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ABSTRACT

Context. The problem of the image impainting in computer graphic and computer vision systems is considered. The subject of
the research is deep learning convolutional neural networks for image inpainting.

Objective. The objective of the research is to improve the image inpainting performance in computer vision and computer
graphics systems by applying wavelet transform in the LaMa-Fourier network architecture.

Method. The basic LaMa-Fourier network decomposes the image into global and local texture. Then it is proposed to improve
the network block, processing the global context of the image, namely, the spectral transform block. To improve the block of spectral
transform, instead of Fourier Unit Structure the Simple Wavelet Convolution Block elaborated by the authors is used. In this block,
3D wavelet transform of the image on two levels was initially performed using the Daubechies wavelet db4. The obtained
coefficients of 3D wavelet transform are splitted so that each subband represents a separate feature of the image. Convolutional layer,
batch normalization and ReLU activation function are sequentially applied to the results of splitting of coefficients on each level of
wavelet transform. The obtained subbands of wavelet coefficients are concatenated and the inverse wavelet transform is applied to
them, the result of which is the output of the block. Note that the wavelet coefficients at different levels were processed separately.
This reduces the computational complexity of calculating the network outputs while preserving the influence of the context of each
level on image inpainting. The obtained neural network is named LaMa-Wavelet. The FID, PSNR, SSIM indexes and visual analysis
were used to estimate the quality of images inpainted with LaMa-Wavelet network.

Results. The proposed LaMa-Wavelet network has been implemented in software and researched for solving the problem of
image inpainting. The PSNR of images inpainted using the LaMa-Wavelet exceeds the results obtained using the LaMa-Fourier
network for narrow and medium masks in average by 4.5%, for large masks in average by 6%. The LaMa-Wavelet applying can
enhance SSIM by 2-4% depending on a mask size. But it takes 3 times longer to inpaint one image with LaMa-Wavelet than with
LaMa-Fourier network. Analysis of specific images demonstrates that both networks show similar results of inpainting of a
homogeneous background. On complex backgrounds with repeating elements the LaMa-Wavelet is often more effective in restoring
textures.

Conclusions. The obtained LaMa-Wavelet network allows to improve the image inpainting with large masks due to applying
wavelet transform in the LaMa network architecture. Namely, the quality of reconstruction of image edges and fine details is
increased.

KEYWORDS: image inpainting, wavelet transform, LaMa network, Daubechies wavelet, Fréchet inception distance, wavelet
convolution.

ABBREVIATIONS MSE is a mean square error;
CNN is a convolutional neural network; SSIM is a structural similarity index measure.
MSNPS is Muli-Scale Neural Patch Synthpsm; NOMENCLATURE
GLCIC is Globally and Locally Consistent Image . . )
n, m is the number of image rows and columns;

Completion; (x,y) are coordinates of the image pixel;
CoModGAN is co-modulated generative adversarial ) ar . £€ PIXel, .
network: I(x,y) is a vector function representing an image by
’ . . . . color channels;
Conl;iﬁ?ifr?;mer is Large Mask Inpainting with Fourier Ip(x.y), I6(x,y), I5(x,y) are the red, green, blue color
LaMa-Wavelet is Large Mask Inpainting with wavelet charc)lnles of an image; o
transform: is an element-by-element product of matrixes;

fo is an inpainting network;

structy is the architecture of the fy network;

paramy is the set of parameters of the fy network;

I;,(x,p) is an inpainted three-channel color image;

L, is a pixel loss;

Lp is a perceptual loss;

Lp is a competitive loss;

k, a, b are the coefficients controling the impact of
each of the losses;

m, and myg are vectors of mean feature values for real
and generated image sets, respectively;

R, and R, are the covariance matrices of the features of
the real and generated sets of images;
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FFC is a fast Fourier convolution;

FFT is a fast Fourier transform;

iFFT is an inverse fast Fourier transform;

LLL, LLH, LHL, HLL, LHH, HLH, HHL, HHH are
wavelet coefficient subbands;

DWT is a discrete wavelet transform;

iDWT is an inverse discrete wavelet transform;

BN is a batch normalization layer;

ReLU is a rectified linear unit;

LPIPS is Learned Perceptual Image Patch Similarity;

FID is Fréchet inception distance;

PSNR is a peak signal-to-noise ratio;
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tr is the trace of the matrix;

L is the number of intensity levels on the image;

I(v, w), ¢ (v, w), s (v, w) are the luminance, contrast,
and structure between images v and w ;

m,, m,, are the local means of images vand w ;

o,, O, are the standard deviations of images;

o, 1S the cross-covariance for images v and w.

Ci, Gy, Cs, a, B and vy are the positive constants.

INTRODUCTION

In computer vision and computer graphics systems,
there is a need to inpaint missing areas of the image. This
problem arises in the case of faded colors or physical
damage of the surface on which the image was located. In
another case, there is a need for removing unwanted
objects from the image in such a way that the resulted
image looks realistic and fits the context. For example,
when photographing, distracting objects in a scene such
as strangers and objects that get in the way are usually
unavoidable but at the same time undesirable for users.
Before sharing a photo, users may want to make some
changes, such as removing distracting elements from the
scene or adjusting the position of objects in the image for
a better composition. Image inpainting techniques provide
automatic filling of missing regions of an image with a
plausible hypothesis. These techniques are used in many
real-world tasks, such as removing distracting objects,
restoring damaged parts, and filling the missing areas of
images [1, 2].

The object of research is inpainting of real scene
images in computer vision and computer graphics
systems.

Due to the development of modern technologies and
the increase in computing power, a number of image
inpainting methods based on deep learning CNNs have
been elaborated, which can generate missing regions of
the image with good global consistency and local fine
textures. Thus, CNNs Context Encoder, MSNPS, GLCIC,
DeepFill v1-2 differ in such characteristics as speed, the
size of the processed image, and the quality of filling of
image regions [3]. The disadvantage of the listed
methods is that when using large masks, the result
becomes unsatisfactory in terms of generating both image
context and texture.

The subject of the research is methods of image
inpainting using CNNs of deep learning.

Unlike the Context Encoder, MSNPS, GLCIC,
DeepFill vI-2 methods, the LaMa-Fourier [4] is able to
obtain a good result even when the missing areas occupy
most of the image. In general, CNNs for image inpainting
usually achieve better results by complicating the network
architecture or by dividing it into sub-networks with
separate tasks. LaMa-Fourier, on the contrary, uses a
single network and a fewer variables [4].

The advantages of the LaMa-Fourier method are a
higher speed of image processing and network training;
better quality than other neural network methods when
using narrow masks; better quality of large mask
inpainting of spectral textures. The disadvantage of the
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LaMa-Fourier network is the insufficient quality of
inpainting of fine details of images and edges of objects.
To eliminate this shortcoming, it is appropriate to use a
wavelet transform representing both global and local
features of images.

The aim of the paper is to improve the quality of
image inpainting in computer vision and computer
graphics systems with applying wavelet transform in the
LaMa-Fourier network architecture.

1 PROBLEM STATEMENT

The color natural image is represented as
10, y)y=(Ir(x ), 16(x,y), Is(x,y)}, where x=1, ..., n; y=1, ...,
m. Then each pixel of the image is described by three
features Ir(x,y), I(x,y), Ip(x,y) which take values from the
interval [0, 255]. A mask is introduced to represent the
missing areas of the image. This is a binary image M(x, y)
of the same size as each channel of the original image.
The mask is element-by-element producted by image
features. Then, using a mask, the image with missing
areas is represented as  Iy(x,y)=(lr(x,))eM(x, ),
I(xy)eM(x, ), Ip(x,y)-M(x, y)). It is necessary to
transform the image /,,(x,y) so as to fill missing areas. In
this case, the resulting image should approximate the
original one in the sense of some criterion [4].

Let the CNN fo={structp, paramg} was preliminarily
designed to inpaint the images. The set structy includes
blocks with layers of the designed network. Taking
Iy(x,y) the inpainting network processes the input in a
fully-convolutional manner, and produces [;(x,y) =
fo(Iu(x,y)) which approximates the original image /(x,y).

The problem of the refining CNN architecture is as
follows. It is necessary to make structural changes to the
existing architecture structy of the network fy(*). These
changes should improve the image inpainting
performance compared to the initial fo(¢) network after
training the parameters of the resulting network [5, 6].
The training is performed on a dataset of (image I(x,y),
mask M(x, y)) pairs obtained from natural images and
synthetically generated masks.

2 REVIEW OF THE LITERATURE

The analysis of CNNs for image inpainting showed
that such methods are primarily focused on the properties
of processed images. Also, the architectures of the used
CNNs are determined by the computing power available
to the researcher and the quality requirements for the
inpainted images.

Thus, the methods [7, 8] are recommended for the
filling localized missing areas of small-sized images with
not very high quality of the result. These methods use one
CNN, which is quite easy to train on another class of
images. It is not require relatively significant time and
computing power. For example, in [7] the Context
Encoder was designed on the basis of a generative-
competitive network. This CNN includes a fully
connected layer. Due to convolutional layers, all locations
of spatial objects on the previous layer contribute to the
location of spatial objects on the current layer. Thus, the
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network can learn the relationship between the locations
of objects. Also, the Context Encoder can be trained to
understand the overall context of the entire image.

A significant number of image inpainting methods [7,
9-11] require the correct shape of the missing area.
However, the PartialConv algorithm [8] is able to fill
several areas of arbitrary shape at once. PartialConv is a
Unet type network which differs by the applying of partial
convolutions in the convolutional layers. When partial
convolution is used, the processing image fragment is first
multipled by a binary matrix element by element, and
then only a filter mask is applied. The disadvantage of the
PartialConv is the reducing of the quality of filling
missing regions with few details lagging behind each
other.

In contrast to CNNs that use one subnet, the MSNPS
[9] fills the missing regions of images with the help of
two CNNSs applied sequentially. The first CNN is used to
generate the global context, the second CNN is used to
further add local texture. This approach improves the
quality of the inpainted images, but significantly increases
the training time. MSNPS is a further developing of [7],
but differs in higher details of local textures due to the use
of a separate CNN for their generation.

Methods [10-14] use ensembles of three or more
CNN to achieve high-quality image inpainting. But they
require the significant computing power and much
training time.

In [10] the GLCIC consist of three CNNs to inpaint
the images. One CNN is applied to fill missing regions of
the image and two auxiliary networks is used as local and
global discriminators. The latter networks are used only
while training. Their role is to assess the realism of the
resulting image by comparing the original image areas
with the inpainted ones. At the same time, the generative
network is learned to deceive the discriminators, and the
discriminators are learned to better identify unrealistic
images.

The GLCIC fills missing regions not only based on
the current image, but also based on the images used
while training. A fully connected layer is not used, which
significantly reduces the time to inpaint an image as
compared with [7, 9] and practically removes the
limitation on the size of the input image. The
disadvantage of GLCIC is that, in addition to the
generative network, discriminators must also be trained.

In [11], the DeepFill vl network was proposed as a
sequential combination of the networks from [9, 10]. The
peculiarity of the DeepFill vl is that when searching for
suitable areas for copying, not only similar areas are
determined, but also the contribution of all visible objects
to the missing area is estimated. As a result, a
combination of the most significant visible objects is used
to fill the missing region. This enhances the quality of the
obtained result. However, for correct inpainting the
missing area of the image must be square.

Instead of the filling of missing regions by global
context generation and local texture generation
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EdgeConnect [12] is proposed to generate edge map and
to inpaint an image based on the obtained edges. A
discriminator is used while training of each of the two
subnets of the EdgeConnect [12]. The EdgeConnect can
fill missing regions of arbitrary shape and shows better
results than previous methods when generating objects of
complex shape. But the EdgeConnect is needed to train
discriminators in addition to generative networks.

The DeepFill v2 network [13] is based on the DeepFill
vl, EdgeConnect, and PartialConv networks. DeepFill v2
sequentially applies three CNNs. First network is
designed to generate the global context. Second network
generates a local texture based on the global context of
the image. Third network is a discriminator assessing the
realism of the resulting image. After training the DeepFill
v2 network is able to fill missing regions not only on the
basis of other parts of the image, but also to evaluate the
contribution of surrounding objects to the content of the
missing area. This network can process regions of
arbitrary shape, and use an edge map when generating
objects. The DeepFill v2 shows better performance in
terms of inpainted image quality and processing time
compared to [7-12]. However, the training of an
ensemble of three CNNs with more than 4 million
parameters requires significant time and computer
resources.

The CoModGAN network [14] architecture is similar
to DeepFill v2, but greatly enhanced. The connectivity of
filled regions to the context is better compared to
DeepFill v2, but visible artifacts are possible in the center
of the inpainted region. The CoModGAN network on
average shows better results than DeepFill v2, but due to
increasing the number of parameters to 108 million. Then,
the time of network training and image inpainting
increases several times.

The considered CNNs improves of the quality of
image inpainting by complicating the network
architecture and/or by processing taking into account, in
addition to the color components, other features of the
images. In particular, the texture or the edges of objects
are processed. The main feature of the LaMa-Fourier
network compared to considered networks is the use of a
new type of a convolutional layer which is FFC [4]. It
allows to significantly increase the logical connectivity of
the filling missing regions with known image regions and
at the same time to reduce the number of network
parameters several times.

The LaMa-Fourier uses the FFC, learning mask
generator, and loss function different from previously
proposed methods. Its architecture is simpler compared to
DeepFill v2 and CoModGAN. LaMa-Fourier has 27
million parameters, and is faster than CoModGAN due to
fewer layers. At the same time, it shows better results, the
absence of visible artifacts and variations of the texture
structure, especially when restoring large areas and
spectral textures. However, the LaMa-Fourier requires
more computational resources for the implementation of
FFC compared to convolution. In addition, there is
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sometimes a slight blurring of the areas inpainted by the
LaMa-Fourier, which is a side effect of applying the
Fourier transform [15].

Therefore, in the paper it is proposed to enhance the
LaMa-Fourier network by applying of wavelet transform
which can be considered as a generalization of the Fourier
transform [16]. Wavelet decomposition is performed with
the help of functions with a limited extension to get
information about image details.

3 MATERIALS AND METHODS

The architecture of the LaMa-Fourier network is
shown in Fig. 1 [4]. The network is inputted an image
with missing areas and a mask with pixels need to be
inpainted. Next, the image is reduced by a factor of 3 and
passes through nine residual blocks (Fig. 1, a). After that,
the image is enlarged to its original size and outputted [4].

In the residual block, the FFC is applied twice to the
image and the result is added to the original image. FFC
decomposes the image into local and global textures,
which are further processed by convolution layers
(Fig. 1, b). The global texture additionally passes through
the spectral transform block. The outputs of the
convolution layers are summed “cross over cross”. Then
BN and the ReLU activation function are applied to them.
The results of local and global texture processing are
concatenated (Fig. 1, b) [4].

In the spectral transform block the image is Fourier
transformed into the frequency domain, the real and
imaginary parts are concatenated. Then the convolutional
layer, BN and the ReLU activation function are applied
sequentially (Fig. 1, c¢). The obtained result is splitted on
the real and imaginary parts. Finally, the iFFT is applied,
the result of which is the output of the block [4].

The LaMa-Fourier network is able to represent the
general structure of images. But difficulties arise with the
inpainting of fine high-frequency details and with the
generation of the image edges. There may also be
problems when reproducing complex textures, such as
small leaves, thin fabric fibers, or detailed patterns
(Fig. 1, d-f). Difficulties in ensuring similarity between
the inpainted region and the existing texture may be
related to the fact that the Fourier transform traditionally
works better with low and medium frequencies than with
very high ones [15].

As an alternative to the Fourier transform, to
overcome the mentioned shortcomings, it is appropriate to
use the wavelet transform [17, 18]. Then, it is necessary
to define the block of the network to which changes will
be made. Since the FFC decomposes the image into
global and local texture, it was decided to improve only
the network block, processing the global context of the
image, namely, the spectral transform block. Applying the
wavelet transform to the local context can increase the
noise level in the image.
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Figure 1 — LaMa-Fourier network architecture: a — Residual
Block; b — FFC; ¢ — Fourier Unit Structure [4]. LaMa-Fourier
inpainting example: d — original image; e — original image
and mask; f — inpainted image

To improve the block of spectral transform the Simple
Wavelet Convolution Block elaborated by the authors is
used instead of Fourier Unit Structure (Fig. 2). In this
block, 3D wavelet transform of the image on two levels
using the Daubechies wavelet db4 (Fig. 3, a) was initially
performed.
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As a result of this transform, the eight subbands of
coefficients at each level were obtained [19]. These are
LLL, LLH, LHL, HLL, LHH, HLH, HHL, HHH
subbands (Fig. 3, b). The main advantage of using a 3D
wavelet transform, as opposed to applying a 2D transform
separately for each image channel, is its ability to analyze
inter-channel image correlation. This allowing to take into
account color details on an inpainted image.

The obtained coefficients of 3D wavelet transform are
splitted so that each subband represents a separate feature
of the image. Convolutional layer, BN, and ReLU
activation function are sequentially applied to the results
of splitting of coefficients on each level of wavelet
transform (Fig. 2). The number of convolutions in the
convolutional layer was equal to the number of subbands
at the corresponding level of the wavelet transform. After
applying the ReLU activation function, the obtained
subbands of wavelet coefficients are concatenated and the
iDWT is applied to them, the result of which is the output
of the block. Note that the wavelet coefficients at different
levels were processed separately. This made it possible to
reduce the computational complexity of calculating the
network outputs while preserving the impact of each level
to image inpainting.

The LaMa network uses the loss function, which is
specially designed to solve the problem of filling large
missing regions. This loss function Lg,, combines L, Lp
and L, to ensure the realism, semantic integrity and
structural continuity of the inpainted regions, which
corresponds to the human perception of image [4]:

Lﬁnal = kL2 + aLp + bLD

The gradient penalty [4] is not used to reduce amount
of computation. The MSE between the original and
restored images was used to estimate L, pixel loss [20].
For perceptual loss of Lp, LPIPS is used, which evaluates
the perceptual similarity between the inpainted and
original images using a pre-trained neural network [21].

The discriminator is used to estimate competition loss
Lp. This additional CNN is trained in parallel with the
basic network to distinguish between real and generated
images. Based on this evaluation, the discriminator tunes
the basic network coefficients to improve the realism of
the generated images. Then, the Ly are estimation of the
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error in the global and local textures computed from the
discriminator output [22].
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b
Figure 3 — Elements of LaMa-Wavelet network architecture:
a — Daubechies db4 scaling function (blue) and wavelet (red)
[16]; b — subbands of 3D wavelet transform coefficients [19]

alongthe slices

4 EXPERIMENTS
At the first stage of the experiment, the LaMa-Wavelet
network was trained to inpaint test database images. The
Google Colab environment with a pre-configured
NVIDIA Tesla T4 GPU, which has 16 GB of GDDR6
memory and 2,560 CUDA cores, was used. The T4 is
optimized for machine learning computing and supports
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NVIDIA Turing Tensor Cores to accelerate tensor
operations. The Google Colab environment uses
processors to process data and to interact with the GPU.
The Google Colab environment provides about 60 GB of
RAM. But no more than 4 GB was used for training,
because the system is more demanding of video memory
and most of the RAM is used only for mask generation.
Google Drive data storage was used to store the training
and testing datasets to easy access to them.

The LaMa-Wavelet was trained using the Adam
optimizer with the following parameters of the L, loss
function: k=10, a=100, b=30.

While network training, an initial image and a mask
are selected. A mask is a binary image on which black
pixels correspond to pixels of the missing region of the
initial image, and white pixels correspond to known
pixels. Pixels, which will be inpainted later, were
removed from the input image according to the mask.
Next, the obtained image and the mask were fed to the
input of the trained network. The image with filled
missing regions was outputted by the network. The
original image was superimposed on this generated image
according to the mask. Thus, the result was an image in
which the known pixels were copied from the original
image, and the pixels of the missing regions were
generated by the network.

The 16,000 images from databases [23, 24] were used
to train the LaMa-Wavelet network. These images were
scaled to a size of 256x256 pixels and randomly splitted
into training and testing sets in the ratio of 95% to 5%.
For each image, with a probability of 0.5, either a mask of
1-4 rectangles with sides of 30-150 pixels, or a mask of
1-5 straight lines 10-200 pixels long, 1-100 pixels wide
and with a slope from 0 to 2w was generated. The sizes of
the masks were variable, from narrow (10% of the image
pixels) to large (80% of the image pixels). This ensured
that the network was trained at different levels of
inpainting complexity. Masks were generated with a
random uniform distribution over the entire area to ensure
uniform coverage of different image areas.

Evaluation of the results of the first stage of the
experiment was performed by the FID score [25]. It was
calculated using the Inception v3 network for two sets of
images, specifically, real image set and set of images with
generated regions. When this network obtained the
features from the real and generated image sets, the FID is
calculated as

FID=|| m, — my|* + tr(R, + R;—2(R, R))").

FID measures the distance between the feature
distributions of real images and images inpainted by the
network. Lower FID value means that the feature
distributions are closer, indicating more similarity
between the generated and real images. This metric takes
into account both the variability and the quality of the
generated images [25].
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The original LaMa-Fourier network is balanced in
terms of image inpainting quality and processing time.
Training of this model was completed according to a
standard protocol, providing a reliable baseline for
comparison [26]. After 128 epochs the training of the
LaMa-Fourier network was completed. But the
dependence of loss function from epoch for the LaMa-
Wavelet still showed a downward trend. This indicated
the possibility of further improvement of the loss
provided the training is continued.

Continued training of the LaMa-Wavelet to 212
epochs was intended to approach or even exceed the FID
value of the trained LaMa-Fourier network. Training
throughout 212 epochs reduced the FID of the LaMa-
Wavelet to about 8 on the training set and to 24 on the
validation set. This equalizes it with the FID of the LaMa-
Fourier network. The similarity of the FID for the LaMa-
Fourier and LaMa-Wavelet networks indicates that the
improvement in image inpainting by the LaMa-Wavelet
can only be achieved through long training.

At the second stage of the experiment, the images of
testing set are inpainted using the LaMa-Fourier and
LaMa-Wavelet networks. Then the inpainted images were
compared with the original images. For this, three
separate categories of masks were formed, namely,
narrow, medium, and large, covering 15%, 40%, 65% of
the image area, respectively. Each of these mask
categories represented a different level of image
inpainting complexity. The test set included 2000 images
from the Places2 dataset [23]. One mask from each
category was generated for each image. After element-by-
element multiplication of images on masks, the inpainting
was performed using LaMa-Fourier and LaMa-Wavelet
networks.

To compare the inpainted images with the original
images, the FID was first calculated. It has been observed
that the FID evaluates the overall similarity of the
generated and original images, but does not focus on the
recovering of edges or details. To solve this problem, two
additional indexes, PSNR and SSIM, are applied [20].

PSNR compares the original and reconstructed image
in terms of differences between them at the pixel level. In
the context of image inpainting, PSNR indicates how well
edges and fine details are reconstructed. It is estimated as
the ratio between the maximum possible power of an
original image and the MSE between original and
inpainted images if minimum intensity level supposes to
be 0 [20]:

PSNR = 10logo((L — 1)*/MSE).

SSIM provides a perceptually relevant estimation of
image quality considering the differences in image
structure, texture, and contrast. This is critical for
preserving the natural appearance of image edges and
textures. The SSIM is calculated based on the luminance
term, contrast term and structural or correlation term as

[20]:
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SSIM(v, w)=I (v, w)* ¢ (v, w)? s (v, w)',
[ (v, w) = @2m,m,,+ C)l(m,” + m*+C)),
¢ (v, w) = (20,06, +C>)/(6,>+ 6,2+ C»),
s (x’ J’):(va +C3)/(Gv Ow +C3)7

If o=P=y=1, then the index is in normalized scale with
values between 0 to 1.

The PSNR and SSIM allowed a more detailed
estimation of the inpainting performance, especially in
terms of edge quality and structural integrity.

At the third stage of the experiment, the results of the
inpainting of specific images by LaMa-Fourier and
LaMa-Wavelet networks were compared. 3—5 images
were selected with different complexity of background,
namely, uniform background, background with structural
texture (with repeating patterns) [26], complex
background with repeating objects. To demonstrate how
well the networks performed in texture, color, and edge
recovery, each image was processed using the original
LaMa-Fourier and LaMa-Wavelet network trained on 212
epochs. Inpainted images were evaluated visually and
using PSNR and SSIM.

5 RESULTS

At the first stage of the experiment, the results of
training of LaMa-Fourier and LaMa-Wavelet networks
were evaluated using the FID score on training and
validation sets. In addition, the training epoch time and
image inpainting time were estimated. Image inpainting
time is averaged for a set of 25 images of size 1024x1024
pixels (Table 1).

Table 1 — The LaMa-Fourier and LaMa-Wavelet training results

CNN FID on FID on Epoch Image
training validatio time, inpain-
set n set minutes ting time,
seconds
LaMa-Fourier 8.2 25 40 2.2
LaMa-Wavelet 9.2 32 150 6.6
At the second stage of the experiment, the

dependencies of the FID, PSNR, and SSIM from the size
of the missing areas were researched (Table 2).

The PSNR of the CelebA-HQ [27] and Plases2 [23]
datasets images inpainted by the methods known from the
literature are given in Table 3 [28]. Note, however, that
the results of Table 3 were obtained under significantly
different experimental conditions and are used as
collating data.
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Table 2 — The LaMa-Fourier and LaMa-Wavelet testing results

CNN Epochs | FID | PSNR | SSIM
Narrow masks

LaMa-Fourier 128 21.8 25.68 0.7811

LaMa-Wavelet 128 24.7 26.58 0.8066

LaMa-Wavelet 212 21.3 26.82 0.8088
Medium masks

LaMa-Fourier 128 243 25.04 0.8232

LaMa-Wavelet 128 31.1 25.88 0.8367

LaMa-Wavelet 212 24.8 26.19 0.8394
Large masks

LaMa-Fourier 128 32.7 22.16 0.7857

LaMa-Wavelet 128 39.7 22.96 0.7973

LaMa-Wavelet 212 32.1 23.48 0.7999

Table 3 — The PSNR of images from the CelebA-HQ [27] and
Plases2 [23] datasets inpainted by the methods known from the
literature [28]

CNN, reference, CelebA-HQ image-s 256x256 pixels
publication year Narrow Medium Large
masks masks masks
LaMa-Fourier [4], 2021 22.7 34.1 27.8
CoModGAN [14], 2021 35.9 48.4 64.4
DeepFill v2 [13], 2019 37.0 453 43.0
EdgeConnect [12], 2019 29.2 40.5 34.7
Places images 512x512 pixels
LaMa-Fourier [4], 2021 12.7 11.7 12.0
CoModGAN [14], 2021 16.3 12.4 10.4
DeepFill v2 [13], 2019 17.9 18.3 22.1
EdgeConnect [12], 2019 18.9 21.9 30.5

At the third stage of the experiment, the results of the
inpainting of specific images by the LaMa-Fourier and
LaMa-Wavelet networks were obtained (Fig. 4-9). The
corresponding values of the SSIM and PSNR are shown
in Table 4.

Table 4 — The PSNR and SSIM of specific images inpainted by
LaMa-Fourier and LaMa-Wavelet

Image LaMa-Fourier LaMa-Wavelet
PSNR SSIM PSNR SSIM
Fig. 4,a 35.04 0.90 35.30 0.90
Fig. 4,d 34.58 0.87 35.82 0.89
Fig. 4, g 24.54 0.90 35.10 0.90
Fig. 4, 38.20 0.98 40.01 0.99
Fig. 4, m 2291 0.92 22.52 0.91
Fig. 4, p 32.88 0.97 33.19 0.96
Fig. 5,a 28.84 0.96 28.96 0.95
Fig. 5,d 24.89 0.94 24.78 0.93
Fig. 6,a 23.67 0.88 22.96 0.88
Fig. 6,d 19.43 0.78 22.07 0.72
Fig.7,a 20.39 0.88 22.39 0.87
Fig. 7,d 19.59 0.88 19.47 0.87
Fig. 8 13.61 0.84 15.03 0.85
6 DISCUSSIONS

Analysing Table 1 it should be noted the follow. The
LaMa-Wavelet network requires more time for training
and image inpainting after training. Namely, the LaMa-
Wavelet network requires 3.75 times more time per
training epoch as compared with LaMa-Fourier. After
training it takes 3 times longer to inpaint one image with
LaMa-Wavelet than with LaMa-Fourier network. It is
noticed that a significant part of the training time is spent
on calculating the wavelet transform.
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r
Figure 4 — Images with random masks: a, d, g, j, m, p — original image and mask; b, ¢, h, k, n, ¢ — image inpainted with LaMa-
Fourier; ¢, f, 1, 1, o, r — image inpainted with LaMa-Wavelet

d e f
Figure 5 — Images with homogeneous background: a, d — original image and mask; b, e — image inpainted with LaMa-Fourier; c, f —
image inpainted with LaMa-Wavelet
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Figure 6 — Images with periodical background: a, d — original image and mask; b, e — image inpainted with LaMa-Fourier; c, f —
image inpainted with LaMa-Wavelet

d
Figure 7 — Images with complex background: a, d — original image and mask; b, e — image inpainted with LaMa-Fourier; c, f — image

inpainted with LaMa-Wavelet
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S

Figure 8 — Image with generation artifacts: a — original image and mask; b — image inpainted with LaMa-Fourier; ¢ —
image inpainted with LaMa-Wavelet

The LaMa-Wavelet network is worse in terms of the
training quality than LaMa-Fourier. Specifically, the FID
on training and validation sets of images has increased by
12% and 28% respectively.

The analysis of the Table 2 showed that FID values
obtained by the LaMa-Fourier and LaMa-Wavelet
networks on test set of images are similar for narrow,
medium, and large masks. Thus LaMa-Wavelet shows
higher generalization ability than LaMa-Fourier. The
PSNR of images inpainted using the LaMa-Wavelet
exceeds the results obtained using the LaMa-Fourier
network for narrow and medium masks in average by 1.15
dB (4.5%), for large masks in average by 1.3 dB (6%).
The LaMa-Wavelet can enhance SSIM in average by 2—
4% depending on a mask size.

In addition, it was noted that the quality improvement
of inpainted images is largely determined by their content
and properties. Thus, for structural textures [26] or
objects against the background of such textures, the
PSNR of images inpainted using the LaMa-Wavelet
exceeds the results obtained using the LaMa-Fourier by
1.2-27 dB (3.5-14%). For objects on uniform
background, the PSNR of images reconstructed with the
LaMa-Wavelet is improved by 1.8-9.6 dB (9.841%)
compared to the results obtained using the LaMa-Fourier.
The improvement range of SSIM is less. This may mean
that the LaMa-Wavelet is more capable of restoring fine
details and edges of objects than inpainted the image
structure.

Analysing of the LaMa-Wavelet network performance
for different mask sizes it was noticed that there is a
tendency for higher quality of inpainting of images with a
low number of details and straight lines, especially with
narrow masks. The inpainting of complex textures such as
grass, leaves, branches or large numbers of people is
difficult for both LaMa-Fourier and LaMa-Wavelet
networks. The deformation of the image color in the large
filled regions appears more frequently if the LaMa-
Wavelet network has been used.

In the case of narrow masks, both networks show
similar quality. However the LaMa-Wavelet shows a
significant improvement in the inpainting of large missing
areas relative to the LaMa-Fourier.
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Let compares the results of the inpainting of specific
images by the LaMa-Fourier and LaMa-Wavelet
networks. At first several images with randomly selected
narrow and medium masks were visually analyzed (Fig.
4). It was once again confirmed that, in general, LaMa-
Wavelet shows better texture inpainting than LaMa-
Fourier, but when the size of the masks increases, color
deformation begins to appear. Also, the LaMa-Wavelet
combines parallel lines less if they are close, and better
preserves the bends of curved lines.

For images with a uniform background (Fig. 5) the
numeric estimates are similar. There is a more
pronounced background color defect at the place of the
tomato and cup if the LaMa-Wavelet is applied.

The repeating background in the images (Fig. 6) is
well reproduced by both networks. But when using larger
masks, you can see, both visually and numerically, that
LaMa-Wavelet generates better edges of texture elements,
but loses in the generation of image color.

As the complexity of the image background increases,
it can be seen that the LaMa-Wavelet network begins to
lack context for the correct estimation of the expected
generation (Fig. 7). In this regard, the quality of the edges
of the inpainted regions reduces. However, under
conditions of high complexity of the texture, the
possibility of visual assessment is lost, since objects
become, in principle, difficult to distinguish even for a
person. Also, in such a scenario, the ability of the LaMa-
Wavelet network to continue repeating textures becomes
more of a problem than an advantage. This network starts
mixing different textures in an attempt to continue them.
This is seen in the example in Figure 8, where large
duplicate objects need to be removed from an image.
Instead of removing objects, the LaMa-Wavelet network
generates an average between the background and the
original texture in an attempt to restore the texture. It can
also be seen that the LaMa-Wavelet network is more seek
to forced inpainting of textures than the LaMa-Fourier.

Thus, analysis of specific image inpainting confirmed
the practical effectiveness of LaMa-Wavelet network as
compared with LaMa-Fourier. In particular, when
removing objects on a homogeneous background, both
networks show similar results. However, on complex
backgrounds with repeating elements, the LaMa-Wavelet
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is often more effective in restoring textures, despite some
cases of texture mixing.

CONCLUSIONS

The actual scientific and applied problem of an
inpainting of the fine details and object edges has been
solved when missing regions of images are filled by
CNN.

The scientific novelty is the proposed method of
natural image inpainting with LaMa-Wavelet network.
Due to applying wavelet transform, the image inpainting
with large masks based on the LaMa network is
improved. Specifically, the quality of reconstruction of
image edges and fine details is increased.

The practical significance of obtained results is that
the software realizing the proposed LaMa-Wavelet
network is developed, as well as experiments to research
its image inpainting performance are conducted. The
experimental results allow to recommend the proposed
LaMa-Wavelet for use in practice, as well as to determine
effective conditions for the application of this network.

Prospects for further research is reducing the
computing time by using fast transforms. It is also
nessesary to identify classes of images for the inpainting
of which it is advisable to use LaMa-Wavelet.
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LAMA-WAVELET: PEKOHCTPYKIISI 30BPA’KEHB 3 BUCOKOIO SIKICTIO BZIHOBJIEHHSA JIETAJIEH I KPAIB
OB’€EKTIB

Kouonouka JI. O. — cryzent [ncruryty koMm’'1oTepHux cucteM HamioHansHoro yHiBepcureTy «Onecbka nomitexsika», Oneca,
VYkpaiHa.

HoasikoBa M. B. — 51-p TexH. Hayk, JOLeEHT, npodecop Kadenpu NpHKIagHOl MaTeMaTHUKH Ta iH(GOpMAaIiMHUX TEXHOJOTIH
HanionanbHoro yHiBepcutety «Onecbka nojitextikay, Ozneca, Ykpaina.

AHOTANLIA

AKTyalbHicTB. PO3risiHY TO TIpO6JIeMy peKOHCTPYKIii 300paXkeHb B CHCTEMaX KOMII IOTEPHOI rpadiky Ta KOMIT FOTEPHOTO 30Dy .
[IpeameroM mocTiTKeHHS € 3rOPTKOBI HEMPOHHI MEPEsKi IITMOOKOT0 HAaBUAHHS AJISl PEKOHCTPYKIIT 300paskeHb.

Meta po6oru. [lokpameHHs SKOCTI PEKOHCTPYHOBaHHX 300pakeHb B CHCTEMaxX KOMII'IOTEPHOTO 30pYy Ta KOMIT FOTEPHOL
rpadiky IUIIXOM 3aCTOCYBaHHS BEHBIICT-TIEPETBOPEHHS B apXiTeKTypi HelpoHHOI Mepexi LaMa-Fourier.

Meton. ba3oa mepexa LaMa-Fourier okpemo o6po0isie T100ambHUM Ta JOKATbHHNH KOHTEKCT 300paxxeHHS. [IpormoHyeTscst
BIOCKOHAJIUTHU JUIsl Li€l Mepexi 6JIOK 00poOKH TI100aIbHOTO KOHTEKCTY 300pakeHHs, a came OJIOK CHEKTPAIIbHOTO IepPEeTBOPEHHSI.
st uporo 3amicts Fourier Unit Structure BukopuctoByeThest po3pobienuii asropamu Simple Wavelet Convolution Block, y sikomy
CIOYaTKy BHKOHYEThCS TPUBHMIpHE BEHBIET-IIEPETBOPEHHS 300pakeHHsT HAa ABOX piBHAX. OTpuMaHi KoedillieHTH po30HBaIOTHCS
Tak, IMI0 KOXKHA CyOronoca NPeACTaBIsIe€ OKpeMy O3HaKy 300pakeHHs. 3rOpTKOBHM Inap, MakeTHa HopMmamizais Ta (yHKIisS
aktuBalii ReLU mocnimoBHO 3acTOCOBYIOTBCSA 10 CyOmosioc Koe(illieHTiB Ha KOXKHOMY piBHI BelBieT-mepeTBOpeHHs. OTprMaHi
cyOnonocu BeWBIeT-KOSQIi€HTIB KOHKATCHYIOTBCS 1 10 HUX 3aCTOCOBYETHCS 3BOPOTHE BEHBIICT-NIEPETBOPEHHS, PE3YJIbTAT SIKOTO
mepefacThess Ha BUXiA OJoKy. Oxpema o0poOka BeiBIEeT-KOC(IIIEHTIB HA Pi3HUX PIBHAX 3MEHIIyE€ OOYMCIIOBAIBHY CKIAAHICTD,
30epirarous NpH NEOMY BIUIMB KOHTEKCTY KOXKHOTO PiBHS Ha PEeKOHCTpPYKIil0 300paxkeHHs. OTpuMaHy HEHPOHHY Mepexy Ha3BaHO
LaMa-Wavelet. IToxasamku FID, PSNR, SSIM Ta Bi3yanbHui aHamiz OyJM BHKOPHCTAaHI Ui OIIHKH SIKOCTI 300pa’keHB,
pexoHcTpyioBaHuX Mepexero LaMa-Wavelet.

PesyabTaTn. 3ampornoHoBaHy Mepexy LaMa-Wavelet mporpaMHO peasli3oBaHO Ta JOCHTIPKECHO JUIsl BHUPINICHHS MPOOIeMHU
pexoHcTpyKLii 300paxenb. PSNR 300paxkeHb, BiIHOBIGHHX 3a goromoror Mepexi LaMa-Wavelet, nepeBuiye pesynbTaTi,
oTpuMaHi 3a ponomororo Mepexi LaMa-Fourier s manux i cepennix Macok y cepennbomy Ha 4,5%, 171 BEJIMKHX MAacok — y
cepeqaboMy Ha 6%. 3actocyBamHs LaMa-Wavelet moxe 30impmmta SSIM Ha 2-4% 3amexHO Big po3Mipy Macku. Ale
PEKOHCTPYKIisI OJHOTO 300paxkeHHs 3a Jonomoroio LaMa-Wavelet 3aiimae B 3 pa3u Oiniblie gacy, HiXk 3a JOIOMOroro Mepexi LaMa-
Fourier. AHani3 KOHKPETHHX 300pakeHb JEMOHCTPYE, O OOHMIBI MEPEXKi MOKA3YIOTh CXOXKI Pe3yIbTaTH PEKOHCTPYKIIIT OTHOPiTHOTO
¢ony. Ha cxnamaux ¢oHax i3 moBroproBaHuMu enemeHTamu LaMa-Wavelet uacto ehexTHBHIINIE BiTHOBIIIOE TEKCTYPH.

BucnoBku. Otpumana Mepeska LaMa-Wavelet 103Bosisie TIOKPAIIMTH BiTHOBJICHHS BEJIHKHX 00JacTEH 300pakeHb 32 PaxyHOK
3aCTOCYBaHHS BEHBIICT-TIEPETBOPEHHS B apXiTeKTypi Mepexi LaMa. A came, miIBHILY€ThCS IKICTh PEKOHCTPYKLIT KpaiB 300pakeHHs
Ta ApiOHMX JeTajei.

KJIIOYOBI CJIOBA: pexoHCTpyKLisi 300paXkeHHs, BEHBICT-IIepeTBOpeHHs, mepexka LaMa, BeiiBner JloGeuri, mouaTtkoBa
Bincrans Pperre, BeHBIET-3rOpTKA.

JITEPATYPA Transactions on Cybernetics. — 2023. — Vol. 53, Ne 8. —

1. Region-wise generative adversarial image inpainting for P. 5226-5239. DOI: 10.1109/TCYB.2022.3194149.
large missing areas / [Y. Ma, X. Liu, S. Bai et al.] / IEEE 2. Tlerpos K. E. BunaneHHs KOMIOHEHTIB JIOIIY 3 OJUHOYHHX
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