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ABSTRACT

Context. The article examines the problem of automatic design of architectures of generative-adversarial networks. Generative-
adversarial networks are used for image synthesis. This is especially true for the synthesis of biomedical images — cytological and
histological, which are used to make a diagnosis in oncology. The synthesized images are used to train convolutional neural net-
works. Convolutional neural networks are currently among the most accurate classifiers of biomedical images.

Objective. The aim of the work is to develop an automatic method for searching for architectures of generative-adversarial net-
works based on a genetic algorithm.

Method. The developed method consists of the stage of searching for the architecture of the generator with a fixed discriminator
and the stage of searching for the architecture of the discriminator with the best generator.

At the first stage, a fixed discriminator architecture is defined and a generator is searched for. Accordingly, after the first step, the
architecture of the best generator is obtained, i.e. the model with the lowest FID value.

At the second stage, the best generator architecture was used and a search for the discriminator architecture was carried out. At
each cycle of the optimization algorithm, a population of discriminators is created. After the second step, the architecture of the gen-
erative-adversarial network is obtained.

Results. Cytological images of breast cancer on the Zenodo platform were used to conduct the experiments. As a result of the
study, an automatic method for searching for architectures of generatively adversarial networks has been developed. On the basis of
computer experiments, the architecture of a generative adversarial network for the synthesis of cytological images was obtained. The
total time of the experiment was ~39.5 GPU hours. As a result, 16,000 images were synthesized (4000 for each class). To assess the
quality of synthesized images, the FID metric was used.The results of the experiments showed that the developed architecture is the

best. The network’s FID value is 3.39. This result is the best compared to well-known generative adversarial networks.
Conclusions. The article develops a method for searching for architectures of generative-adversarial networks for the problems
of synthesis of biomedical images. In addition, a software module for the synthesis of biomedical images has been developed, which

can be used to train CNN.

KEYWORDS: generative adversarial network, biomedical images, cytological images, search for neural network architectures,
genetic algorithms, FID metrics, computer systems for automatic diagnostics.

ABBREVIATIONS

ATTN is a shorthand for Self-Attention;

GAN is a generative adversarial network;

CNN is a convolutional neural network;

CAD is a computer-aided diagnosis;

NAS is a neural architecture search;

AutoGAN is neural architecture search for GAN;

CIFAR-10 dataset — Canadian Institute for Advanced
Research, 10 classes is a subset of the tiny images dataset
and consists of 60000 32x32 color images;

AWS is a Amazon Web Services;

ELU is exponential linear unit activation function;

Zenodo is a general-purpose open repository devel-
oped under the European OpenAIRE program and oper-
ated by CERN;

ReL U is a rectified linear unit;

GA is a genetic algorithm;

Aging Evolution GA (AGA) is an evolutionary algo-
rithm for neural architecture search.

Batch Norm is batch normalization;

ELU (exponential linear unit) is an activation function
for neural networks;

Self-Attention operates by transforming the input se-
quence into three vectors: query, key, and value;
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Hinge loss function is measure the distance of data
points from the decision boundary;

Nvidia A6000 GPU is the videocard of the company
Nvidia;

IS metric is a metric (Inception Score) based on the
Google Inception V3 image classification model;

FID is Fréchet inception distance;

PyTorch is an open source machine learning frame-
work Python Torch;

AWS S3 is a Amazon Web Services Simple Storage
Service;

RAM is a Random Access Memory;

vCPU is a virtual Central processing unit;

GPU is a graphical processing unit;

TFLOPS is a Tera FLoating-point OPerations per
Second;

Adam optimizer is an adaptive moment stochastic
gradient descent method;

H, W, and C are image height, width, and number of
channels respectively.

NOMENCLATURE
1, is a training set of images;
I is a set of generated images;;
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G is a generator;

D is a discriminator;

L is a set of discriminator layers;

Q is a set of generator layers;

n is a number of discriminator layers;

m is a number of generator layers;

i is an index of discriminator layers;

J is an index of generator layers;

CELLp, is a cell of discriminator;

CELLg; is a cell of generator;

o is a number of nodes in the generator cell;

p 1s a number of nodes in the discriminator cell;

Ag is a generator architecture;

Ap is a discriminator architecture;

Og is a set of generator operations;

Op is a set of discriminator operations;

Pg is a the set of parameters of generator operations;

Pp is a set of parameters of discriminator operations;

V(G, D) is the loss function for the generator and dis-
criminator;

q is the power of the training sample set;

r is the power of the set of the generated sample;

P, (x) is the density of the distribution function of the

training sample;

P(z) is the density of the generator’s noise distribution
function;

E(x) is the expected value of a random variable x.

M is a FID metric;

<C> is a set of convolution functions;
(K > is a set of activation functions;
(U > is a set of operations of the Upsample block;

(W) is a set of operations of the generator cell

CELLg;
(Z ) is a set of operations of the discriminator CELLp;

(T ) is a set of operations of the Downsample block;

S is a Self Attention operation.

INTRODUCTION

Image synthesis is a popular trend in artificial
intelligence. A separate class of images are biomedical
images. A biomedical image is a structural and functional
image of human and animal organs, designed to diagnose
diseases and study the anatomical and physiological
picture of the body.

A subclass of biomedical images are cytological,
histological and immunohistochemical images. These
images are used to make a diagnosis in oncology. The
widespread use of deep neural networks for image
classification has led to the problem of datasets. To
achieve the required accuracy of biomedical image
classification, it is necessary to provide powerful datasets.

Hence, there is a contradiction between achieving high
accuracy in biomedical image classification and providing
powerful datasets to train convolutional neural networks.
To resolve this contradiction, it is necessary to develop a
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method and means of generating biomedical images. One
of the modern approaches to solve this problem is the use
of generative adversarial networks. Since their inception
in 2014, generative adversarial networks have become the
primary tool for synthesizing high-quality and diverse
images [1-5]

Synthesized images help improve the training of
machine learning models (in particular, classifiers) by
extending existing training datasets, which are often low-
power [6].

The complex process of synthesizing GAN
architectures manually makes them difficult to use.
Manual design of GAN architecture requires a deep
understanding of machine learning principles and
knowledge of the specifics of the subject area. This
process is time-consuming and often requires developers
to make a number of complex decisions. For example,
developers have to choose between different types of
layers, activation functions, and optimization techniques
that have a big impact on the performance of the neural
network.

One of the main challenges of manual architecture
design is scalability. The more complex biomedical
imaging becomes, the more complex GAN architectures
become. Manual architecture design depends on the
experience and intuition of the developer.

Thus, the creation of an automatic method for
searching for GAN network architectures is an urgent
task. The automatic method of searching for GAN
architectures will allow you to quickly and thoroughly
explore a large search space (types of layers, activation
functions, etc.), finding the best network configurations.
This method will reduce the synthesis time of GAN
architectures and increase the efficiency of the process.

The object of research is the process of biomedical
images synthesis.

The subject of the research is the synthesis of
generative-adversarial network architectures.

The aim of the work is to develop an automatic
method for searching the architectures of generative-
adversarial networks based on a genetic algorithm. This
will make it possible to synthesize GAN network
architectures in automatic mode for the synthesis of
biomedical images.

1 PROBLEM STATEMENT

Let be given a training sample of images /, with a
cardinality of ¢q. Generating a set of images /; with a
cardinality of », and r>¢q. To generate I; we use GAN.
The GAN consists of a generator and a discriminator. In
addition, the architecture of the generator and discrimina-
tor Ag and Ap, respectively, is given.

The discriminator architecture is described as follows:

4, ={L,i=1n|,

and the architecture of the generator as follows:
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4, ={0,.j=1m|.

The set of discriminator operations is represented as
follows:

Then it is necessary to carry out a two-level
optimization of the discriminator and generator
architectures, i.e.:

A, =argminM . (P,,0,.1,,1;),

Op.Pp

A; =argminM . (P;,0;,1,,1;) -

Og ,Fg

In this case, the loss function of the discriminator and
the generator will be defined as follows:

V(G,D)= mGin max F(G,D)=

=E,_; ) (log D))+ E__,., (log(1-D(G(2)))).

2 REVIEW OF THE LITERATURE

In deep learning, the development of generative
adversarial networks has been a big step for image
synthesis. Generative adversarial networks have a great
potential for the synthesis of realistic images.

In the early days of GAN research, the main goal was
to synthesize realistic images from random noise. The
work of Radford, et al. gave a push to the improvement
of the quality of synthesized images and the stability of
GAN learning [7]. This work laid the groundwork for
future research, as it proved GAN’s ability to handle
complex image distributions.

In biomedicine, GANs are used to augment training
data, which is essential to address the scarcity of
annotated medical images. The authors [8] presented an
innovative approach to the synthesis of retinal images
using the generative model method. Based on generative
models, realistic retinal images were synthesized and used
to train diagnostic algorithms. Likewise, the authors Frid-
Adar et al. used generative adversarial networks to
expand the liver lesion image datasets that were used by
the classifier [9]. Thus, the authors demonstrated the
practical utility of GAN for expanding datasets and
improving the accuracy of neural networks in biomedical
image classification tasks.

The complexity of designing neural network
architectures has led to the development of automatic
search for NAS neural network architectures. Zof and Le
were among the first to introduce the concept of
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automatic architecture search for CNN. This concept has
been adapted by researchers to automate the design of
GAN architectures [10]. In their work, the authors applied
the reinforcement learning method to explore the search
space for architectures. This work shows the potential of
NAS to reduce the human factor in the design of new
neural network architectures. Since the field of NAS was
primarily focused only on convolutional neural networks,
NAS for generative networks is a relatively new area of
research. Early work in NAS for GAN focused on finding
efficient architectures that could generate high-quality
images with reduced computing resources.

A fundamental paper in this area is [11], which
develops a method for automatically searching for GAN
architectures. The authors applied the reinforcement
learning method to optimize the GAN architecture [12].
The AutoGAN framework has demonstrated that
automated architecture design can compete with human-
made models. To evaluate the method, the authors used
the FID metric, the final value of which is 12.42. The
architecture search time is 48 GPU hours. The main
disadvantages of the work are: limited search space, fixed
discriminator, unconditional image generation.

The development of the preliminary research is the
work [13]. In the paper, the authors applied a genetic
algorithm to optimize the neural network architecture and
expanded the search space with operations such as skip
connection, a convolution with different kernel sizes (1, 3,
and 5, respectively) [14]. The advantage of this work is
the search for the architecture of the generator and
discriminator. The search for architecture is divided into
two stages — the first stage is the search for the
architecture of the generator (the discriminator is fixed),
and the second stage is the search for the discriminator.
According to the authors, this approach has significantly
stabilized the training of the GAN network. The
experiments took 1.2 GPU days and showed a FID of
9.91 on the CIFAR-10 dataset. The disadvantage of the
work is the unconditional generation of images.

In terms of optimizing GAN architectures, researchers
have identified several key factors that affect the
performance of networks. Brock et al. introduced the
concept of scaling GANs, showing that larger models and
batch sizes can lead to improved image quality [15]. This
concept is essential for automatically searching for GAN
architectures. Search algorithms must take into account
the trade-off between model complexity and
computational capability.

In addition, the evaluation of biomedical images
generated by GAN networks presents particular
challenges. When evaluating synthesized images, it is
necessary to take into account not only visual accuracy,
but also the preservation of diagnostic features. Automatic
search for GAN architectures should result in models that
are statistically powerful and clinically relevant.

Despite the progress made, significant gaps remain in
the literature. The analyzed articles in the field of NAS
for GAN do not focus on the synthesis of biomedical
images and use an open dataset — CIFAR. This can be
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explained by the difficulty of obtaining the datasets of
biomedical images themselves, which in turn further
emphasizes the relevance of their synthesis. Also, the
considered methods have a limited search space, do not
use the most modern operations (ELU, Self-Attention) in
the search space, do not synthesize images by tags (use
unconditional generation).

The article [16] developed a method for the synthesis
and classification of breast cancer histological images. At
the same time, well-known GAN structures are used.

In this paper, we propose an automatic method for
searching for architectures of generatively adversarial
networks for the synthesis of biomedical images.

3 MATERIALS AND METHODS

Defining the search space is the first important step in
the development of generative adversarial network
architectures. In this step, you define the range of possible
types of layers and their combinations that will be used in
the process of building the model.

The search space in the developed method is cell-
based. A cell consists of a certain number of nodes and
operations between them. An example of a cell is shown
in Figure 1.

/// — \\\
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Figure 1 — Cell Structure

Figure 1 shows a cell with four nodes. The arrows
represent the type of operation between the two nodes.
Nodes n1, n2, n3 signify the addition operation.

One of the disadvantages of classical neural network
architectures is that all layers follow each other
sequentially. This option of connection gives rise to the
problem of gradient attenuation, which significantly
impairs the training of the neural network [17]. In this
method, each successive node in the cell can receive input
from all the previous nodes, depending on the selected
operation between them.

We analyzed modern architectures of GAN networks
and identified a set of layers that are most often used in
research. These include the following operations: kernel
convolution operation 1x1, 3x3 and 5x5, max- and
average-pooling operations, self-attention mechanism.
Also, the generator and discriminator architectures in
most GANs consist of repeating convolutional blocks,
and the input noise vector is transformed into a matrix of
size 4x4. The number of such blocks varies depending on
the resolution of the generated image. Accordingly, if the
generator synthesizes an image with a resolution of
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64x64, then it consists of 4 convolutional blocks. The full
set of possible operations we have chosen for the cell is
listed below.

Zero. This operation replaces the node’s output with a
matrix of zeros. It can be used to remove a node from a
cell architecture to simplify it.

Skip connection. This operation can be thought of as a
function that receives and returns data. Using such an
operation allows you to directly connect the output of one
node in a cell to the input of another.

Convolutional block. batch normalization is often used
along with convolution operations. Therefore, this layer
uses three sequential operations: convolutions, activation
functions, and batch normalization. We used convolution
kernels 1x1, 3x3, and 5x5. As an activation function,
ELU is used — an improved modification of ReLU.

Pooling. We use pooling only in the discriminator
model. The two types of pooling are max pooling with a
3x3 kernel and step 1x1 and average pooling with a 3x3
kernel and step 1.

The Self-Attention operation is placed outside the
cells. The integration of the Self-Attention mechanism
into CNN allows to focus on the most informative
features, which can be useful for object detection,
segmentation and image recognition [18].

The search space for the generator and discriminator is
shown in Figure 2.

In the developed method, we applied the Conditional
GAN strategy, which allows to synthesize images of
classes. Accordingly, in the generator model, we use the
Conditional Batch Normalization operation in each
UpSample block. In the discriminator model, we use an
Embeddig layer in combination with a fully connected
layer. The sum of the outputs of these two layers is the
output of the discriminator model.

The generator consists of one deconvolution layer to
convert the input noise vector to dimension 4x4x1024,
four cells, four blocks to double the resolution, and two
convolutional layers at the network output. The final
resolution of the synthesized image is 64x64x3.

The main element in the generator’s search space is
the cell, which consists of o nodes. The available
operations in a cell are defined as follows: convolution by
the kernel 1x1, 3x3, 5x5; separable convolution by kernel
3x3; zero; skip connection. The cell architecture remains
the same for the entire generator model. Accordingly, the
search space of the generator is reduced to determining
the number of nodes in the cell, sclecting operations
between nodes, as well as selecting layers after which you
need to apply the Self-Attention operation through the
residual connection (shown in the figure by ATTN
(represents Self-Attention) arrows).

The generator’s search space is encoded as {N, C,
[ATTN]}. Let’s review in details these parameters.
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Figure 2 — Generator and

The N parameter is the number of nodes in the cell.
The minimum value is 3, the maximum value is 5. This
decision was made due to limited computing resources. In
addition, our study uses mostly small images, specifically
64x64 pixel in size. This aspect has a significant impact
on network architectures, as such images usually require
fewer layers. Therefore, the decision to limit the number
of layers in the model is also due to the nature of the data.

Parameter C is the architecture of the cell in which the
operations between nodes are encoded. It is represented
by a tape xxx—xx—x, the length of which varies depending
on the number of nodes in the cell. For example, for a
cell with a number of nodes of 3, the encoded tape might
look like 12—6. The first fraction separated by a hyphen
represents the operations between the first node and all
subsequent ones, the second — between the second node
and all subsequent ones. Respectively 1 means kernel
convolution operation 1x1 between the first and second
nodes (see Fig. 2), 2 is the kernel convolution operation
3x3 between the first and second nodes. The number 6
means the skip connection operation between the second
and third nodes.
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Discriminator Search Spaces

The ATTN parameter represents the cell numbers after
which you want to apply Self-Attention operations.

According to the described encoding and the above
example, the encoding of the generator architecture is {3,
12-6, [1, 2]}. As you can see from the example, the Self-
Attention operation is applied after the first and second
cells.

The discriminator consists of one convolution layer,
four cells, four blocks for halving the resolution, and one
linear and embedding layer.

The main element in the discriminator search space is
the cell, which consists of p nodes. Unlike the generator,
the available set of operations in the discriminator cell is
extended by two operations: the maximum pooling by the
kernel 3x3 and the average pooling by the kernel 3x3.

For the dimensionality reduction operation, the
Separable Downsample Convolution operation is used.
The authors of the paper state that this is the most optimal
method of reducing dimensionality in convolutional
networks at present [19].

The cell architecture also remains the same for the
entire discriminator model. The discriminator search
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space boils down to the same steps as for the generator.
These steps are as follows: determining the number of
nodes in a cell, selecting operations between nodes,
selecting layers. After these steps, you need to apply the
Self-Attention operation through the residual connection
(shown by the ATTN arrows in the figure).

The discriminator’s search space is encoded in the
same way as the generator’s: {N, C, [ATTN]}.

The developed method consists of the following
stages:

1. Search for a generator architecture with a fixed
discriminator.

2. Search for a discriminator architecture with the best
generator.

The general framework of the method is shown in
Figure 3.

At the first stage, we define a fixed discriminator
architecture and search for only the generator. The
discriminator architecture is manually defined as follows:
four nodes in a cell, the cell architecture is encoded as
235-66—7 (convolution by kernel 3x3 and 5x5, zero, skip
connection, skip connection, max pooling by kernel 3x3),
Self-Attention mechanism is applied only after the last
cell.

At each cycle of the optimization algorithm, we
initialize the population with random generator
architectures. Next, we create a generator and
discriminator pair for each generator in the population.
The resulting pairs of GAN networks are trained and
evaluated at the end of each cycle using FID metrics [20,
21]. At the end of the cycle, we select the generator with
the lowest FID value and copy its weights. Further in the
next cycle, we initialize all generators with copied
weights. Accordingly, after the first step, we get the
architecture of the best generator, i.e. the model with the
lowest FID value.

In the second step, we use the best generator
architecture and search for the discriminator architecture.
At each cycle of the optimization algorithm, we create a
population of discriminators and initialize it with random
architectures. Then, by analogy with the first step, we
create pairs of generators and discriminators. The
resulting pairs of GAN networks are trained
independently of each other and evaluated using the FID
metric. At the end of each cycle, we copy the weights of
the best discriminator and initialize all the discriminators
in the next cycle with them. After the second step, we get
the architecture of the best discriminator, and,
accordingly, the best architecture of the GAN network.

At both stages, the input images of the
discriminatormodel are subjected to the technique of
Differentiable Augmentations with the application of a
random color and translation policy. This technique helps

© Berezsky O. M., Liashchynskyi P. B., 2024
DOI 10.15588/1607-3274-2024-1-10

to further expand the training dataset directly during the
learning process and is especially effective on small
datasets [22].

We used a modified Aging Evolution GA (AGA)
algorithm to optimize the generative adversarial network
architecture [23]. The AGA maintains a population of
potential solutions, where each solution represents a
unique GAN architecture.

A variation in the genetic algorithm known as Aging
Evolution GA adds an aging component to increase
population diversity and prevent early convergence.

The main steps of this algorithm are:

1. Train and evaluate each architecture
population by calculating the FID metric.

2. Selection of a subset of architectures from the
population. The selection process is based on a random
strategy.

3. Selection of the parent architecture and application
of the genetic operator (mutation) to it to create a new
architecture.

4. Evaluate the new architecture by training it and
computing the FID metric and adding the architecture to
the population.

5. Remove the oldest architecture from the population.

At the first step of the algorithm, the population is
initialized by random architectures to achieve a given
population size — population_size. Simultaneously with
initialization, architectures are trained with the calculation
of the FID metric value.

Further, evolution occurs cyclically. The number of
cycles is also set by the user (cycles parameter). On each
of the cycles, a given number of architectures is
randomly selected — sample size. Then, among these
architectures, the one with the lowest FID value is
selected. This architecture is called the parent
architecture.

Based on the parent architecture, a new child
architecture is created by applying a mutation. In this
algorithm, the mutation changes the architecture
randomly. Next, the mutated architecture learns.

The mutation is applied to each element in the
encoded architecture with a probability of mutation_prob.
For example, the network architecture is set to tape
107590. In order to mutate, you need to go through each
element of the tape in a loop and change it randomly with
a given probability of mutation_prob.

Accordingly, after applying a mutation, we get a new
child architecture that is added to the population. At the
same time, the oldest architecture is being removed from
the population. The algorithm then returns the architecture
with the lowest FID value.

in the
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Figure 3 — General GAN Synthesis Method Framework

4 EXPERIMENTS

The experiments were based on the Python 3.10
programming language, the PyTorch 2.0 framework, and
a virtual machine with the following configuration: 32 GB
RAM, 7 vCPU, Nvidia A6000 GPU, 48 GB RAM.

The software module consists of two main Python
scripts: train.py and generate.py. The train.py script is
designed to build and train generative adversarial network
(GAN) architectures. It allows users to define basic
parameters for GAN search, including noise vector
dimension, activation functions, and optimization
parameters. After training, the architecture that gives the
best results is chosen. The trained model is stored in
Amazon S3 storage, ensuring that the model is saved and
can be accessed or downloaded as needed.

The second script, generate.py, runs after the GAN
model has been trained and configured. This script is
responsible for generating new images using the best
architecture found during the learning phase. It can be run
as a command-line tool where the user specifies the path
to the model and the preferred directory to output the
generated images. The script loads the trained GAN
model and uses it to synthesize new images that are
expected to demonstrate the learned distribution of the
training data. The results can be used for further analysis
or as input for other stages of research.

In this study, we used cytological images to test the
method. A cytological image is a microscopic image of
individual cells or cell formations obtained by cytological
examination.
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Cytological images of breast cancer on the Zenodo
platform were used for the experiments [24]. This dataset
is designed to test and configure automatic biomedical
image processing systems. The structure of the dataset is
as follows:

1) files of cytological images and the indicated
diagnosis (size 3264x2448).

2) files of histological and immunohistochemical
images of sections of breast tissue (size 2048x1536) and
the indicated diagnosis.

Examples of cytological images are shown in Figure 4
(one image per class).

Figure 4 — Example of images from the dataset

For the experiments, the image was converted to a
resolution of 64x64 pixels. Since the initial number of
images in the sample is quite small (about 100 images per
class), it was expanded to 700 images per class by
applying  affine  distortions  (random  rotation,
displacement, twisting, etc.) [25].

For both stages of the search, we used the Hinge loss
function [26] and the Adam optimizer (betas = 0.5, 0.999)
[27]. We also applied the Two Time-scale Update Rule
[28]. Accordingly, the learning rate of the generator is
0.0001, and the discriminator is 0.0004.
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For all convolutional, deconvolutional, and linear
layers in both models, we applied the spectral
normalization technique, which allows us to stabilize the
learning of the GAN network [29].

The total number of cycles of the optimization
algorithm at each stage is 25, and the number of epochs of
training for each model in the population is 30. The
population size (population_size) is 100. The number of
randomly selected candidates for further selection of the
parent architecture for mutation (sample_size) is 25. The
probability of mutation (mutation prob) is 0.05. Batch
size (batch_size) for the generator and discriminator is the
same and is 128 images.

To evaluate architectures, the FID metric was used,
which is calculated after each architecture is trained.

In total, the first and second stages took 15.6 and 10.3
GPU hours, respectively.

Upon completion of both phases, the resulting GAN
network was trained from scratch for 100,000 iterations. It
took another ~13.6 GPU hours. That is, the total time
spent from finding architectures to obtaining a fully
trained GAN network is 39.5 GPU hours.

As a result of the experiments, 4000 images with a
resolution of 64x64 for each class from the educational
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dataset were synthesized. Accordingly, the total number
of synthesized images is 16,000.

5 RESULTS

The architecture of the found generator and
discriminator is shown in Figures 5 and 6 and in Tables
1-4.

As you can see from the figures, the number of nodes
in the generator and discriminator cells is 4 and 5,
respectively. There are two skip connection operations in
the generator cell, and there are 3 in the discriminator cell.
There is also a zero operation in the discriminator cell,
which is not present in the generator. The Self-Attention
operation is applied 2 times in both the generator and the
discriminator. However, in the generator, this operation
is placed towards the end of the network, And in the
discriminator, on the contrary, it is closer to the
beginning.

The FID metric value for the found GAN network
architecture is 3.39, and the IS metric value is 3.95.

Examples of comparison of synthesized images with
the original ones for each class are shown in Figures 7—
10. The images are selected randomly.
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Table 1 — Generator Structure

Layer name Params Output shape
L1: Input Gaussian noise 1x128

L2: Transposed Conv + ELU activation Kernel =4, stride = 1, padding =0 4x4x1024
L3: CELLg Nodes =4 4x4x1024
L4:L2+13 4x4x1024
L5: Upsample Scale =2 8x8x1024
L6: CELLg Nodes = 4 8x8x1024
L7:L5+L6 8x8x1024
L8: Upsample Scale =2 16x16x512
L9: CELLg Nodes = 4 16x16x512
L10: Self Attention Input channels = 512 16x16x512
L11: L8 +L10+L9 16x16x512
L11: Upsample Scale =2 32x32x256
L12: CELLg Nodes =4 32x32x256
L13: Self Attention Input channels = 256 32x32x256
L14:L11+L13+L12 32x32x256
L15: Upsample Scale =2 64x64x128
L16: Convolution Kernel = 3, stride = 1, padding = 1 64x64x128

L17: Convolution Kernel = 3, stride = 1, padding = 1 64x64x3

L18: Output 64x64x3

Table 2 — Generator CELL Structure

Layer name Params
LO: Input
L1: Conv » ELU — Batch Norm Kernel = 3, stride = 1, padding = 1

Conv 3x3 = (Kernel = 3, stride = 1, padding = 1),

L2: L1+ Conv 3x3 — Conv 1x1 — ELU — Batch Norm Conv 1x1 = (Kernel = 1, stride = 1, padding = 0)

L3: L2 + Conv (L1) + Conv (L0) Kernel = 3, stride = 1, padding = 1
LO: Input
L1: Conv » ELU — Batch Norm Kernel = 3, stride = 1, padding = 1
Upsample block structure
Layer name Params Output shape
LO: Input HxWxC
L1: Upsample Scale = 2, mode = nearest (Hx2)x (Wx2)xC
L2: Convolution Kernel = 3, stride = 1, padding = 1 Hx2)x (Wx2)xC
L3: Conditional Batch Norm Number of classes = 4 Hx2)x (Wx2)xC
L4: Gated Linear Unit (GLU) Dimension = 1 (Hx2)x (Wx2)x(C/2)

Table 3 — Discriminator Structure

Layer name Params Output shape
L1: Input Image 64x64x3
L2: Conv + ELU activation Kernel = 3, stride = 1, padding = 1 64x64x64
L3: CELLp Nodes =5 64x64x64
L4: Self Attention Input channels = 64 64x64x64
L5:L2+1L4+L3 64x64x64
L6: Downsample Scale =2 32x32x128
L7: CELLp Nodes =5 32x32x128
L8: Self Attention Input channels = 64 32x32x128
L9:L6+L8+L7 32x32x128
L10: Downsample Scale =2 16x16x256
L11: CELLp Nodes =5 16x16x256
L12: L10+L11 16x16x256
L13: Downsample Scale =2 8x8x512
L14: CELLp Nodes = 5 8x8x512
L15:L13+L14 8x8x512
L16: Downsample Scale =2 4x4x1024
L17: Linear(Sum(L16)) 1x1
L18: Sum(Multiply(Sum(L16), Embed- Number of classes = 4 Ix1
ding))
L19:L17+LI18 1x1
L20: Output 1x1
© Berezsky O. M., Liashchynskyi P. B., 2024
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Table 4 — Discriminator CELL; Structure

Layer name Params
LO: Input
L1: Conv > ELU — Batch Norm Kernel = 3, stride = 1, padding = 1
L2: L1+ Conv 3x3 — Conv 1x1 — ELU — Batch Norm (Kernel =3, stride = 1, padding = 1)))’ (Kemel =1, stride = 1, padding =
L3: AvgPool 3x 3 (L2) Kernel = 3, stride =1
L4: L0+ L3 + AvgPool 3x 3 (L2) Kernel =3, stride =1
Downsample block structure
Layer name Params Output shape
LO: Input HxWxC
L2: Convolution Kernel = 3, stride = 1, padding = 1 HxWx(Cx2)

L3: Pixel Rearrange — Convolution Kernel = 1, stride = 1, padding = 0 H/2)x(W/2)x(Cx2)
L4: Exponential Linear Unit (ELU) H/2)x(W/2)x(Cx2)

Figure 8 — Original (a) and Synthesized (b) Images, Class 2 Figure 10 — Original (a) and Synthesized (b) Images, Class 4
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We also compared different GAN architectures for the
synthesis of cytological images. The results of the
comparison are shown in Table 5.

Table 3 — Comparison of GANs by FID metric using same

images
Method FID
DCGAN 12.67
WGAN 12.72
WGAN-GP 19.09
BGAN 10.03
BEGAN 15.32
Our method GA-GAN 3.39
6 DISCUSSION

As a result of the study, the architecture of the
generative-adversarial network for the synthesis of
cytological images was obtained (Fig. 5, Fig. 6). To
assess the quality of synthesized images, the FID metric
was used.

Table 3 shows that the network architecture designed
by our method showed the best results compared to other
GAN network architectures for the same images.

Unlike the above architectures, our method uses the
Self-Attention mechanism in the generator and
discriminator, which allowed us to improve the quality of
synthesized images. Also, our method supports the
mechanism of image synthesis by labels (conditional
generation), which is not relevant for the above
architectures and approaches.

Figures 7-10 show a comparison of original pairs and
synthesized images for each class from the original and
synthesized dataset. The synthesized images are difficult
to visually distinguish from the original ones, which
further indicates the power of the resulting network.

We did not test the method on higher-resolution
images, as this would have led to an increase in search
time. Therefore, the limitation of our research is the
relatively low resolution of the synthesized images —
64x64 pixels. In order to synthesize images of higher
resolution, you need to increase the number of cells in the
generator and discriminator.

We also conducted experiments on only one subclass
of biomedical images — cytological images. Accordingly,
a further direction of research may be testing and
adaptation of the developed method to other classes and
resolutions of biomedical images.

CONCLUSIONS
As a result of the study,the automatic method for
searching for architectures of generatively adversarial
networks for the tasks of synthesis of cytological images
was developed.
Architectural search space is defined in terms of cells,
which consist of a set of nodes and operations between
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them. The architectural features of the cell allow you to
expand the search space and reduce the likelihood of a
gradient attenuation problem.

The developed method consists of two stages: the
search for the architecture of the generator with a fixed
discriminator and the search for the architecture of the
discriminator paired with the fixed best generator.

As a result of computer experiments, the architecture
of a generatively competitive network for the synthesis of
cytological images was obtained. The total time of the
experiment was ~39.5 GPU hours. As a result, 16,000
images were synthesized (4000 for each class).

Comparison of the synthesized architecture with other
architectures of generative-adversarial networks, using the
same training dataset, is carried out on the basis of the
FID metric. The results showed that the designed
architecture is the best. The FID value of the developed
network (3.39) is two and a half times better than the FID
metric of the above architectures.

The scientific novelty is the development of a method
for finding generative-adversarial network architectures
for the synthesis of biomedical images.

The practical significance is the development of a
software module for the synthesis of biomedical images
that can be used to train CNN.

The authors of the article have many years of experi-
ence in the development of biomedical image analysis
systems [30-34].

A software module for the synthesis of biomedical images
will be integrated into image analysis systems.

Prospects for further research is the development of
a CAD system for the classification and synthesis of bio-
medical images.
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METO/ NOWIYKY APXITEKTYP TEHEPATUBHO-3MAT'AJIBHUX MEPEX JJIs1 CUHTE3Y BIOMEJUYHUX
30BPA’KEHb

Bepe3bkuii O. M. — 1-p TexH. HayK, npodecop, mpodecop kKadenprn aBTOMATU30BaHUX cucteM yrpasiiaHsa HY «JIpBiBChKa mO-
nitexHikay, JIbBiB, YkpaiHa.
JIsumuacsknii I1. B. — acnipanT xadenpu aBTomaTnzoBanux cucreM ynpasiinast HY «JIbBiBcbka momitexnikay, JIbBiB, Ykpaina.

AHOTAIIA

AKTyalbHicTB. Y cTaTTi JOCH/UKEHO MpobiieMy aBTOMAaTHYHOTO NPOEKTYBAHHS apXiTEeKTyp MEeHEpaTUBHO-3MarajbHUX MEpeiK.
I'eHepaTHBHO-3MaranbHi MEpexi BUKOPHCTOBYIOTBCS Ul CUHTE3Y 300paxeHb. OCOONINBO 1€ aKTyalbHO Ul CHHTE3y 0iOMEIMYHHX
300pakeHb —LUTOJOTIYHUX 1 TiCTOJNIOTIYHUX, SIKi BUKOPHCTOBYIOTHCS /IS MOCTAaHOBKH [iarHo3y B oHKoJjorii. CuHTe30BaHi 300pa-
JKCHHS! BUKOPUCTOBYIOTBCS U1l HABYAaHHS 3TOPTKOBHX HEHPOHHHX Mepex. 3ropTKOBI HEHPOHHI MEpeXi € OMHUMH 13 HAUTOYHIIINX
knacupikaTopiB OioMeTUYHIX 300pakeHb Ha CHOTOIHI. .

MeTta po6oTH — 11 po3poOKa aBTOMATHIHOTO METOY IJISI IIOLIYKY apXiTEeKTyp IeHepaTHBHO-3MaralbHUX Mepek Ha OCHOBI re-
HETUYHOTO aJITOPUTMY.

Metoa. Po3poGiieHnit MeTo]| CKIIaacThes 3 €Taly IOLIyKYy apXiTeKTypu reHeparopa 3 (ikCOBaHMM IMCKPUMIHATOPOM i erary
TIOIIYKY apXiTeKTypu AUCKPUMIiHATOpA i3 HallKpammM reHepatopoM. Ha mepiomy erarti Bu3HavaeThes (hikCcoBaHa apXiTeKTypa Jvc-
KpHUMiHaTOpa Ta 3AiHCHIOETHCS MOUIYK reHepaTopa. BiAmoBiAHO Micis NeplIoro Kpoky OTPUMYETHCS apXiTeKTypa HaMKpaIioro re-
HepaTtopa, TOOTO MoJieNb i3 HaitHK4uM 3HaYeHHsM FID.

Ha ppyromy erami BUKOpHCTaHO HaiiKpally apXiTeKTypy Fe€HepaTopa Ta IMPOBOJCHO IOIIYK apiXTeKTypu AWCKpuMiHaTopa. Ha
KO>KHOMY LIWKJI1 alTOPUTMY ONTHMi3allii CTBOPIOETHCS MOMYJIALIS AUCKpUMiHaTopiB. [Ticis Apyroro Kpoky OTPUMYETHCS apiXTEKTY-
pa reHepaTHBHO-3MaraJIbHOT Mepexi.

Pe3yasTaTn. [ mpoBeneHHs! eKCIICPHMEHTIB BUKOPHCTAHO LIUTOJOTIUHI 300paXKeHHsS paKy MOJIOYHOI 3a/103M Ha IuaTdopmi
Zenodo. B pesynbrari IocinimKkeHHs po3po0IeHO aBTOMAaTHYHUI METOJ IOLIYKY apXiTeKTyp IeHepaTHBHO 3MarajllbHUX Mepex.B
pe3yJsIbTaTi KOMIT'IOTEPHUX EKCIIEPUMEHTIB OTPUMAHO apXITEeKTypy I€HEPaTHBHO 3MarajibHOi MEpeXi JUIl CHHTE3y LUTOJOTIYHHX
300pakeHb. 3araipHuil yac excriepumeHTy ckiaB ~39.5 GPU roaun. B pesynsrari cunte3oBano 16 000 306paxkens (mo 4000 nHa
KOJKeH KJjac). J[yist OLiHKM SIKOCTI CHHTE30BaHUX 300paXkeHb BUKOpHCTaHO MeTpuky FID . PesynbraTu ekcriepMMeHTIB TOKa3aiu, 1o
po3pobiieHa apXxiTekTypa € Halkpamioro. 3HaueHHs FID mepexi cranoButh 3.39. Lleii pesynbTar € HalKpamyM, MOPIBHSIHO 3
BiJIOMHMHU T€HEPAaTHBHO-3MaraJIbHUMH MEPEKaMH.

BucaoBkH. Y crarTi po3po0IICHO METO IOUIYKY apXiTeKTyp TeHEepPaTHBHO-3MarajJbHIX MEpex AJI 3a1ad CHHTE3y 010MeAnIHHX
300paxkenb. Kpim nporo po3po6ieHo mporpaMHuii MOIyIb IJIsl CHHTE3Y 0i0MEIUYHHX 300pakeHb, SIKUH MOoke OyTH BHKOPHCTAHHI
1t HaByanas CNN.

KJIIOYOBI CJIOBA: renepatiBHO-3MarajibHa Mepexa, 0ioMeandHi 300pakeHHs], IIUTONOTIUHI 300paykeHHs], TIOLIYK apXiTeK-
TYp HEUPOHHHX MEPEeX, FTeHEeTHYHI anroputMu, MeTpruka FID, koM’ roTepHi CHCTeMH aBTOMaTHYHOT JiarHOCTHKY.
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