors including nuclear 
and thermal energy, chemical and petrochemical indus-
tries, the use of metal structures in aggressive environ-
ments leading to corrosion is involved. Corrosion is a 
primary factor contributing to the catastrophic failure of 

equipment, which can be accompanied by significant fi-
nancial losses and severe environmental consequences 
[1]. Ensuring the ability to respond promptly to the men-
tioned risks raises the relevant issue of determining the 
duration during which a structure will perform its func-
tions – the durability of the structure. This matter is typi-
cally addressed through computer modeling. Moreover, 
the latter is complicated by the fact that the rate of the 
corrosion process is influenced by mechanical stresses in 
the structural elements. Existing models of corrosion-
induced deformation consist of systems of differential 
equations and systems of mechanics equations, the solu-
tion of which requires significant computational costs. To 
solve the problem of reducing computing costs in 2021, 
Zelenstov D.G., Korotka L.I. and Denysiuk O.R. pro-
posed (see [2]) a method for solving the PDCS using 
ANN (hereinafter Method). However, the authors do not 
consider the problem of establishing accuracy control of 
Method. Also, in [2] and related approaches (see, for ex-
ample, [3, 4]), the dependence of the output of the neural 
network model on the set of initial values of the weight 
coefficients of the neural network is not taken into ac-
count. These coefficients represent the realization of a 
certain random variable, meaning that depending on a 
particular realization, the output of the neural network, in 
general, will be different. Therefore, it is appropriate to 
consider not just the individual result in the form of the 
output of the neural network, but rather certain character-
istics of the distribution of the results, such as mathemati-
cal expectation. 

The paper investigates the refinement of the method 
proposed in [2] and establishes accuracy control. At the 
same time, the presence of the aforementioned depend-
ence of the ANN’s output on a set of random initial val-
ues of weight coefficients is taken into account. 

The object of the study is the problem of accuracy-
controlled numerical analysis of the problem of solving 
PDCS. 

The subject of the study is artificial neural networks 
as a means of enhancing the efficiency of numerical 
methods while simultaneously ensuring a specified level 
of result accuracy. 

The purpose of the study is to refine the method of 
solving PDCS using ANN and establish accuracy control 
rule. 

 
1 PROBLEM STATEMENT 

Let’s consider the model of corrosive deformation of 
HRS operating in aggressive environments based on the 
FEM (for more details, see [2, 5]): 
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Assuming Q = const, by knowing the solutions )(ti  

of the differential equations (1) and the limit values of the 

corrosion damage depths *
i  one can find the time values 

*
ii tt  , at which the *

i  values are reached. The value 

 Nitt ii ,1,min **
0

  is referred to as the durability of 

the structure. To calculate i  in the right-hand side of (1) 

deformable solid mechanics equation are utilized, which 
in the form of the FEM system of equations are repre-
sented as: 
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As the cross-sectional areas of elements change during 
the process of corrosive wear, the elements of the struc-
tural stiffness matrix K , as well as the stresses i  in the 

elements, vary over time. Thus, in the numerical solution 
of (1), it is necessary to compute (2) at each node of the 
finite difference grid. This significantly increases compu-
tational costs.  

Methods that address the issue of reducing computa-
tional costs may require both the absence of accuracy loss 
and the ability to control this accuracy. Therefore, follow-
ing the Method in [2], we will explore the problem of its 
refinement and accuracy control. By accuracy of the 
method, will mean the value of the mathematical expecta-
tion of the target metric – E(RMSE); by refinement of the 
method – identification of conditions that allow reducing 
the value of E(RMSE) compared to the corresponding 
value of the inherited method without, at least, increasing 
computational costs; and by accuracy control – determi-
nation of the dependence between the values of E(RMSE) 
and the parameters of the approximate solution. 

 

2 REVIEW OF THE LITERATURE 
The use of Artificial Neural Networks (ANNs) in the 

algorithm for controlling the accuracy of numerical solu-
tion of the differential equation of the form (1) was pro-
posed in [3]. The authors considered a trained ANN, 
which determined the parameter of numerical integration 
to achieve the specified solution error. This method was 
further developed in [4], where instead of training sepa-
rate ANNs for different error values, a unified ANN with 
the error value as an input parameter was suggested. A 
common feature of these algorithms is the ignoring of 
changes in axial forces in elements of corroding structures 
during the formation of training samples for ANNs. As a 
result, the predicted error value did not always meet the 
specified level. 

In [2], a method of correction functions was proposed, 
in which the solution of the PDCS was approximated with 
minimal computational costs and refined using a correc-
tion function. The corrective function included an ANN 
that approximated the dependency between the error of 

the approximate solution and certain input parameters of 
the PDCS, including the coefficients of a polynomial used 
to describe the variation in time of axial forces in the HRS 
elements. The coefficients of this polynomial were deter-
mined at the stage of finding the approximate solution of 
the PDCS. This approach reduced computational costs 
and solved the problem of taking into account changes in 
axial forces over time, but the problem of accuracy con-
trol of the algorithm remained open. 

 

3 MATERIALS AND METHODS 
First, let’s outline the general scheme of refining the 

Method, after which we will proceed to a more detailed 
exposition. The general refinement scheme of the Method 
consists of the following steps: 

1) by varying the input parameters sets of the ANN, the 
Method will be using to solve the PDCS. In other words, 
models will be training according to the Method on dif-
ferent input parameters sets, including the proposed 
Method set; 

2) let’s create a set V, which includes L different sets of 

initial values of weight coefficients  1,0,}{ 1  p
P
pp ww , 

where P – the number of weight coefficients. The proce-
dure from the previous step for each input parameters set 
and for each element of set V will performed. As a result, 
for each input parameters set, we will have a distribution 
of target metric values; the distribution parameters will be 
estimated using the maximum likelihood method [6]; 

3) for each distribution calculate the mathematical ex-
pectation and compare the obtained values; 

4) the input parameters set on which the smallest value 
of the mathematical expectation is achieved is the sought-
after condition that refines the Method, if at least it does 
not increase computational costs at the stage of applying 
the obtained refinement. Remark: we ignore changes in 
computational costs arising from a certain increase in the 
number of input parameters of the ANN, because the ap-
plication stage of the Method requires the existence of a 
previously trained ANN. 

Let’s now consider in more detail the outlined 
scheme, using also [2]. 

Dataset forming. A sample of volume n with training 
samples is generated, containing construction parameters 

][,, 00 PA , environmental parameters (v0, k), value t* of 

the reference solution of the PDCS, time values and axial 
forces (Tj, Qj) at j = 4 nodal points Tj = {t1, t2, …, tj} and 
Qj = {q1, q2, …, qj}, where tj = t~ , coefficients (a, b, c) of 
a polynomial of degree 3 that approximates the depend-
ence Q(t) at points (Tj, Qj). The target function is defined 

as the error 
t

t
~
*

  between the reference and approxi-

mate solutions of the PDCS. 
Models training. To refine the Method, we will con-

sider sets of input parameters that enhance the informa-
tion about the variation of axial forces over time com-
pared to those proposed in the Method. Let’s define the 
set V and on the next sets of input parameters for the 
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ANN:  cbaPAu cba ,,,,, 000,,  , 

 jTcba TcbaPAu
j

,,,,,, 000,,,  ,  jQ QPAu
j

,,, 000  , 

 jjTQ TQPAu
jj

,,,, 000,   will be trained L models ac-

cordingly. These sets of L models will be denoted as  
M(a, b, c), M((a, b, c),T), M(Q), M(Q,T), or simply Mu, when refer-
ring to the set of models corresponding to a specific u as 
defined above. Note that cbau ,,  is the set which is used in 

the Method itself; hence, this set will be referred to as the 
base set, and the set of models M(a,b,c) – will be called the 
set of base models. As the metric to be minimized during 
the training of the ANN, we will consider 
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. The refined solution of the 

PDCS will have the form  utut  ~)(* , which means 

)(** utt  . 

Distributions constructing. To each model from Mu 
will assign the value of the target metric 
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n
. As mentioned earlier, 

the value of the MSE metric depends, among other things, 
on the set of initial weight coefficients of the ANN 

 1,0,}{ 1  z
Z
zz ww , which is an realization of a random 

variable W, (in practice, it can be, for example, 
  1,0~ UW ). Thus, under the defined conditions, MSE, 

and consequently RMSE, are functions of the random 
variable W. Having obtained the set Mu comprising L 
models, where the latter differ only in the initial sets 

 lzw , Zz ,1 , Ll ,1 , can be constructed the distribution 

of the target metric RMSE for each set Mu find estimates 
of its parameters, and calculate the mathematical expecta-
tion E(RMSE).  

Refinement of the Method. The set u0, which corre-
sponds to the smallest value of mathematical expectation 
(or the best set), is the sought-after condition that refines 
the Method. 

Accuracy control rule. Let },...3,2{ jJ  . For the 

identified best set, will be constructed several sets 
)(

0
jMu  each of size L, where j  J. For each of these 

sets, values of E(RMSE(j)) will be calculated. By ap-
proximating the points (j, E(RMSE(j))), j  J, will be 
built the dependency y = g(x), x[2, ), y  (0, ). The 
function h(y) = [g–1(y)]~, h(y)  {2, 3, …, j, …}, where 
[]~ denotes rounding to the nearest integer value, repre-
sents the sought dependence between the values of 
E(RMSE) and the number of required nodes j, which are 
parameters of the approximate solution. 

 

4 EXPERIMENTS 
For further research, two cases were considered based 

on the nature of the variation of axial forces Q over time t 
in the elements of the corroding structure, differing in the 

number of monotonicity intervals. The number of 
monotonicity intervals in this case affects the quality of 
approximation of these dependencies by a polynomial of 
degree 3. In case А there is one monotonicity interval, 
while in case B there are two monotonicity intervals. The 
graphs illustrating the variation of axial forces over time 
and their approximation by a polynomial of degree 3 at 4 
nodes are presented in Fig. 1 and Fig. 2 for case A and 
case B, respectively. 
 

 
Figure 1 – Case A. One interval of monotonicity 

 
Figure 2 – Case B. Two interval of monotonicity 

 
For numerical experiments, two datasets were gener-

ated for case A and case B, each containing n = 20,000 
samples. An I-beam profile was chosen as the type of the 
leading element of the HRS. Initial geometric parameters 
of the I-beam profile for each sample were randomly se-
lected from the set of standard sizes defined for this type 
of profile. The datasets were divided into training and 
testing sets in a ratio of 70% to 30%, meaning the training 
set consisted of 14,000 samples and the testing set of 
6,000 samples. 

The architecture of the ANN takes the form of a multi-
layer perceptron (see Fig. 3) with dimensions 1 sd , 
where d equal to the number of features in the input set, 

12  ds  calculating according to the Hecht-Nielsen 
theorem [7]. The activation function for the hidden and 
output layers is Sigmoid [8]. Each model was trained for 
1000 epochs using the RPROP learning algorithm [9] in 
batch mode. 

The number of models L for refining the method is 
equal to 100. The number of models L for determining 
the accuracy control is equal to 500. According to the 
values of L and L, sets V and V of random seed values 
are generated from a discrete uniform distribution, which 
is equivalent to creating sets of initial weight coefficient 
values. 
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Figure 3 – ANN architecture for the base model 

 
To obtain distributions of RMSE values for models 

from the sets  Mu, )(
0

jMu , j  J = {2, 3, 4, 6, 8, 12, 16}, 

a two-parameter inverse gamma distribution [10] is con-
sidered as a hypothetical distribution, and its probability 

density function is given by 

    





 















xx
xf exp

1
,,

1

, x > 0. The distribu-

tion parameters  and  are estimated using the maximum 
likelihood method, and the mathematical expectation of 

the distribution is calculated as 
1


 for  > 1. 

The implementation of this approach was carried out 
in the PyCharm and Jupyter Notebook environments us-
ing the Python programming language and the following 
modules and libraries: Numpy, Pandas, scikit-learn for 
data preprocessing and manipulation; module stats from 
SciPy for working with probability distributions; Plotly 
for data visualization. The PyTorch machine learning 
framework [11] was chosen for working with ANNs. 
Computations were performed on a CPU 3.7 GHz AMD 
Ryzen 9 5900X, a GeForce RTX 3060 GPU, and 32GB of 
RAM. 

 
5 RESULTS 

For each set Mu, L models were trained with different 
initial values of weight coefficients. Based on the results 
of these models, distributions for RMSE values were con-
structed. Table 1 presents the mean RMSE values and 
mathematical expectations E(RMSE) for the sets of ob-
tained models. 

Table 1 – Results of models training 
 M(Q,T) M(Q) M(a,b,c,T) M(a,b,c) 

Case А, mean(RMSE)  1.20626  10–3 1.47549  10–3 1.91016  10–3 2.13634  10–3 
Case А, E(RMSE) 1.20624  10–3 1.47031  10–3 1.91096  10–3 2.13673  10–3 
Case B, mean(RMSE  4.311255  10–2 4.376519  10–2 4.730537  10–2 4.762757  10–2 
Case B, E(RMSE) 4.311258  10–2 4.376514  10–2 4.730537  10–2 4.772759  10–2 

 
Thus, in comparison with the baseline set, for case A, 

the mathematical expectation value corresponding to the 
best set is less by 

 
%54.43%100

100021364.0

1000120626.0100021364.0
3

33








; 

and for case B, it is less by 

 
%67.9%100

1004772759.0

1004311258.01004772759.0
2

22








. 

The constructed distributions for case A and case B 
are shown in Fig. 4 and Fig. 5, respectively. 

 

 
Figure 4 – RMSE distributions of trained models for case A 

 
Figure 5 – RMSE distributions of trained models for case B 

 
For the best set 

jj TQu ,  L models were built for each 

number of nodes j from J. For each set of obtained mod-
els, distributions were constructed, and the mathematical 
expectations E(RMSE) were calculated. Fig. 6 shows the 
correspondence between E(RMSE) values and number of 
nodes j, their approximation by the function y = g(x) = 
a(x+c)b, which obtained based on points j  {2, 3, 4, 6}, 
and the mean values of RMSE before refining the solution 
using artificial neural network (the mean value of RMSE 
at the point  j = 2 is equal to 0.10217255). 
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Figure 6 – Graph of the approximate dependence of 

E(RMSE) on the number of nodes 
 

Table 2 provides consolidated information about de-
pendence between E(RMSE) and number of nodes j based 
on approximation by points j  {2, 3, 4, 6}. Accordingly, 
at points j < 6, the behavior of the obtained approximation 
is demonstrated on the data to which the approximating 
function was fitted, and at j > 6 on new data. 

 
Table 2 – Dependence of E(RMSE) on the number of nodes j 

based on approximation 
j E(RMSE) g(j) 
2 0.0048214 0.0048209 
3 0.0018037 0.0018175 
4 0.0012030 0.0011706 
6 0.0006873 0.0007089 
8 0.0006061 0.0005188 
12 0.0003082 0.0003457 
16 0.0002238 0.0002631 

 

Using the function g–1(y) a function was constructed: 
 

   
~1

~1 )(






















  с

a

y
ygyh

b
,  (3)

 

where 0.00249686 = a , 0.84226492 = b , 
1.54206767= c , which is the sought accuracy control 

rule for the Method. The graph of the obtained accuracy 
control rule is shown in Fig. 7. 
 

 
Figure 7 – Graph h(y) 

 
 

6 DISCUSSION 
The smallest value of the mathematical expectation of 

the target metric E(RMSE) for both case A and case B 
corresponds to the set uQ,T. At the same time, the 
E(RMSE) value of the base set ua,b,c is the largest for both 
cases. This allows us to conclude that all proposed sets 
refine the results of the Method. Note that the set ua,b,c 
contains the least information about the variation of axial 
forces over time compared to other sets Additionally, the 
models from the set M(Q,T) do not require a separate ap-
proximation of the dependence of axial forces when ob-
taining input data for ANN. This reduces computational 
costs in solving PDCS. 

The obtained accuracy control rule for the method (3) 
takes the form of a piecewise-linear function. It allows for 
determining the necessary number of nodes in a finite-
difference grid immediately for a desired value of the 
mathematical expectation of RMSE. Subsequently, using 
the obtained value of the number of nodes j as a parame-
ter in the search for an approximate solution t~ , it is pos-
sible to construct a set )(

0
jMu  to which the model corre-

sponding to the desired RMSE value belongs. 
Analyzing the graph in Figure 6, it can be observed 

that with an increase in the number of nodes j the distance 
between the mean value of RMSE before refining the 
solution t~  and the corresponding value of E(RMSE) 
after refinement decreases. This can be interpreted as fol-
lows: the more nodal points we use to find the approxi-
mate solution, the closer it becomes to the reference solu-
tion. Consequently, there is a reduction in the error value 
remaining for the refinement of the ANN.  

Depending on the accuracy requirements of the 
method, instead of the mathematical expectation, other 
distribution characteristics, such as quintile values, etc., 
may be considered. Additionally, it may be relevant to 
introduce a penalty for errors leading to an overestimation 
of the structure’s durability in the metric being optimized. 

 
CONCLUSIONS 

The scientific novelty: Developed an approach for 
solving PDCS using ANN. The existing method was re-
fined by revising the input parameters to the ANN and, as 
a result, abandoned the approach of preliminary approxi-
mation of the dependence of axial forces on time. The 
dependency of the target metric mathematical expectation 
on the numerical solution parameters was identified, mak-
ing the method accuracy-controllable. The evaluation of 
the models took into account the dependence of the ANN 
output on random initial values of weight coefficients. 

The practical significance: According to the results 
of numerical studies, it was established that, depending on 
the case under consideration, the refinement allows a re-
duction in the error by an average on 9.54% and 43.54% 
compared to the original method. The potential impact of 
implementing the proposed model lies is to more accu-
rately predict the durability of corroding hinge-rod struc-
tures in terms of mathematical expectation, thereby reduc-
ing the risk of emergency situations and associated finan-
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cial and environmental consequences. The accuracy con-
trol of the method allows solving PDCS with the required 
accuracy while reducing unnecessary computations. 

Prospects for further research are the consideration 
of the possibility to introduce a penalty for errors that lead 
to an overestimation of the HRS predicted failure time for 
the metric being optimized, and the study of the applica-
tion of the proposed approach in other related problems, 
for example, for the calculation of the constraint function 
in the problem of the HRS optimization. 
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УТОЧНЕННЯ І КЕРОВАНІСТЬ ЗА ТОЧНІСТЮ МЕТОДУ РОЗВ’ЯЗАННЯ ЗАДАЧІ ДОВГОВІЧНОСТІ 
КОРОДУЮЧОЇ КОНСТРУКЦІЇ ІЗ ВИКОРИСТАННЯМ НЕЙРОННОЇ МЕРЕЖІ 
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AНОТАЦІЯ 
Актуальність. Прогнозування часу виходу з ладу кородуючих шарнірно-стрижневих конструкції є важливою складо-

вою управління ризиками багатьох сфер промисловості. Точний розв’язок задачі довговічності кородуючої конструкції до-
зволяє попередити ряд небажаних наслідків, що виникають у разі настання аварійної ситуації. Разом з цим постає питання 
ефективності існуючих методів розв’язання даної задачі та способів їх покращення.  

Мета роботи полягає в уточненні методу розв’язання задачі довговічності кородуючої конструкції із використанням 
штучної нейронної мережі і встановлення керованості за точністю.  

Метод. Для уточнення оригінального методу розглядаються альтернативні набори вхідних даних для штучної нейронної 
мережі, що дозволяють збільшити інформацію про зміну осьових зусиль у часі. Для кожного набору вхідних даних навча-
ється множина моделей. На основі розподілів значень цільової метрики моделей із отриманих множин обирається набір, на 
якому досягається найменше значення математичного сподівання цільової метрики. Для множини моделей, що відповідає 
знайденому найкращому набору, визначається керованість за точністю методу шляхом встановлення залежності між мате-
матичним сподіванням цільової метрики і параметрами чисельного розв’язання.  

Результати. Визначено умови, за яких отримано менше значення математичного сподівання цільової метрики порівняно 
з оригінальним методом. Результати чисельних експериментів, в залежності від розглядуваного випадку, показують в сере-
дньому на 43.54% і 9.67% кращі результати уточненого методу порівняно з оригінальним. Окрім цього, запропоноване уто-
чнення зменшує необхідні для знаходження розв’язку обчислювальні витрати за рахунок відмови від деяких кроків оригіна-
льного методу. Отримано закон керованості методу за точністю, який дозволяє в середньому отримувати задане значення 
похибки без виконання зайвих обчислень. 

Висновки. Отримані результати свідчать про доцільність застосування запропонованого уточнення. Більш висока точ-
ність прогнозування часу виходу з ладу кородуючих шарнірно-стрижневих конструкцій дозволяє зменшити ризики настан-
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ня аварійних ситуацій, а керованість за точністю – знаходити баланс між обчислювальними витратами і точністю 
розв’язання задачі.  

КЛЮЧОВІ СЛОВА: нейронна мережа, керованість за точністю, розподіл, математичне сподівання, апроксимація, чи-
сельні методи, довговічність кородуючої конструкції.  
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