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ABSTRACT 
Context. The article examines the problem of automatic design of architectures of generative-adversarial networks. Generative-

adversarial networks are used for image synthesis. This is especially true for the synthesis of biomedical images – cytological and 
histological, which are used to make a diagnosis in oncology. The synthesized images are used to train convolutional neural net-
works. Convolutional neural networks are currently among the most accurate classifiers of biomedical images.  

Objective. The aim of the work is to develop an automatic method for searching for architectures of generative-adversarial net-
works based on a genetic algorithm.  

Method. The developed method consists of the stage of searching for the architecture of the generator with a fixed discriminator 
and the stage of searching for the architecture of the discriminator with the best generator.  

At the first stage, a fixed discriminator architecture is defined and a generator is searched for. Accordingly, after the first step, the 
architecture of the best generator is obtained, i.e. the model with the lowest FID value.  

At the second stage, the best generator architecture was used and a search for the discriminator architecture was carried out. At 
each cycle of the optimization algorithm, a population of discriminators is created. After the second step, the architecture of the gen-
erative-adversarial network is obtained. 

Results. Cytological images of breast cancer on the Zenodo platform were used to conduct the experiments. As a result of the 
study, an automatic method for searching for architectures of generatively adversarial networks has been developed. On the basis of 
computer experiments, the architecture of a generative adversarial network for the synthesis of cytological images was obtained. The 
total time of the experiment was ~39.5 GPU hours. As a result, 16,000 images were synthesized (4000 for each class). To assess the 
quality of synthesized images, the FID metric was used.The  results of the experiments showed that the developed architecture is the 
best. The network’s FID value is 3.39. This result is the best compared to well-known generative adversarial networks. 

Conclusions. The article develops a method for searching for architectures of generative-adversarial networks for the problems 
of synthesis of biomedical images. In addition, a software module for the synthesis of biomedical images has been developed, which 
can be used to train CNN. 

KEYWORDS: generative adversarial network, biomedical images, cytological images, search for neural network architectures, 
genetic algorithms, FID metrics, computer systems for automatic diagnostics. 

 
ABBREVIATIONS 

ATTN is a shorthand for Self-Attention; 
GAN is a generative adversarial network; 
CNN is a convolutional neural network; 
CAD is a computer-aided diagnosis; 
NAS is a neural architecture search; 
AutoGAN is neural architecture search for GAN; 
CIFAR-10 dataset – Canadian Institute for Advanced 

Research, 10 classes is a subset of the tiny images dataset 
and consists of 60000 32x32 color images; 

AWS is a Amazon Web Services; 
ELU is exponential linear unit activation function; 
Zenodo is a general-purpose open repository devel-

oped under the European OpenAIRE program and oper-
ated by CERN; 

ReLU is a rectified linear unit; 
GA is a genetic algorithm; 
Aging Evolution GA (AGA) is an evolutionary algo-

rithm for neural architecture search. 
Batch Norm is batch normalization; 
ELU (exponential linear unit) is an activation function 

for neural networks; 
Self-Attention operates by transforming the input se-

quence into three vectors: query, key, and value; 

Hinge loss function is measure the distance of data 
points from the decision boundary; 

Nvidia A6000 GPU is the videocard of the company 
Nvidia; 

IS metric is a metric (Inception Score) based on the 
Google Inception V3 image classification model; 

FID is Fréchet inception distance; 
PyTorch is an open source machine learning frame-

work Python Torch; 
AWS S3 is a Amazon Web Services Simple Storage 

Service; 
RAM is a Random Access Memory; 
vCPU is a virtual Central processing unit; 
GPU is a graphical processing unit; 
TFLOPS is a Tera FLoating-point OPerations per 

Second; 
Adam optimizer is an adaptive moment stochastic 

gradient descent method; 
H, W, and C are image height, width, and number of 

channels respectively. 
 

NOMENCLATURE 
Іt is a training set of images; 
ІG is a set of generated images;; 
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G is a generator; 
D is a discriminator; 
L is a set of discriminator layers; 
Q is a set of generator layers; 
n is a number of discriminator layers; 
m is a number of generator layers; 
i is an index of discriminator layers; 
j is an index of generator layers; 
CELLD is a cell of discriminator; 
CELLG is a cell of generator; 
o is a number of nodes in the generator cell; 
p is a number of nodes in the discriminator cell; 
AG is a generator architecture; 
AD is a discriminator architecture; 
OG is a set of generator operations; 
OD is a set of discriminator operations; 
PG is a the set of parameters of generator operations; 
PD is a set of parameters of discriminator operations; 
V(G, D) is the loss function for the generator and dis-

criminator; 
q is the power of the training sample set; 
r is the power of the set of the generated sample; 

( )
tIP x  is the density of the distribution function of the 

training sample; 
P(z) is the density of the generator’s noise distribution 

function; 
E(x) is the expected value of a random variable x. 
MF is a FID metric; 

C  is a set of convolution functions; 

K  is a set of activation functions; 

U  is a set of operations of the Upsample block; 

W  is a set of operations of the generator cell 

CELLG; 
Z  is a set of operations of the discriminator CELLD; 

T  is a set of operations of the Downsample block; 

S  is a Self Attention operation. 
 

INTRODUCTION 
Image synthesis is a popular trend in artificial 

intelligence. A separate class of images are biomedical 
images. A biomedical image is a structural and functional 
image of human and animal organs, designed to diagnose 
diseases and study the anatomical and physiological 
picture of the body.  

A subclass of biomedical images are cytological, 
histological and immunohistochemical images. These 
images are used to make a diagnosis in oncology. The 
widespread use of deep neural networks for image 
classification has led to the problem of datasets. To 
achieve the required accuracy of biomedical image 
classification, it is necessary to provide powerful datasets. 

Hence, there is a contradiction between achieving high 
accuracy in biomedical image classification and providing 
powerful datasets to train convolutional neural networks. 
To resolve this contradiction, it is necessary to develop a 

method and means of generating biomedical images. One 
of the modern approaches to solve this problem is the use 
of generative adversarial networks. Since their inception 
in 2014, generative adversarial networks have become the 
primary tool for synthesizing high-quality and diverse 
images [1–5] 

Synthesized images help improve the training of 
machine learning models (in particular, classifiers) by 
extending existing training datasets, which are often low-
power [6]. 

The complex process of synthesizing GAN 
architectures manually makes them difficult to use. 
Manual design of GAN architecture requires a deep 
understanding of machine learning principles and 
knowledge of the specifics of the subject area. This 
process is time-consuming and often requires developers 
to make a number of complex decisions. For example, 
developers have to choose between different types of 
layers, activation functions, and optimization techniques 
that have a big impact on the performance of the neural 
network. 

One of the main challenges of manual architecture 
design is scalability. The more complex biomedical 
imaging becomes, the more complex GAN architectures 
become. Manual architecture design depends on the 
experience and intuition of the developer.  

Thus, the creation of an automatic method for 
searching for GAN network architectures is an urgent 
task. The automatic method of searching for GAN 
architectures will allow you to quickly and thoroughly 
explore a large search space (types of layers, activation 
functions, etc.), finding the best network configurations. 
This method will reduce the synthesis time of GAN 
architectures and increase the efficiency of the process. 

The object of research is the process of biomedical 
images synthesis.  

The subject of the research is the synthesis of 
generative-adversarial network architectures. 

The aim of the work is to develop an automatic 
method for searching the architectures of generative-
adversarial networks based on a genetic algorithm. This 
will make it possible to synthesize GAN network 
architectures in automatic mode for the synthesis of 
biomedical images. 
 

1 PROBLEM STATEMENT 
Let be given a training sample of images Іt with a 

cardinality of q. Generating a set of  images ІG with a 
cardinality of r, and r q. To generate ІG we use GAN. 
The GAN consists of a generator and a discriminator. In 
addition, the architecture of the generator and discrimina-
tor AG and AD, respectively, is given.  

The discriminator architecture is described as follows: 
 

 , 1,D iA L i n  , 

 
and the architecture of the generator as follows: 

105



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2024. № 1 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2024. № 1 

 
 

© Berezsky O. M., Liashchynskyi P. B., 2024 
DOI 10.15588/1607-3274-2024-1-10  
 

 , 1,G jA Q j m  . 

 
The set of discriminator operations is represented as 

follows: 
 

 ; ; ;DO C K Z T , 

 
and the set of generator operations is as follows: 
 

 ; ; ;GO C K U S . 

 
Then it is necessary to carry out a two-level 

optimization of the discriminator and generator 
architectures, i.e.: 

 
 

,
arg min , , ,

D D

D F D D t G
O P

A M P O I I , 

 
,

arg min , , ,
G G

G F G G t G
O P

A M P O I I . 

 
In this case, the loss function of the discriminator and 

the generator will be defined as follows: 
 

( , ) min max ( , )
G D

V G D F G D   

   ( ) ( )log ( ) log(1 ( ( )))
It

x P x z p zE D x E D G z    . 

 
2 REVIEW OF THE LITERATURE 

In deep learning, the development of generative 
adversarial networks has been a big step for image 
synthesis. Generative adversarial networks have a great 
potential for the synthesis of realistic images. 

In the early days of GAN research, the main goal was 
to synthesize realistic images from random noise. The 
work of Radford, et al.  gave a push to the improvement 
of the quality of synthesized images and the stability of 
GAN learning [7]. This work laid the groundwork for 
future research, as it proved GAN’s ability to handle 
complex image distributions. 

In biomedicine, GANs are used to augment training 
data, which is essential to address the scarcity of 
annotated medical images. The authors [8] presented an 
innovative approach to the synthesis of retinal images 
using the generative model method. Based on generative 
models, realistic retinal images were synthesized and used 
to train diagnostic algorithms. Likewise, the authors Frid-
Adar et al. used generative adversarial networks to 
expand the liver lesion image datasets that were used by 
the classifier [9]. Thus, the authors demonstrated the 
practical utility of GAN for expanding datasets and 
improving the accuracy of neural networks in biomedical 
image classification tasks. 

The complexity of designing neural network 
architectures has led to the development of automatic 
search for NAS neural network architectures. Zof and Le 
were among the first to introduce the concept of 

automatic architecture search for CNN. This concept has 
been adapted by researchers to automate the design of 
GAN architectures [10]. In their work, the authors applied 
the reinforcement learning method to explore the search 
space for architectures. This work shows the potential of 
NAS to reduce the human factor in the design of new 
neural network architectures. Since the field of NAS was 
primarily focused only on convolutional neural networks, 
NAS for generative networks is a relatively new area of 
research. Early work in NAS for GAN focused on finding 
efficient architectures that could generate high-quality 
images with reduced computing resources. 

A fundamental paper in this area is [11], which 
develops a method for automatically searching for GAN 
architectures. The authors applied the reinforcement 
learning method to optimize the GAN architecture [12]. 
The AutoGAN framework has demonstrated that 
automated architecture design can compete with human-
made models. To evaluate the method, the authors used 
the FID metric, the final value of which is 12.42. The 
architecture search time is 48 GPU hours. The main 
disadvantages of the work are: limited search space, fixed 
discriminator, unconditional image generation.  

The development of the preliminary research is the 
work [13]. In the paper, the authors applied a genetic 
algorithm to optimize the neural network architecture and 
expanded the search space with operations such as skip 
connection, a convolution with different kernel sizes (1, 3, 
and 5, respectively) [14]. The advantage of this work is 
the search for the architecture of the generator and 
discriminator. The search for architecture is divided into 
two stages – the first stage is the search for the 
architecture of the generator (the discriminator is fixed), 
and the second stage is the search for the discriminator. 
According to the authors, this approach has significantly 
stabilized the training of the GAN network. The 
experiments took 1.2 GPU days and showed a FID of 
9.91 on the CIFAR-10 dataset. The disadvantage of the 
work is the unconditional generation of images. 

In terms of optimizing GAN architectures, researchers 
have identified several key factors that affect the 
performance of networks. Brock et al. introduced the 
concept of scaling GANs, showing that larger models and 
batch sizes can lead to improved image quality [15]. This 
concept is essential for automatically searching for GAN 
architectures.  Search algorithms must take into account 
the trade-off between model complexity and 
computational capability. 

In addition, the evaluation of biomedical images 
generated by GAN networks presents particular 
challenges. When evaluating synthesized images, it is 
necessary to take into account not only visual accuracy, 
but also the preservation of diagnostic features. Automatic 
search for GAN architectures should result in models that 
are statistically powerful and clinically relevant. 

Despite the progress made, significant gaps remain in 
the literature. The analyzed articles in the field of NAS 
for GAN do not focus on the synthesis of biomedical 
images and use an open dataset – CIFAR. This can be 
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explained by the difficulty of obtaining the datasets of 
biomedical images themselves, which in turn further 
emphasizes the relevance of their synthesis. Also, the 
considered methods have a limited search space, do not 
use the most modern operations (ELU, Self-Attention) in 
the search space, do not synthesize images by tags (use 
unconditional generation).  

The article [16] developed a method for the synthesis 
and classification of breast cancer histological images. At 
the same time, well-known GAN structures are used.  

In this paper, we propose an automatic method for 
searching for architectures of generatively adversarial 
networks for the synthesis of biomedical images. 

 
3 MATERIALS AND METHODS 

Defining the search space is the first important step in 
the development of generative adversarial network 
architectures. In this step, you define the range of possible 
types of layers and their combinations that will be used in 
the process of building the model.  

The search space in the developed method is cell-
based. A cell consists of a certain number of nodes and 
operations between them. An example of a cell is shown 
in Figure 1. 

 

 
Figure 1 – Cell Structure 

 
Figure 1 shows a cell with four nodes. The arrows 

represent the type of operation between the two nodes. 
Nodes n1, n2, n3 signify the addition operation.  

One of the disadvantages of classical neural network 
architectures is that all layers follow each other 
sequentially. This option of connection gives rise to the 
problem of gradient attenuation, which significantly 
impairs the training of the neural network [17]. In this 
method, each successive node in the cell can receive input 
from all the previous nodes, depending on the selected 
operation between them.  

We analyzed modern architectures of GAN networks 
and identified a set of layers that are most often used in 
research. These include the following operations: kernel 
convolution operation 11, 33 and 55, max- and 
average-pooling operations, self-attention mechanism. 
Also, the generator and discriminator architectures in 
most GANs consist of repeating convolutional blocks, 
and the input noise vector is transformed into a matrix of 
size 44. The number of such blocks varies depending on 
the resolution of the generated image. Accordingly, if the 
generator synthesizes an image with a resolution of 

6464, then it consists of 4 convolutional blocks. The full 
set of possible operations we have chosen for the cell is 
listed below. 

Zero. This operation replaces the node’s output with a 
matrix of zeros. It can be used to remove a node from a 
cell architecture to simplify it.  

Skip connection. This operation can be thought of as a 
function that receives and returns data. Using such an 
operation allows you to directly connect the output of one 
node in a cell to the input of another. 

Convolutional block. batch normalization is often used 
along with convolution operations.  Therefore, this layer 
uses three sequential operations: convolutions, activation 
functions, and batch normalization. We used convolution 
kernels 11, 33, and 55. As an activation function, 
ELU is used – an improved modification of ReLU. 

Pooling. We use pooling only in the discriminator 
model. The two types of pooling are max pooling with a 
33 kernel and step 11 and average pooling with a 33 
kernel and step 1.  

The Self-Attention operation is placed outside the 
cells. The integration of the Self-Attention mechanism 
into CNN allows to focus on the most informative 
features, which can be useful for object detection, 
segmentation and image recognition [18]. 

The search space for the generator and discriminator is 
shown in Figure 2. 

In the developed method, we applied the Conditional 
GAN strategy, which allows to synthesize images of 
classes. Accordingly, in the generator model, we use the 
Conditional Batch Normalization operation in each 
UpSample block. In the discriminator model, we use an 
Embeddig layer in combination with a fully connected 
layer. The sum of the outputs of these two layers is the 
output of the discriminator model.  

The generator consists of one deconvolution layer to 
convert the input noise vector to dimension 441024, 
four cells, four blocks to double the resolution, and two 
convolutional layers at the network output. The final 
resolution of the synthesized image is 64643. 

The main element in the generator’s search space is 
the cell, which consists of o nodes. The available 
operations in a cell are defined as follows: convolution by 
the kernel 11, 33, 55; separable convolution by kernel 
33; zero; skip connection. The cell architecture remains 
the same for the entire generator model.  Accordingly, the 
search space of the generator is reduced to determining 
the number of nodes in the cell, selecting operations 
between nodes, as well as selecting layers after which you 
need to apply the Self-Attention operation through the 
residual connection (shown in the figure by ATTN 
(represents Self-Attention) arrows). 

The generator’s search space is encoded as {N, C, 
[ATTN]}. Let’s review in details these parameters. 
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Figure 2 – Generator and Discriminator Search Spaces 

The N parameter  is the number of nodes in the cell. 
The minimum value is 3, the  maximum value is 5. This 
decision was made due to limited computing resources. In 
addition, our study uses mostly small images, specifically 
6464 pixel in size. This aspect has a significant impact 
on network architectures, as such images usually require 
fewer layers. Therefore, the decision to limit the number 
of layers in the model is also due to the nature of the data. 

Parameter C is the architecture of the cell in which the 
operations between nodes are encoded. It is represented 
by a tape xxx–xx–x, the length of which varies depending 
on the number of nodes in the cell.  For example, for a 
cell with a number of nodes of 3, the encoded tape might 
look like 12–6. The first fraction separated by a hyphen 
represents the operations between the first node and all 
subsequent ones, the second – between the second node 
and all subsequent ones. Respectively 1 means kernel 
convolution operation 11 between the first and second 
nodes (see Fig. 2), 2 is the kernel convolution operation 
33 between the first and second nodes. The number 6 
means the skip connection operation between the second 
and third nodes. 

The ATTN parameter  represents the cell numbers after 
which you want to apply Self-Attention operations. 

According to the described encoding and the above 
example, the encoding of the generator architecture is {3, 
12–6, [1, 2]}. As you can see from the example, the Self-
Attention operation is applied after the first and second 
cells. 

The discriminator consists of one convolution layer, 
four cells, four blocks for halving the resolution, and one 
linear and embedding layer.  

The main element in the discriminator search space is 
the cell, which consists of p nodes. Unlike the generator, 
the available set of operations in the discriminator cell is 
extended by two operations: the maximum pooling by the 
kernel 33 and the average pooling by the kernel 33.   

For the dimensionality reduction operation, the 
Separable Downsample Convolution operation is used. 
The authors of the paper state that this is the most optimal 
method of reducing dimensionality in convolutional 
networks at present [19].  

The cell architecture also remains the same for the 
entire discriminator model. The discriminator search 
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space boils down to the same steps as for the generator. 
These steps are as follows: determining the number of 
nodes in a cell, selecting operations between nodes, 
selecting layers. After these steps, you need to apply the 
Self-Attention operation through the residual connection 
(shown by the ATTN arrows in the figure). 

The discriminator’s search space is encoded in the 
same way as the generator’s: {N, C, [ATTN]}.  

The developed method consists of the following 
stages: 

1. Search for a generator architecture with a fixed 
discriminator. 

2. Search for a discriminator architecture with the best 
generator.  

The general framework of the method is shown in 
Figure 3.  

At the first stage, we define a fixed discriminator 
architecture and search for only the generator. The 
discriminator architecture is manually defined as follows: 
four nodes in a cell, the cell architecture is encoded as 
235–66–7 (convolution by kernel 33 and 55, zero, skip 
connection, skip connection, max pooling by kernel 33), 
Self-Attention mechanism is applied only after the last 
cell. 

At each cycle of the optimization algorithm, we 
initialize the population with random generator 
architectures. Next, we create a generator and 
discriminator pair for each generator in the population. 
The resulting pairs of GAN networks are trained and 
evaluated at the end of each cycle using FID metrics [20, 
21]. At the end of the cycle, we select the generator with 
the lowest FID value and copy its weights. Further in the 
next cycle, we initialize all generators with copied 
weights. Accordingly, after the first step, we get the 
architecture of the best generator, i.e. the model with the 
lowest FID value.  

In the second step, we use the best generator 
architecture and search for the discriminator architecture. 
At each cycle of the optimization algorithm, we create a 
population of discriminators and initialize it with random 
architectures. Then, by analogy with the first step, we 
create pairs of generators and discriminators. The 
resulting pairs of GAN networks are trained 
independently of each other and evaluated using the FID 
metric. At the end of each cycle, we copy the weights of 
the best discriminator and initialize all the discriminators 
in the next cycle with them. After the second step, we get 
the architecture of the best discriminator, and, 
accordingly, the best architecture of the GAN network.  

At both stages, the input images of the 
discriminatormodel are subjected to the technique of 
Differentiable Augmentations with the application of a 
random color and translation policy. This technique helps 

to further expand the training dataset directly during the 
learning process and is especially effective on small 
datasets [22].  

We used a modified Aging Evolution GA (AGA) 
algorithm to optimize the generative adversarial network 
architecture [23]. The AGA maintains a population of 
potential solutions, where each solution represents a 
unique GAN architecture.  

A variation in the genetic algorithm known as Aging 
Evolution GA adds an aging component to increase 
population diversity and prevent early convergence. 

The main steps of this algorithm are: 
1. Train and evaluate each architecture in the 

population by calculating the FID metric. 
2. Selection of a subset of architectures from the 

population. The selection process is based on a random 
strategy. 

3. Selection of the parent architecture and application 
of the genetic operator (mutation) to it to create a new 
architecture. 

4. Evaluate the new architecture by training it and 
computing the FID metric and adding the architecture to 
the population. 

5. Remove the oldest architecture from the population. 
At the first step of the algorithm, the population is 

initialized by random architectures to achieve a given 
population size – population_size. Simultaneously with 
initialization, architectures are trained with the calculation 
of the FID metric value. 

Further, evolution occurs cyclically. The  number of 
cycles is also set by the user (cycles parameter). On each 
of the cycles, a given number of  architectures is 
randomly selected – sample_size. Then, among these 
architectures, the one with the lowest FID value is 
selected. This architecture is called the parent 
architecture. 

Based on the parent architecture, a new child 
architecture is created by applying a mutation. In this 
algorithm, the mutation changes the architecture 
randomly. Next, the mutated architecture learns. 

The mutation is applied to each element in the 
encoded architecture with a probability of mutation_prob. 
For example, the network architecture is set  to tape 
107590. In order to mutate, you need to go through each 
element of the tape in a loop and change it randomly with 
a given probability of mutation_prob.  

Accordingly, after applying a mutation, we get a new 
child architecture that is added to the population. At the 
same time, the oldest architecture is being removed from 
the population. The algorithm then returns the architecture 
with the lowest FID value. 
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Figure 3 – General GAN Synthesis Method Framework 

4 EXPERIMENTS 
The experiments were based on the Python 3.10 

programming language, the PyTorch 2.0 framework, and 
a virtual machine with the following configuration: 32 GB 
RAM, 7 vCPU, Nvidia A6000 GPU, 48 GB RAM. 

The software module consists of two main Python 
scripts: train.py and generate.py. The train.py script is 
designed to build and train generative adversarial network 
(GAN) architectures. It allows users to define basic 
parameters for GAN search, including noise vector 
dimension, activation functions, and optimization 
parameters.  After training, the architecture that gives the 
best results is chosen. The trained model is stored in 
Amazon S3 storage, ensuring that the model is saved and 
can be accessed or downloaded as needed. 

The second script, generate.py, runs after the GAN 
model has been trained and configured. This script is 
responsible for generating new images using the best 
architecture found during the learning phase. It can be run 
as a command-line tool where the user specifies the path 
to the model and the preferred directory to output the 
generated images. The script loads the trained GAN 
model and uses it to synthesize new images that are 
expected to demonstrate the learned distribution of the 
training data. The results can be used for further analysis 
or as input for other stages of research. 

In this study, we used cytological images to test the 
method. A cytological image is a microscopic image of 
individual cells or cell formations obtained by cytological 
examination.   

Cytological images of breast cancer on the Zenodo 
platform were used for the experiments [24]. This dataset 
is designed to test and configure automatic biomedical 
image processing systems. The structure of the dataset is 
as follows: 

1) files of cytological images and the indicated 
diagnosis (size 32642448). 

2) files of histological and immunohistochemical 
images of sections of breast tissue (size 20481536) and 
the indicated diagnosis.  

Examples of cytological images are shown in Figure 4 
(one image per class). 

 

 
Figure 4 – Example of images from the dataset 

For the experiments, the image was converted to a 
resolution of 6464 pixels. Since the initial number of 
images in the sample is quite small (about 100 images per 
class), it was expanded to 700 images per class by 
applying affine distortions (random rotation, 
displacement, twisting, etc.) [25]. 

For both stages of the search, we used the Hinge loss 
function [26] and the Adam optimizer (betas = 0.5, 0.999) 
[27]. We also applied the Two Time-scale Update Rule 
[28]. Accordingly, the learning rate of the generator is 
0.0001, and the discriminator is 0.0004. 
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Figure 5 – Synthesized Generator Architecture 

 
Figure 6 – Synthesized Discriminator Architecture 

 
For all convolutional, deconvolutional, and linear 

layers in both models, we applied the spectral 
normalization technique, which allows us to stabilize the 
learning of the GAN network [29]. 

The total number of cycles of the optimization 
algorithm at each stage is 25, and the number of epochs of 
training for each model in the population is 30. The 
population size (population_size) is 100. The number of 
randomly selected candidates for further selection of the 
parent architecture for mutation (sample_size) is 25. The 
probability of mutation (mutation_prob) is 0.05. Batch 
size (batch_size) for the generator and discriminator is the 
same and is 128 images. 

To evaluate architectures, the FID metric was used, 
which is calculated after each architecture is trained. 

In total, the first and second stages took 15.6 and 10.3 
GPU hours, respectively. 

Upon completion of both phases, the resulting GAN 
network was trained from scratch for 100,000 iterations. It 
took another ~13.6 GPU hours. That is, the total time 
spent from finding architectures to obtaining a fully 
trained GAN network is 39.5 GPU hours. 

As a result of the experiments, 4000 images with a 
resolution of 6464 for each class from the educational 

dataset were synthesized. Accordingly, the total number 
of synthesized images is 16,000.  

 
5 RESULTS 

The architecture of the found generator and 
discriminator is shown in Figures 5 and 6 and in Tables 
1–4.  

As you can see from the figures, the number of nodes 
in the generator and discriminator cells is 4 and 5, 
respectively. There are two skip connection operations in 
the generator cell, and there are 3 in the discriminator cell. 
There is also a zero operation in the discriminator cell, 
which is not present in the generator. The Self-Attention 
operation is applied 2 times in both the generator and the 
discriminator.  However, in the generator, this operation 
is placed towards the end of the network,  And in the 
discriminator, on the contrary, it is closer to the 
beginning. 

The FID metric value for the found GAN network 
architecture is 3.39, and the IS metric value is 3.95. 

Examples of comparison of synthesized images with 
the original ones for each class are shown in Figures 7–
10. The images are selected randomly.  
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Table 1 – Generator Structure 

 
Table 2 – Generator CELLG Structure 

 
Table 3 – Discriminator Structure 

 

Layer name Params Output shape 
L1: Input Gaussian noise 1128 

L2: Transposed Conv + ELU activation Kernel = 4, stride = 1, padding = 0 441024 
L3:  CELLG   Nodes = 4 441024 
L4: L2 + L3  441024 

L5: Upsample Scale = 2 881024 
L6:  CELLG   Nodes = 4 881024 
L7: L5 + L6  881024 

L8: Upsample Scale = 2 1616512 
L9:  CELLG   Nodes = 4 1616512 

L10: Self Attention Input channels = 512 1616512 
L11: L8 + L10 + L9  1616512 

L11: Upsample Scale = 2 3232256 
L12:  CELLG   Nodes = 4 3232256 

L13: Self Attention Input channels = 256 3232256 
L14: L11 + L13 + L12  3232256 

L15: Upsample Scale = 2 6464128 
L16: Convolution Kernel = 3, stride = 1, padding = 1 6464128 
L17: Convolution Kernel = 3, stride = 1, padding = 1 64643 

L18: Output  64643 

Layer name Params 
L0: Input  

L1: Conv  ELU  Batch Norm Kernel = 3, stride = 1, padding = 1 

L2: L1 + Conv 33  Conv 11  ELU  Batch Norm 
Conv 3x3 = (Kernel = 3, stride = 1, padding = 1),  
Conv 1x1 = (Kernel = 1, stride = 1, padding = 0) 

L3: L2 + Conv (L1) + Conv (L0) Kernel = 3, stride = 1, padding = 1 
L0: Input  

L1: Conv  ELU  Batch Norm Kernel = 3, stride = 1, padding = 1 
Upsample block structure 

Layer name Params Output shape 
L0: Input  H  W  C 

L1: Upsample Scale = 2, mode = nearest (H  2)  (W  2)  C 
L2: Convolution Kernel = 3, stride = 1, padding = 1 (H  2)  (W  2)  C 

L3: Conditional Batch Norm Number of classes = 4 (H  2)  (W  2)  C 
L4: Gated Linear Unit (GLU) Dimension = 1 (H  2)  (W  2)  (C / 2) 

Layer name Params Output shape 
L1: Input Image 64643 

L2: Conv + ELU activation Kernel = 3, stride = 1, padding = 1 646464 
L3:  CELLD Nodes = 5 646464 

L4: Self Attention Input channels = 64 646464 
L5: L2 + L4 + L3  646464 
L6: Downsample Scale = 2 3232128 

L7:  CELLD Nodes = 5 3232128 
L8: Self Attention Input channels = 64 3232128 
L9: L6 + L8 + L7  3232128 
L10: Downsample Scale = 2 1616256 

L11:  CELLD Nodes = 5 1616256 
L12: L10 + L11  1616256 

L13: Downsample Scale = 2 88512 
L14:  CELLD Nodes = 5 88512 

L15: L13 + L14  88512 
L16: Downsample Scale = 2 441024 

L17: Linear(Sum(L16))  11 
L18: Sum(Multiply(Sum(L16), Embed-

ding)) 
Number of classes = 4 11 

L19: L17 + L18  11 
L20: Output  11 
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Table 4 – Discriminator CELLD Structure 

 

 
a 
 

 
b 

Figure 7 – Original (a) and Synthesized (b) Images, Class 1 
 

 
a 
 

 
b 

Figure 8 – Original (a) and Synthesized (b) Images, Class 2 
 
 
 

 

 
a 
 

 
b 

Figure 9 – Original (a) and Synthesized (b) Images, Class 3 
 

 
a 
 

 
b 

Figure 10 – Original (a) and Synthesized (b) Images, Class 4 

 

Layer name Params 
L0: Input  

L1: Conv  ELU  Batch Norm Kernel = 3, stride = 1, padding = 1 

L2: L1 + Conv 33  Conv 11  ELU  Batch Norm 
(Kernel = 3, stride = 1, padding = 1), (Kernel = 1, stride = 1, padding = 

0) 
L3: AvgPool 3 3 (L2) Kernel = 3, stride = 1 

L4: L0 + L3 + AvgPool 3 3 (L2) Kernel = 3, stride = 1 
Downsample block structure 

Layer name Params Output shape 
L0: Input  H  W  C 

L2: Convolution Kernel = 3, stride = 1, padding = 1 H  W  (C  2) 
L3: Pixel Rearrange  Convolution Kernel = 1, stride = 1, padding = 0 (H / 2)  (W / 2)  (C  2) 
L4: Exponential Linear Unit (ELU)  (H / 2)  (W / 2)  (C  2) 
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We also compared different GAN architectures for the 
synthesis of cytological images. The results of the 
comparison are shown in Table 5. 
 

Table 3 – Comparison of GANs by FID metric using same 
images 

Method FID 

DCGAN 12.67 

WGAN 12.72 

WGAN-GP 19.09 

BGAN 10.03 

BEGAN 15.32 

Our method GA-GAN 3.39 

 
6 DISCUSSION 

As a result of the study, the architecture of the 
generative-adversarial network for the synthesis of 
cytological images was obtained (Fig. 5, Fig. 6). To 
assess the quality of synthesized images, the FID metric 
was used.  

Table 3 shows that the network architecture designed 
by our method showed the best results compared to other 
GAN network architectures for the same images.  

Unlike the above architectures, our method uses the 
Self-Attention mechanism in the generator and 
discriminator, which allowed us to improve the quality of 
synthesized images. Also, our method supports the 
mechanism of image synthesis by labels (conditional 
generation), which is not relevant for the above 
architectures and approaches.  

Figures 7–10 show a comparison of original pairs and 
synthesized images for each class from the original and 
synthesized dataset. The synthesized images are difficult 
to visually distinguish from the original ones, which 
further indicates the power of the resulting network. 

We did not test the method on higher-resolution 
images, as this would have led to an increase in search 
time. Therefore, the limitation of our research is the 
relatively low resolution of the synthesized images – 
6464 pixels. In order to synthesize images of higher 
resolution, you need to increase the number of cells in the 
generator and discriminator. 

We also conducted experiments on only one subclass 
of biomedical images – cytological images. Accordingly, 
a further direction of research may be testing and 
adaptation of the developed method to other classes and 
resolutions of biomedical images. 
 

CONCLUSIONS 
As a result of the study,the automatic method for 

searching for architectures of generatively adversarial 
networks for the tasks of synthesis of cytological images 
was developed.  

Architectural search space is defined in terms of cells, 
which consist of a set of nodes and operations between 

them. The architectural features of the cell allow you to 
expand the search space and reduce the likelihood of a 
gradient attenuation problem. 

The developed method consists of two stages: the 
search for the architecture of the generator with a fixed 
discriminator and the search for the architecture of the 
discriminator paired with the fixed best generator. 

As a result of computer experiments, the architecture 
of a generatively competitive network for the synthesis of 
cytological images was obtained. The total time of the 
experiment was ~39.5 GPU hours. As a result, 16,000 
images were synthesized (4000 for each class). 

Comparison of the synthesized architecture with other 
architectures of generative-adversarial networks, using the 
same training dataset, is carried out on the basis of the 
FID metric. The results showed that the designed 
architecture is the best. The FID value of the developed 
network (3.39) is two and a half times better than the FID 
metric of the above architectures. 

The scientific novelty is the development of a method 
for finding generative-adversarial network architectures 
for the synthesis of biomedical images. 

The practical significance is the development of a 
software module for the synthesis of biomedical images 
that can be used to train CNN. 

The authors of the article have many years of experi-
ence in the development of biomedical image analysis 
systems [30–34].  
A software module for the synthesis of biomedical images 
will be integrated into image analysis systems. 

Prospects for further research is the development of 
a CAD system for the classification and synthesis of bio-
medical images. 
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МЕТОД ПОШУКУ АРХІТЕКТУР ГЕНЕРАТИВНО-ЗМАГАЛЬНИХ МЕРЕЖ ДЛЯ СИНТЕЗУ БІОМЕДИЧНИХ 
ЗОБРАЖЕНЬ 
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Лящинський П. Б. – аспірант кафедри автоматизованих систем управління НУ «Львівська політехніка», Львів, Україна. 
 

AНОТАЦІЯ 
Актуальність. У статті досліджено проблему автоматичного проектування архітектур генеративно-змагальних мереж. 

Генеративно-змагальні мережі використовуються для синтезу зображень. Особливо це актуально для синтезу біомедичних 
зображень –цитологічних і гістологічних, які використовуються для постановки діагнозу в онкології. Синтезовані зобра-
ження використовуються для навчання згорткових нейронних мереж. Згорткові нейронні мережі є одними із найточніших 
класифікаторів біомедичних зображень на сьогодні..  

Мета роботи – це розробка автоматичного методу для пошуку архітектур генеративно-змагальних мереж на основі ге-
нетичного алгоритму.  

Метод. Розроблений метод складається з етапу пошуку архітектури генератора з фіксованим дискримінатором і етапу 
пошуку архітектури дискримінатора із найкращим генератором. На першому етапі визначається фіксована архітектура дис-
кримінатора та здійснюється пошук генератора. Відповідно після першого кроку  отримується архітектура найкращого ге-
нератора, тобто модель із найнижчим значенням FID.  

На другому етапі використано найкращу архітектуру генератора та проводено пошук аріхтектури дискримінатора. На 
кожному циклі алгоритму оптимізації створюється популяція дискримінаторів. Після другого кроку  отримується аріхтекту-
ра генеративно-змагальної мережі. 

Результати. Для проведення експериментів використано цитологічні зображення раку молочної залози на платформі 
Zenodo. В результаті дослідження розроблено автоматичний метод пошуку архітектур генеративно змагальних мереж.В 
результаті комп’ютерних експериментів отримано архітектуру генеративно змагальної мережі для синтезу цитологічних 
зображень. Загальний час експерименту склав ~39.5 GPU годин. В результаті синтезовано 16 000 зображень (по 4000 на 
кожен клас). Для оцінки якості синтезованих зображень використано метрику FID . Результати експериментів показали, що 
розроблена архітектура є найкращою. Значення FID мережі становить 3.39. Цей результат є найкращим, порівняно з 
відомими генеративно-змагальними мережами. 

Висновки. У статті розроблено метод пошуку архітектур генеративно-змагальних мереж для задач синтезу біомедичних 
зображень. Крім цього розроблено програмний модуль для синтезу біомедичних зображень, який  може бути використаний 
для навчання CNN. 

КЛЮЧОВІ СЛОВА: генеративно-змагальна мережа, біомедичні зображення, цитологічні зображення, пошук архітек-
тур нейронних мереж, генетичні алгоритми, метрика FID, комп’ютерні системи автоматичної діагностики. 
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