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ABSTRACT 
Context. The problem of the image impainting in computer graphic and computer vision systems is considered. The subject of 

the research is deep learning convolutional neural networks for image inpainting. 
Objective. The objective of the research is to improve the image inpainting performance in computer vision and computer 

graphics systems by applying wavelet transform in the LaMa-Fourier network architecture. 
Method. The basic LaMa-Fourier network decomposes the image into global and local texture. Then it is proposed to improve 

the network block, processing the global context of the image, namely, the spectral transform block. To improve the block of spectral 
transform, instead of Fourier Unit Structure the Simple Wavelet Convolution Block elaborated by the authors is used. In this block, 
3D wavelet transform of the image on two levels was initially performed using the Daubechies wavelet db4. The obtained 
coefficients of 3D wavelet transform are splitted so that each subband represents a separate feature of the image. Convolutional layer, 
batch normalization and ReLU activation function are sequentially applied to the results of splitting of coefficients on each level of 
wavelet transform. The obtained subbands of wavelet coefficients are concatenated and the inverse wavelet transform is applied to 
them, the result of which is the output of the block. Note that the wavelet coefficients at different levels were processed separately. 
This reduces the computational complexity of calculating the network outputs while preserving the influence of the context of each 
level on image inpainting. The obtained neural network is named LaMa-Wavelet. The FID, PSNR, SSIM indexes and visual analysis 
were used to estimate the quality of images inpainted with LaMa-Wavelet network. 

Results.  The proposed  LaMa-Wavelet network has been implemented in software and researched for solving the problem of 
image inpainting. The PSNR of images inpainted using the LaMa-Wavelet exceeds the results obtained using the LaMa-Fourier 
network for narrow and medium masks in average by 4.5%, for large masks in average by 6%. The LaMa-Wavelet applying can 
enhance SSIM by 2–4% depending on a mask size. But it takes 3 times longer to inpaint one image with LaMa-Wavelet than with 
LaMa-Fourier network. Analysis of specific images demonstrates that both networks show similar results of inpainting of a 
homogeneous background. On complex backgrounds with repeating elements the LaMa-Wavelet is often more effective in restoring 
textures. 

Conclusions. The obtained LaMa-Wavelet network allows to improve the image inpainting with large masks due to applying 
wavelet transform in the LaMa network architecture. Namely, the quality of reconstruction of image edges and fine details is 
increased.  

KEYWORDS: image inpainting, wavelet transform, LaMa network, Daubechies wavelet, Fréchet inception distance, wavelet 
convolution. 

 

ABBREVIATIONS 
CNN is a convolutional neural network; 
MSNPS is Muli-Scale Neural Patch Synthesis; 
GLCIC is Globally and Locally Consistent Image 

Completion; 
CoModGAN is co-modulated generative adversarial 

network; 
LaMa-Fourier is Large Mask Inpainting with Fourier 

Convolutions; 
LaMa-Wavelet is Large Mask Inpainting with wavelet 

transform; 
FFC is a fast Fourier convolution; 
FFT is a fast Fourier transform; 
iFFT is an inverse fast Fourier transform; 
LLL, LLH, LHL, HLL, LHH, HLH, HHL, HHH are 

wavelet coefficient subbands; 
DWT is a discrete wavelet transform; 
iDWT is an inverse discrete wavelet transform; 
BN is a batch normalization layer; 
ReLU is a rectified linear unit; 
LPIPS is Learned Perceptual Image Patch Similarity; 
FID is Fréchet inception distance;  
PSNR is a peak signal-to-noise ratio; 

MSE is a mean square error; 
SSIM is a structural similarity index measure. 

 

NOMENCLATURE 
n, m is the number of image rows and columns; 
(x,y) are  coordinates of the image pixel; 
I(x,y) is a vector function representing an image by 

color channels; 
IR(x,y), IG(x,y), IB(x,y) are the red, green, blue color 

channels of an image; 
°  is an element-by-element product of matrixes; 
fθ  is an inpainting network; 
structfθ  is the architecture of the fθ network; 
paramfθ is the set of parameters of the fθ network; 
Iin(x,y) is an inpainted three-channel color image;  
L2 is a pixel loss; 
LР  is a perceptual loss; 
LD is a competitive loss; 
k, a, b are the coefficients controling the impact of 

each of the losses; 
mr and mg are vectors of mean feature values for real 

and generated image sets, respectively;  
Rr and Rg are the covariance matrices of the features of 

the real and generated sets of images;  
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tr is the trace of the matrix; 
 L is the number of  intensity levels on the image; 
I(v, w), c (v, w), s (v, w) are the luminance, contrast, 

and structure between images v and w ;  
mv, mw  are the local means of  images v and w ;  
σv, σw are the standard deviations of images;  
σvw  is the cross-covariance for images v and w.  
C1, C2, C3, α, β and γ are the positive constants.  
 

INTRODUCTION 
In computer vision and computer graphics systems, 

there is a need to inpaint missing areas of the image. This 
problem arises in the case of faded colors or physical 
damage of the surface on which the image was located. In 
another case, there is a need for removing unwanted 
objects from the image in such a way that the resulted 
image looks realistic and fits the context. For example, 
when photographing, distracting objects in a scene such 
as strangers and objects that get in the way are usually 
unavoidable but at the same time undesirable for users. 
Before sharing a photo, users may want to make some 
changes, such as removing distracting elements from the 
scene or adjusting the position of objects in the image for 
a better composition. Image inpainting techniques provide 
automatic filling of missing regions of an image with a 
plausible hypothesis. These techniques are used in many 
real-world tasks, such as removing distracting objects, 
restoring damaged parts, and filling the missing areas of 
images [1, 2]. 

The object of research is inpainting of real scene 
images in computer vision and computer graphics 
systems. 

Due to the development of modern technologies and 
the increase in computing power, a number of image 
inpainting methods based on deep learning CNNs have 
been elaborated, which can generate missing regions of 
the image with good global consistency and local fine 
textures. Thus, CNNs Context Encoder, MSNPS, GLCIC, 
DeepFill v1–2 differ in such characteristics as speed, the 
size of the processed image, and the quality of filling of 
image regions  [3]. The disadvantage of the listed 
methods is that when using large masks, the result 
becomes unsatisfactory in terms of generating both image 
context and texture. 

The subject of the research is methods of image 
inpainting using CNNs of deep learning. 

Unlike the Context Encoder, MSNPS, GLCIC, 
DeepFill v1–2 methods, the LaMa-Fourier [4] is able to 
obtain a good result even when the missing areas occupy 
most of the image. In general, CNNs for image inpainting 
usually achieve better results by complicating the network 
architecture or by dividing it into sub-networks with 
separate tasks. LaMa-Fourier, on the contrary, uses a 
single network and a fewer  variables [4]. 

The advantages of the LaMa-Fourier method are a 
higher speed of image processing and network training; 
better quality than other neural network methods when 
using narrow masks; better quality of large mask 
inpainting of spectral textures. The disadvantage of the 

LaMa-Fourier network is the insufficient quality of 
inpainting of fine details of images and edges of objects. 
To eliminate this shortcoming, it is appropriate to use a 
wavelet transform representing both global and local 
features of images. 

The aim of the paper is to improve the quality of 
image inpainting in computer vision and computer 
graphics systems with applying wavelet transform in the 
LaMa-Fourier network architecture. 

  

1 PROBLEM STATEMENT 
The color natural image is represented as 

I(x,y)=(IR(x,y), IG(x,y), IB(x,y)}, where x=1, …, n; y=1, …, 
m. Then each pixel of the image is described by three 
features IR(x,y), IG(x,y), IB(x,y) which take values from the 
interval [0, 255]. A mask is introduced to represent the 
missing areas of the image. This is a binary image M(x, y) 
of the same size as each channel of the original image. 
The mask is element-by-element producted by image 
features. Then, using a mask, the image with missing 
areas is represented as IМ(x,y)=(IR(x,y)°M(x, y), 
IG(x,y)°M(x, y), IB(x,y)°M(x, y)). It is necessary to 
transform the image IМ(x,y) so as to fill missing areas. In 
this case, the resulting image should approximate the 
original one in the sense of some criterion [4].   

Let the CNN fθ={structfθ, paramfθ} was preliminarily 
designed to inpaint the images. The set structfθ includes 
blocks with layers of the designed network. Taking 
IМ(x,y) the inpainting network processes the input in a 
fully-convolutional manner, and produces Iin(x,y) = 
fθ(IМ(x,y)) which approximates the original image I(x,y). 

The problem of the refining CNN architecture is as 
follows. It is necessary to make structural changes to the 
existing architecture structfθ of the  network fθ(•). These 
changes should improve the image inpainting 
performance compared to the initial fθ(•) network after 
training the parameters of the resulting network [5, 6]. 
The training is performed on a dataset of (image I(x,y), 
mask M(x, y)) pairs obtained from natural images and 
synthetically generated masks. 
 

2 REVIEW OF THE LITERATURE 
The analysis of CNNs for image inpainting showed 

that such methods are primarily focused on the properties 
of processed images. Also, the architectures of the used 
CNNs are determined by the computing power available 
to the researcher and the quality requirements for the 
inpainted images. 

Thus, the methods [7, 8] are recommended for the 
filling localized missing areas of small-sized images with 
not very high quality of the result. These methods use one 
CNN, which is quite easy to train on another class of 
images. It is not require relatively significant time and 
computing power. For example, in [7] the Context 
Encoder was designed on the basis of a generative-
competitive network. This CNN includes a fully 
connected layer. Due to convolutional layers, all locations 
of spatial objects on the previous layer contribute to the 
location of spatial objects on the current layer. Thus, the 
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network can learn the relationship between the locations 
of objects. Also, the Context Encoder can be trained to 
understand the overall context of the entire image. 

A significant number of image inpainting methods [7, 
9–11] require the correct shape of the missing area. 
However, the PartialConv algorithm [8] is able to fill 
several areas of arbitrary shape at once. PartialConv is a 
Unet type network which differs by the applying of partial 
convolutions in the convolutional layers. When partial 
convolution is used, the processing image fragment is first 
multipled by a binary matrix element by element, and 
then only a filter mask is applied. The disadvantage of the 
PartialConv is the reducing of the quality of filling 
missing regions with few details lagging behind each 
other. 

In contrast to CNNs that use one subnet, the MSNPS 
[9] fills the missing regions of images with the help of 
two CNNs applied sequentially. The first CNN is used to 
generate the global context, the second CNN is used to 
further add local texture. This approach improves the 
quality of the inpainted images, but significantly increases 
the training time. MSNPS is a further developing of [7], 
but differs in higher details of local textures due to the use 
of a separate CNN for their generation. 

Methods [10–14] use ensembles of three or more 
CNN to achieve high-quality image inpainting. But they 
require the significant computing power and much 
training time.  

In [10] the GLCIC consist of three CNNs to inpaint 
the images. One CNN is applied to fill missing regions of 
the image and two auxiliary networks is used as local and 
global discriminators. The latter networks are used only 
while training. Their role is to assess the realism of the 
resulting image by comparing the original image areas 
with the inpainted ones. At the same time, the generative 
network is learned to deceive the discriminators, and the 
discriminators are learned to better identify unrealistic 
images. 

The GLCIC fills missing regions not only based on 
the current image, but also based on the images used 
while training. A fully connected layer is not used, which 
significantly reduces the time to inpaint an image as 
compared with [7, 9] and practically removes the 
limitation on the size of the input image. The 
disadvantage of GLCIC is that, in addition to the 
generative network, discriminators must also be trained. 

In [11], the DeepFill v1 network was proposed as a 
sequential combination of the networks from [9, 10]. The 
peculiarity of the DeepFill v1 is that when searching for 
suitable areas for copying, not only similar areas are 
determined, but also the contribution of all visible objects 
to the missing area is estimated. As a result, a 
combination of the most significant visible objects is used 
to fill the missing region. This enhances the quality of the 
obtained result. However, for correct inpainting the 
missing area of the image must be square. 

Instead of the filling of missing regions by global 
context generation and local texture generation  

EdgeConnect [12] is proposed to generate edge map and 
to inpaint an image based on the obtained edges. A 
discriminator is used  while training of each of the two 
subnets of the EdgeConnect [12]. The EdgeConnect can 
fill missing regions of arbitrary shape and shows better 
results than previous methods when generating objects of 
complex shape. But the EdgeConnect is needed to train 
discriminators in addition to generative networks. 

The DeepFill v2 network [13] is based on the DeepFill 
v1, EdgeConnect, and PartialConv networks. DeepFill v2 
sequentially applies three CNNs. First network is 
designed to generate the global context. Second network 
generates a local texture based on the global context of 
the image. Third network is a discriminator assessing the 
realism of the resulting image. After training the DeepFill 
v2 network is able to fill missing regions not only on the 
basis of other parts of the image, but also to evaluate the 
contribution of surrounding objects to the content of the 
missing area. This network can process regions of 
arbitrary shape, and use an edge map when generating 
objects. The DeepFill v2 shows better performance in 
terms of inpainted image quality and processing time 
compared to [7–12]. However, the training of an 
ensemble of three CNNs with more than 4 million 
parameters requires significant time and computer 
resources. 

The CoModGAN network [14] architecture is similar 
to DeepFill v2, but greatly enhanced. The connectivity of 
filled regions to the context is better compared to 
DeepFill v2, but visible artifacts are possible in the center 
of the inpainted region. The CoModGAN network on 
average shows better results than DeepFill v2, but due to 
increasing the number of parameters to 108 million. Then, 
the time of network training and image inpainting 
increases several times. 

The considered CNNs improves of the quality of 
image inpainting by complicating the network 
architecture and/or by processing taking into account, in 
addition to the color components, other features of the 
images. In particular, the texture or the edges of objects 
are processed. The main feature of the LaMa-Fourier 
network compared to considered networks is the use of a 
new type of a convolutional layer which is FFC [4]. It 
allows to significantly increase the logical connectivity of 
the filling missing regions with known image regions and 
at the same time to reduce the number of network 
parameters several times.  

The LaMa-Fourier uses the FFC, learning mask 
generator, and loss function different from previously 
proposed methods. Its architecture is simpler compared to 
DeepFill v2 and CoModGAN. LaMa-Fourier has 27 
million parameters, and is faster than CoModGAN due to 
fewer layers. At the same time, it shows better results, the 
absence of visible artifacts and variations of the texture 
structure, especially when restoring large areas and 
spectral textures. However, the LaMa-Fourier requires 
more computational resources for the implementation of 
FFC compared to convolution. In addition, there is 
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sometimes a slight blurring of the areas inpainted  by the 
LaMa-Fourier, which is a side effect of applying the 
Fourier transform [15]. 

Therefore, in the paper it is proposed to enhance the 
LaMa-Fourier network by applying of wavelet transform 
which can be considered as a generalization of the Fourier 
transform [16]. Wavelet decomposition is performed with 
the help of functions with a limited extension to get 
information about image details.  
 

3 MATERIALS AND METHODS 
The architecture of the LaMa-Fourier network is 

shown in Fig. 1 [4]. The network is inputted an image 
with missing areas and a mask with pixels need to be 
inpainted. Next, the image is reduced by a factor of 3 and 
passes through nine residual blocks (Fig. 1, a). After that, 
the image is enlarged to its original size and outputted [4]. 

In the residual block, the FFC is applied twice to the 
image and the result is added to the original image. FFC 
decomposes the image into local and global textures, 
which are further processed by convolution layers  
(Fig. 1, b). The global texture additionally passes through 
the spectral transform block. The outputs of the 
convolution layers are summed “cross over cross”. Then 
BN and the ReLU activation function are applied to them. 
The results of local and global texture processing are 
concatenated (Fig. 1, b) [4]. 

In the spectral transform block the image is  Fourier 
transformed into the frequency domain, the real and 
imaginary parts are concatenated. Then the convolutional 
layer, BN and the ReLU activation function are applied 
sequentially (Fig. 1, c). The obtained result is splitted on 
the real and imaginary parts. Finally, the iFFT is applied, 
the result of which is the output of the block [4]. 

The LaMa-Fourier network is able to represent the 
general structure of images. But difficulties arise with the 
inpainting of fine high-frequency details and with the 
generation of the image edges. There may also be 
problems when reproducing complex textures, such as 
small leaves, thin fabric fibers, or detailed patterns 
(Fig. 1, d–f). Difficulties in ensuring similarity between 
the inpainted region and the existing texture may be 
related to the fact that the Fourier transform traditionally 
works better with low and medium frequencies than with 
very high ones [15]. 

As an alternative to the Fourier transform, to 
overcome the mentioned shortcomings, it is appropriate to 
use the wavelet transform [17, 18]. Then, it is necessary 
to define the block of the network to which changes will 
be made. Since the FFC decomposes the image into 
global and local texture, it was decided to improve only 
the network block, processing the global context of the 
image, namely, the spectral transform block. Applying the 
wavelet transform to the local context can increase the 
noise level in the image. 

 

 
a 

 
b 

c 

         d                            e                                  f 
Figure 1 – LaMa-Fourier network architecture: a – Residual 

Block; b – FFC; c – Fourier Unit Structure [4]. LaMa-Fourier 
inpainting example: d – original image; e – original image 

and mask; f – inpainted image 
 

To improve the block of spectral transform the Simple 
Wavelet Convolution Block elaborated by the authors is 
used instead of Fourier Unit Structure (Fig. 2). In this 
block, 3D wavelet transform of the image on two levels 
using the Daubechies wavelet db4 (Fig. 3, a) was initially 
performed. 
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Figure 2 – Simple Wavelet Convolution Block 

 
As a result of this transform, the eight subbands of 

coefficients at each level were obtained [19]. These are 
LLL, LLH, LHL, HLL, LHH, HLH, HHL, HHH 
subbands (Fig. 3, b). The main advantage of using a 3D 
wavelet transform, as opposed to applying a 2D transform 
separately for each image channel, is its ability to analyze 
inter-channel image correlation. This allowing to take into 
account color details on an inpainted image. 

The obtained coefficients of 3D wavelet transform are 
splitted so that each subband represents a separate feature 
of the image. Convolutional layer, BN, and ReLU 
activation function are sequentially applied to the results 
of splitting of coefficients on each level of wavelet 
transform (Fig. 2). The number of convolutions in the 
convolutional layer was equal to the number of subbands 
at the corresponding level of the wavelet transform. After 
applying the ReLU activation function, the obtained 
subbands of wavelet coefficients are concatenated and the 
iDWT is applied to them, the result of which is the output 
of the block. Note that the wavelet coefficients at different 
levels were processed separately. This made it possible to 
reduce the computational complexity of calculating the 
network outputs while preserving the impact of each level 
to image inpainting. 

The LaMa network uses the loss function, which is 
specially designed to solve the problem of filling large 
missing regions. This loss function Lfinal combines L2, LР 
and LD to ensure the realism, semantic integrity and 
structural continuity of the inpainted regions, which 
corresponds to the human perception of image [4]: 

 

Lfinal  = kL2 + aLР  + bLD.  
 

The gradient penalty [4] is not used to reduce amount 
of computation. The MSE between the original and 
restored images  was used to estimate L2 pixel loss [20]. 
For perceptual loss of LР, LPIPS is used, which evaluates 
the perceptual similarity between the inpainted and 
original images using a pre-trained neural network [21]. 

The discriminator is used to estimate competition loss 
LD. This additional CNN is trained in parallel with the 
basic network to distinguish between real and generated 
images.  Based on this evaluation, the discriminator tunes 
the basic network coefficients to improve the realism of 
the generated images. Then, the LD are estimation of the 

error in the global and local textures computed from the 
discriminator output [22]. 

 

 
a 
 

 
b 

Figure 3 – Elements of LaMa-Wavelet network architecture: 
a – Daubechies db4 scaling function (blue) and wavelet (red) 
[16]; b – subbands of 3D wavelet transform coefficients [19] 

 
4 EXPERIMENTS 

At the first stage of the experiment, the LaMa-Wavelet 
network was trained to inpaint test database images. The 
Google Colab environment with a pre-configured 
NVIDIA Tesla T4 GPU, which has 16 GB of GDDR6 
memory and 2,560 CUDA cores, was used. The T4 is 
optimized for machine learning computing and supports 
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NVIDIA Turing Tensor Cores to accelerate tensor 
operations. The Google Colab environment uses 
processors to process data and to interact with the GPU. 
The Google Colab environment provides about 60 GB of 
RAM. But no more than 4 GB was used for training, 
because the system is more demanding of video memory 
and most of the RAM is used only for mask generation. 
Google Drive data storage was used to store the training 
and testing datasets to easy access to them. 

The LaMa-Wavelet was trained using the Adam 
optimizer with the following parameters of the Lfinal loss 
function: k=10, a=100, b=30. 

While network training, an initial image and a mask 
are selected. A mask is a binary image on which black 
pixels correspond to pixels of the missing region of the 
initial image, and white pixels correspond to known 
pixels. Pixels, which will be inpainted later, were 
removed from the input image according to the mask. 
Next, the obtained image and the mask were fed to the 
input of the trained network. The image with filled 
missing regions was  outputted by the network. The 
original image was superimposed on this generated image 
according to the mask. Thus, the result was an image in 
which the known pixels were copied from the original 
image, and the pixels of the missing regions were 
generated by the network. 

The 16,000 images from databases [23, 24] were used 
to train the LaMa-Wavelet network. These images were 
scaled to a size of 256x256 pixels and randomly splitted 
into training and testing sets in the ratio of 95% to 5%. 
For each image, with a probability of 0.5, either a mask of 
1–4 rectangles with sides of 30–150 pixels, or a mask of 
1–5 straight lines 10–200 pixels long, 1–100 pixels wide 
and with a slope from 0 to 2π was generated. The sizes of 
the masks were variable, from narrow (10% of the image 
pixels) to large (80% of the image pixels). This ensured 
that the network was trained at different levels of 
inpainting complexity. Masks were generated with a 
random uniform distribution over the entire area to ensure 
uniform coverage of different image areas. 

Evaluation of the results of the first stage of the 
experiment was performed by the FID score [25]. It was 
calculated using the Inception v3 network for two sets of 
images, specifically, real image set and set of images with 
generated regions. When this network obtained the 
features from the real and generated image sets, the FID is 
calculated as 

 
FID=|| mr  – mg||

2 + tr(Rr  + Rg –2(Rr Rg)
1/2). 

 
FID measures the distance between the feature 

distributions of real images and images inpainted by the 
network. Lower FID value means that the feature 
distributions are closer, indicating more similarity 
between the generated and real images. This metric takes 
into account both the variability and the quality of the 
generated images  [25]. 

The original LaMa-Fourier network is balanced in 
terms of image inpainting quality and processing time. 
Training of this model was completed according to a 
standard protocol, providing a reliable baseline for 
comparison [26]. After 128 epochs the training of the 
LaMa-Fourier network was completed.  But the 
dependence of loss function from epoch for the LaMa-
Wavelet still showed a downward trend. This indicated 
the possibility of further improvement of the loss 
provided the training is continued. 

Continued training of the LaMa-Wavelet to 212 
epochs was intended to approach or even exceed the FID 
value of the trained LaMa-Fourier network. Training 
throughout 212 epochs reduced the FID of the LaMa-
Wavelet to about 8 on the training set and to 24 on the 
validation set. This equalizes it with the FID of the LaMa-
Fourier network. The similarity of the FID for the LaMa-
Fourier and LaMa-Wavelet networks indicates that the 
improvement in image inpainting by the LaMa-Wavelet 
can only be achieved through long training.  

At the second stage of the experiment, the images of 
testing set are inpainted using the LaMa-Fourier and 
LaMa-Wavelet networks. Then the inpainted images were 
compared with the original images. For this, three 
separate categories of masks were formed, namely, 
narrow, medium, and large, covering 15%, 40%, 65% of 
the image area, respectively. Each of these mask 
categories represented a different level of image 
inpainting complexity. The test set included 2000 images 
from the Places2 dataset [23]. One mask from each 
category was generated for each image. After element-by-
element multiplication of images on masks, the inpainting 
was performed using LaMa-Fourier and LaMa-Wavelet 
networks. 

To compare the inpainted images with the original 
images, the FID was first calculated. It has been observed 
that the FID evaluates the overall similarity of the 
generated and original images, but does not focus on the 
recovering of edges or details. To solve this problem, two 
additional indexes, PSNR and SSIM, are applied [20].  

PSNR compares the original and reconstructed image 
in terms of differences between them at the pixel level. In 
the context of image inpainting, PSNR indicates how well 
edges and fine details are reconstructed. It is estimated as 
the ratio between the maximum possible power of an 
original image and the MSE between original and 
inpainted images if minimum intensity level supposes to 
be 0 [20]:  

 
PSNR = 10log10((L – 1)2/MSE). 

 
SSIM provides a perceptually relevant estimation of 

image quality considering the differences in image 
structure, texture, and contrast. This is critical for 
preserving the natural appearance of image edges and 
textures. The SSIM is calculated based on the luminance 
term, contrast term and structural or correlation term as 
[20]: 
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SSIM(v, w)=l (v, w)α  c (v, w)β  s (v, w)γ, 
l (v, w) = (2mv mw + C1)/(mv

2 + mw
2+C1), 

c (v, w) = (2σv σw +C2)/(σv
2 + σw

2+ C2), 
s (x, y)=(σvw +C3)/(σv σw +C3), 

 
If α=β=γ=1, then the index is in normalized scale with 
values between 0 to 1.  

The PSNR and SSIM allowed a more detailed 
estimation of the inpainting performance, especially in 
terms of edge quality and structural integrity.  

At the third stage of the experiment, the results of the 
inpainting of specific images by LaMa-Fourier and 
LaMa-Wavelet networks were compared. 3–5 images 
were selected with different complexity of background, 
namely, uniform background, background with structural 
texture (with repeating patterns) [26], complex 
background with repeating objects. To demonstrate how 
well the networks performed in texture, color, and edge 
recovery, each image was processed using the original 
LaMa-Fourier and LaMa-Wavelet network trained on 212 
epochs. Inpainted images were evaluated visually and 
using PSNR and SSIM. 
 

5 RESULTS 
At the first stage of the experiment, the results of 

training of LaMa-Fourier and LaMa-Wavelet networks 
were evaluated using the FID score on training and 
validation sets. In addition, the training epoch time and 
image inpainting time were estimated. Image inpainting 
time is averaged for a set of 25 images of size 1024x1024 
pixels (Table 1). 

 
Table 1 – The LaMa-Fourier and LaMa-Wavelet training results 

CNN FID on 
training 

set 

FID on 
validatio

n set 

Epoch 
time, 

minutes  

Image 
inpain-

ting time, 
seconds  

LaMa-Fourier  8.2 25 40 2.2 
LaMa-Wavelet  9.2 32 150 6.6 

  
At the second stage of the experiment, the 

dependencies of the FID, PSNR, and SSIM from the size 
of the missing areas were researched (Table 2).  

The PSNR of the CelebA-HQ [27] and Plases2 [23] 
datasets images inpainted by the methods known from the 
literature are given in Table 3 [28]. Note, however, that 
the results of Table 3 were obtained under significantly 
different experimental conditions and are used as 
collating data. 

 
 
 
 
 
 
 
 
 
 
 

Table 2 – The LaMa-Fourier and LaMa-Wavelet testing results 
CNN Epochs FID PSNR SSIM 

Narrow masks 

LaMa-Fourier 128 21.8 25.68 0.7811 

LaMa-Wavelet 128 24.7 26.58 0.8066 

LaMa-Wavelet 212 21.3 26.82 0.8088 

Medium masks 

LaMa-Fourier 128 24.3 25.04 0.8232 

LaMa-Wavelet 128 31.1 25.88 0.8367 

LaMa-Wavelet 212 24.8 26.19 0.8394 

Large masks 

LaMa-Fourier 128 32.7 22.16 0.7857 

LaMa-Wavelet 128 39.7 22.96 0.7973 

LaMa-Wavelet 212 32.1 23.48 0.7999 
 

Table 3 – The PSNR of images from the CelebA-HQ [27] and 
Plases2 [23] datasets inpainted by the methods known from the 

literature [28] 
CelebA-HQ images 256x256 pixels  

CNN, reference, 
publication year Narrow 

masks 
Medium 
masks 

Large 
masks 

LaMa-Fourier [4], 2021 22.7 34.1 27.8 
CoModGAN [14], 2021 35.9 48.4 64.4 
DeepFill v2 [13], 2019 37.0 45.3 43.0 

EdgeConnect [12], 2019 29.2 40.5 34.7 
 Places images 512x512 pixels  

LaMa-Fourier  [4], 2021 12.7 11.7 12.0 
CoModGAN [14], 2021 16.3 12.4 10.4 
DeepFill v2 [13], 2019 17.9 18.3 22.1 

EdgeConnect [12], 2019 18.9 21.9 30.5 

At the third stage of the experiment, the results of the 
inpainting of specific images by the LaMa-Fourier and 
LaMa-Wavelet networks were obtained (Fig. 4–9). The 
corresponding values of the SSIM and PSNR are shown 
in Table 4. 
Table 4 – The PSNR and SSIM of specific images inpainted by 

LaMa-Fourier and  LaMa-Wavelet 
LaMa-Fourier  LaMa-Wavelet  Image 

PSNR SSIM PSNR SSIM 
Fig. 4, a 35.04 0.90 35.30 0.90 
Fig. 4, d 34.58 0.87 35.82 0.89 
Fig. 4, g 24.54 0.90 35.10 0.90 
Fig. 4, j 38.20 0.98 40.01 0.99 
Fig. 4, m 22.91 0.92 22.52 0.91 
Fig. 4, p 32.88 0.97 33.19 0.96 
Fig. 5, a 28.84 0.96 28.96 0.95 
Fig. 5, d 24.89 0.94 24.78 0.93 
Fig. 6, a 23.67  0.88 22.96 0.88 
Fig. 6, d 19.43 0.78 22.07 0.72 
Fig. 7, a 20.39 0.88 22.39 0.87 
Fig. 7, d 19.59 0.88 19.47 0.87 

Fig. 8 13.61 0.84 15.03 0.85 
 

6 DISCUSSIONS 
Analysing Table 1 it should be noted thе follow. The 

LaMa-Wavelet network requires more time for training 
and image inpainting after training. Namely, the LaMa-
Wavelet network requires 3.75 times more time per 
training epoch as compared with LaMa-Fourier. After 
training it takes 3 times longer to inpaint one image with 
LaMa-Wavelet than with LaMa-Fourier network. It is 
noticed that a significant part of the training time is spent 
on calculating the wavelet transform. 
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g h i j k l 

    
m n o p q r 

Figure 4 – Images with random masks: a, d, g, j, m, p – original image and mask; b, e, h, k, n, q – image inpainted with LaMa-
Fourier; c, f, i, l, o, r – image inpainted with LaMa-Wavelet 

 

   
a b с 

   
d e f 

Figure 5 – Images with homogeneous background: a, d – original image and mask; b, e – image inpainted with LaMa-Fourier; c, f – 
image inpainted with LaMa-Wavelet 
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a b c 

   
d e f 

Figure 6 – Images with periodical background: a, d – original image and mask; b, e – image inpainted with LaMa-Fourier; c, f – 
image inpainted with LaMa-Wavelet 

 

   
a b c 

   
d e f 

Figure 7 – Images with complex background: a, d – original image and mask; b, e – image inpainted with LaMa-Fourier; c, f – image 
inpainted with LaMa-Wavelet 
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a b c 

Figure 8 – Image with generation artifacts: a – original image and mask; b – image inpainted with LaMa-Fourier; c – 
image inpainted with LaMa-Wavelet 

 

The LaMa-Wavelet network is worse in terms of the 
training quality than LaMa-Fourier. Specifically, the FID 
on training and validation sets of images has increased by 
12% and 28% respectively. 

The analysis of the Table 2 showed that FID values 
obtained by the LaMa-Fourier and LaMa-Wavelet 
networks on test set of images are similar for narrow, 
medium, and large masks. Thus LaMa-Wavelet shows 
higher generalization ability than LaMa-Fourier. The 
PSNR of images inpainted using the LaMa-Wavelet 
exceeds the results obtained using the LaMa-Fourier 
network for narrow and medium masks in average by 1.15 
dB (4.5%), for large masks in average by 1.3 dB (6%). 
The LaMa-Wavelet can enhance SSIM in average by 2–
4% depending on a mask size. 

In addition, it was noted that the quality improvement 
of inpainted images is largely determined by their content 
and properties. Thus, for  structural textures [26] or 
objects against the background of such textures, the 
PSNR of images inpainted using the LaMa-Wavelet 
exceeds the results obtained using the LaMa-Fourier by 
1.2–2.7 dB (3.5–14%). For objects on uniform 
background, the PSNR of images reconstructed with the 
LaMa-Wavelet is improved by 1.8–9.6 dB (9.8–41%) 
compared to the results obtained using the LaMa-Fourier. 
The improvement range of SSIM is less. This may mean 
that the LaMa-Wavelet is more capable of restoring fine 
details and edges of objects than inpainted the image 
structure. 

Analysing of the LaMa-Wavelet network performance 
for different mask sizes it was noticed that there is a 
tendency for higher quality of inpainting of images with a 
low number of details and straight lines, especially with 
narrow masks. The inpainting of complex textures such as 
grass, leaves, branches or large numbers of people is 
difficult for both LaMa-Fourier and LaMa-Wavelet 
networks. The deformation of the image color in the large 
filled regions appears more frequently if the LaMa-
Wavelet network has been used. 

In the case of narrow masks, both networks show 
similar quality. However the LaMa-Wavelet  shows a 
significant improvement in the inpainting of large missing 
areas relative to the LaMa-Fourier. 

Let compares the results of the inpainting of specific 
images by the LaMa-Fourier and LaMa-Wavelet 
networks. At first several images with randomly selected 
narrow and medium masks were visually analyzed (Fig. 
4). It was once again confirmed that, in general, LaMa-
Wavelet shows better texture inpainting than LaMa-
Fourier, but when the size of the masks increases, color 
deformation begins to appear. Also, the LaMa-Wavelet 
combines parallel lines less if they are close, and better 
preserves the bends of curved lines. 

For images with a uniform background (Fig. 5) the 
numeric estimates are similar. There is a more 
pronounced background color defect at the place of the 
tomato and cup if the LaMa-Wavelet is applied. 

The repeating background in the images (Fig. 6) is 
well reproduced by both networks. But when using larger 
masks, you can see, both visually and numerically, that 
LaMa-Wavelet generates better edges of texture elements, 
but loses in the generation of image color. 

As the complexity of the image background increases, 
it can be seen that the LaMa-Wavelet network begins to 
lack context for the correct estimation of the expected 
generation (Fig.  7). In this regard, the quality of the edges 
of the inpainted regions reduces. However, under 
conditions of high complexity of the texture, the 
possibility of visual assessment is lost, since objects 
become, in principle, difficult to distinguish even for a 
person. Also, in such a scenario, the ability of the LaMa-
Wavelet network to continue repeating textures becomes 
more of a problem than an advantage. This network starts 
mixing different textures in an attempt to continue them. 
This is seen in the example in Figure 8, where large 
duplicate objects need to be removed from an image. 
Instead of removing objects, the LaMa-Wavelet network 
generates an average between the background and the 
original texture in an attempt to restore the texture. It can 
also be seen that the LaMa-Wavelet network is more seek 
to forced inpainting of textures than the LaMa-Fourier. 

Thus, analysis of specific image inpainting confirmed 
the practical effectiveness of LaMa-Wavelet network as 
compared with LaMa-Fourier. In particular, when 
removing objects on a homogeneous background, both 
networks show similar results. However, on complex 
backgrounds with repeating elements, the LaMa-Wavelet 
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is often more effective in restoring textures, despite some 
cases of texture mixing. 
 

CONCLUSIONS 
The actual scientific and applied problem of an 

inpainting of the fine details and object edges has been 
solved when missing regions of images are filled by 
CNN. 

The scientific novelty is the proposed method of 
natural image inpainting with LaMa-Wavelet network. 
Due to applying wavelet transform, the image inpainting 
with large masks based on the LaMa network is 
improved. Specifically, the quality of reconstruction of 
image edges and fine details is increased.  

The practical significance of obtained results is that 
the software realizing the proposed LaMa-Wavelet 
network is developed, as well as experiments to research 
its image inpainting performance are conducted. The 
experimental results allow to recommend the proposed 
LaMa-Wavelet for use in practice, as well as to determine 
effective conditions for the application of this network.  

Prospects for further research is reducing the 
computing time by using fast transforms.  It is also 
nessesary to identify classes of images for the inpainting 
of which it is advisable to use LaMa-Wavelet. 
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AНОТАЦІЯ 
Актуальність. Розглянуто проблему реконструкції зображень в системах комп’ютерної графіки та комп’ютерного зору. 

Предметом дослідження є згорткові нейронні мережi глибокого навчання для реконструкції зображень. 
Мета роботи. Покращення якості реконструйованих зображень в системах комп’ютерного зору та комп’ютерної 

графіки шляхом застосування вейвлет-перетворення в архітектурі нейронної мережі LaMa-Fourier. 
Метод. Базова мережа LaMa-Fourier окремо обробляє глобальний та локальний контекст зображення. Пропонується 

вдосконалити для цієї мережі блок обробки глобального контексту зображення, а саме блок спектрального перетворення. 
Для цього замість Fourier Unit Structure використовується розроблений авторами Simple Wavelet Convolution Block, у якому 
спочатку виконується тривимірне вейвлет-перетворення зображення на двох рівнях. Отримані коефіцієнти розбиваються 
так, що кожна субполоса представляє окрему ознаку зображення. Згортковий шар, пакетна нормалізація та функція 
активації ReLU послідовно застосовуються до субполос коефіцієнтів на кожному рівні вейвлет-перетворення. Отримані 
субполоси вейвлет-коефіцієнтів конкатенуються і до них застосовується зворотне вейвлет-перетворення, результат якого 
передається на вихід блоку. Окрема обробка вейвлет-коефіцієнтів на різних рівнях зменшує обчислювальну складність, 
зберігаючи при цьому вплив контексту кожного рівня на реконструкцію зображення. Отриману нейронну мережу названо 
LaMa-Wavelet. Показники FID, PSNR, SSIM та візуальний аналіз були використані для оцінки якості зображень, 
реконструйованих мережею LaMa-Wavelet. 

Результати. Запропоновану мережу LaMa-Wavelet програмно реалізовано та досліджено для вирішення проблеми 
реконструкції зображень. PSNR зображень, відновлених за допомогою мережі LaMa-Wavelet, перевищує результати, 
отримані за допомогою мережі LaMa-Fourier для малих і середніх масок у середньому на 4,5%, для великих масок – у 
середньому на 6%. Застосування LaMa-Wavelet може збільшити SSIM на 2–4% залежно від розміру маски. Але 
реконструкція одного зображення за допомогою LaMa-Wavelet займає в 3 рази більше часу, ніж за допомогою мережі LaMa-
Fourier. Аналіз конкретних зображень демонструє, що обидві мережі показують схожі результати реконструкції однорідного 
фону. На складних фонах із повторюваними елементами LaMa-Wavelet часто ефективніше відновлює текстури. 

Висновки. Отримана мережа LaMa-Wavelet дозволяє покращити відновлення великих областей зображень за рахунок 
застосування вейвлет-перетворення в архітектурі мережі LaMa. А саме, підвищується якість реконструкції країв зображення 
та дрібних деталей.  

КЛЮЧОВІ СЛОВА: реконструкція зображення, вейвлет-перетворення, мережа LaMa, вейвлет Добеші, початкова 
відстань Фреше, вейвлет-згортка. 
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