
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

UDC 004.94

PROACTIVE HORIZONTAL SCALING METHOD
FOR KUBERNETES

Rolik O. I. – Dr. Sc., Professor, Head of the Department of Information Systems and Technologies, National Tech-
nical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.

Omelchenko V. V. – Postgraduate student of the Department of Information Systems and Technologies, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.

ABSTRACT
Context. The problem of minimizing redundant resource reservation while maintaining QoS at an agreed level is crucial for

modern information systems. Modern information systems can include a large number of applications, each of which uses computing
resources and has its own unique features, which require a high level of automation to increase the efficiency of computing resource
management processes.

Objective. The purpose of this paper is to ensure the quality of IT services at an agreed level in the face of significant dynamics
of user requests by developing and using a method of proactive automatic application scaling in Kubernetes.

Method. This paper proposes a proactive horizontal scaling method based on the Prophet time series prediction algorithm. Pro-
metheus metrics storage is used as a data source for training and validating forecasting models. Based on the historical metrics, a
model is trained to predict the future utilization of computation resources using Prophet. The obtained time series is validated and
used to calculate the required number of application replicas, considering deployment delays.

Results. The experiments have shown the effectiveness of the proposed proactive automated application scaling method in com-
parison with existing solutions based on the reactive approach in the selected scenarios. This method made it possible to reduce the
reservation of computing resources by 47% without loss of service quality compared to the configuration without scaling.

Conclusions. A method for automating the horizontal scaling of applications in Kubernetes is proposed. Although the experi-
ments have shown the effectiveness of this solution, this method can be significantly improved. In particular, it is necessary to con-
sider the possibility of integrating a reactive component for atypical load patterns.

KEYWORDS: dynamic resource provisioning, Kubernetes, autoscaling, horizontal scaling, proactive scaling, Prophet, Horizon-
tal Pod Autoscaler.

ABBREVIATIONS
CPU is central processor unit;
HPA is horizontal pod autoscaler;
HTTP is hypertext transfer protocol;
LSTM is namely long-term short-term memory;
MAPE is mean average percentage error;
QoS is quality of service;
RAM is random access memory.

NOMENCLATURE
Cx is a x-th type of computing resource, such as CPU

time or RAM;
RCx is a deployment request for computing resource

Cx;

IMAX(t) is a a function of the number of deployment in-
stances with regard to all requested computational re-
sources;

ICx(t) is a a function of the number of deployment in-
stances in the context of the computing resource Cx;

WCx(t) is a a function of the total workload (actual us-
age) of the resource Cx;

DUP is an upscaling delay for a deployment;
DDOWN is a downscaling delay for a deployment.

INTRODUCTION
The emergence and use of orchestrators such as

Kubernetes, Nomad, EC2, and others for managing IT
infrastructure resources has dramatically simplified many
aspects of deploying and managing computing resources
in cloud environments. These tools take developers to the
next level of abstraction with new challenges, including
compute resource management. Under-provisioning of

computing resources can lead to a deterioration in QoS.
Meanwhile, over-provisioning wastes both computing and
financial resources that could be used to solve other com-
puting tasks. Balancing these two aspects is the task of
dynamic resource allocation [1]. Modern information sys-
tems can include thousands of different applications, each
with its own unique features and resource requirements,
which makes this task much more difficult. The reactive
scaling approach, when resources are added after QoS
constraints are violated, is an essential part of any IT in-
frastructure management system. Nevertheless, the reac-
tive approach has a number of disadvantages associated
with the irrational use of computing resources and sys-
tematic violation of QoS requirements. These problems
are solved by using proactive management methods, when
the amounts of computing resources required for the op-
eration of applications in accordance with the defined
QoS constraints are managed in advance, taking into ac-
count the dynamics of changes in the values of QoS indi-
cators [2].

The object of study is the management of computing
resources in information systems to maintain the quality
of services provided by applications deployed in the IT
infrastructure at an agreed level.

The subject of study is a method of proactive hori-
zontal scaling of computing resources allocated to appli-
cations.

The purpose of the work is to develop a method and
technical solution for automating proactive horizontal
scaling in the Kubernetes environment to maintain QoS at
an agreed level. This solution should be universal,

221

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

namely, without the need for significant manual configu-
ration, without the requirement for significant prior
knowledge of the features of the applications and their
resource requirements, and with the ability to adapt to the
features of each application in an automatic mode.

1 PROBLEM STATEMENT
Suppose that for some application, the RCx requests for

computing resources are set to constant values. This ap-
plication can be horizontally scalable, and the number of
application instances is determined by the function I(t).

Then, to minimize the use of the computing resource
Cx while maintaining a given level of service quality, the
following equality must be satisfied at any time t:

()
() ().x

x
x

C
C

C

W t
I t ceil

R

Since for the application to work correctly, it must be
provided with all types of necessary computing resources,
we obtain the following equality:

()
() (max : 1...).x

x

C
MAX

C

W t
I t ceil x X

R

In real-world IT infrastructures, there is always a de-
lay between determining the need to allocate additional
resources after a decrease in QoS and the actual allocation
of additional computing resources or application in-
stances. Accordingly, to ensure the correct operation of
the application and, therefore, ensure the specified QoS
indicators, it is necessary to take into account this delay in
Dup scaling up. However, when scaling down, resources
should not be reduced in advance:

()

max : 1.. , () (),

() ().
()

max : 1.. , () ()

x

x x
x

x

x x
x

C up
C C up

C
MAX

C down
C C down

C

W t D
x X W t W t D

R
I t ceil

W t D
x X W t W t D

R

 Accordingly, to obtain accurate values for the number

of instances, it is necessary to obtain accurate predictions
for the workload function WCx(t), which includes collect-
ing metrics, aggregating and processing them, evaluating
the accuracy of the resulting prediction models, and se-
lecting the best one. In addition, it is necessary to decide
when and how to apply the obtained IMAX(t) values.

2 REVIEW OF THE LITERATURE

Proactive scaling methods can be divided into the fol-
lowing groups: threshold-based rules, reinforcement
learning, queuing theory, control theory, and time series
analysis [3]. The methods discussed in this paper are
based on time series analysis, so this section compares the
methods of this group.

One of the concepts for predictive scaling is based on
finding the most similar load pattern in the past and ex-
trapolating it to the current state. For example, in the work
[4], the authors propose a solution in which the historical
time series is analyzed for patterns and, based on them,
the most similar load pattern to the current one is searched

for. The identified patterns may differ in scale, but the
correlation between the elements of the identified pattern
and the current pattern should be similar. The resulting
patterns are interpolated using weighted interpolation.
The most similar patterns will have the highest weight in
the resulting time series. The main idea is to find the most
similar load situation in the past and adapt it to the current
load. Among the advantages of this method is the ability
to predict non-trivial time series, in which there is no sea-
sonality, but typical load segments can occur at random
moments. The paper also compares it with other methods
such as RightScale, linear regression, and autoregression.
On different data, the accuracy rates were both signifi-
cantly better than the alternatives and significantly worse,
depending on the testing application and experimental
conditions.

The next paper considers predictive scaling based on
ARMA/ARIMA [5]. The authors propose an approach in
which there are several levels of confidence that are se-
lected depending on the application features. The authors
also evaluate the accuracy of the resulting model and as-
sess the impact on service quality indicators. In particular,
the best obtained accuracy of MAPE is 0.09, which is
approximately equal to the accuracy level of such algo-
rithms as Prophet [6] and GreyKite [7]. In addition, in the
worst-case scenario, the share of rejected requests was
5%, which is acceptable. The data used to evaluate the
accuracy were taken from open sources, namely historical
load data for Wikipedia. It is worth noting that the histori-
cal data does not contain complex seasonality, so the
evaluation is based on a simple time series. The article
also notes that finding the coefficients p and q, which
specify the order of the ARIMA model, requires quite
significant computing resources for this approach.

In the paper [8], the authors proposed a two-
component PRESS design for predictive scaling. The first
component, signature-driven, is used for load patterns that
contain examples of repeating loads. Fast Fourier Trans-
form is used to process this type of pattern, and Pearson’s
criterion is used to compare the similarity of current and
past examples. If the criterion does not provide the re-
quired similarity index, the second component, state-
driven, is used. This component is based on Markov
chains, where all possible variants are evenly distributed
among a given number of baskets. After that, a graph of
possible states and a probability matrix are built. The au-
thors suggest that this solution can be easily scaled and is
suitable for massive systems.

In [9], neural networks, namely LSTM are used to
manage the quality of services. LSTM networks are a
particular type of recurrent neural networks capable of
learning long-term dependencies. The main feature of
LSTM networks is their ability to find and store informa-
tion over long sequences or periods of time, which makes
LSTM networks good at solving time series forecasting
tasks. In addition, this algorithm is supplemented with
Reinforcement Learning to obtain more accurate predic-
tions. The proposed solution is tested on NASA datasets
and shows better accuracy compared to linear approaches
and LSTM-based approaches without augmentation.

The solution proposed in this paper does not require
significant computing resources for its operation, which

222

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

allows it to handle a large number of loads in a cluster. It
also supports working with time series containing com-
plex seasonality, trends, and anomalies. The developed
solution is integrated into the Kubernetes ecosystem,
which allows to test its effectiveness in a real environ-
ment and compare it with existing solutions.

3 MATERIALS AND METHODS
Modern IT infrastructure management systems use

various platforms for orchestrating containerized applica-
tions. The most common orchestration platform is Kuber-
netes, which provides tools for flexible management of
computing resources. A Kubernetes cluster operates on
nodes, each of which has its own set amount of comput-
ing resources {C1, C2, …, Cn}, including CPU time and
memory. Applications in the form of deployments contain
information about requests {RC1, RC2, …, RCx} for the re-
sources required for their correct operation. The specifica-
tion of each deployment also contains the required num-
ber of application instances. Kubernetes places applica-
tion instances in the form of pods on the cluster nodes in
such a way that the sum of all requests of the placed in-
stances does not exceed the total volume of the nodes.
This ensures that each instance of the application will
have enough resources to operate and ensure the specified
QoS indicators. Suppose an instance uses more of a spe-
cific Cx resource than specified in the RCx specification. In
that case, it will either crash or be artificially slowed
down, depending on the type of resource.

Horizontal scaling is the adaptation of the number of
deployment instances depending on the current demand
for computing resources. By increasing the number of
instances, the overall capacity to process web requests or
tasks from the queue increases. Adding a new instance of
an application can require significant Dup time, which
includes network latency, image look-up and download-
ing, scaling the Kubernetes cluster itself, and application
initialization. A proactive approach to QoS management,
with predictions for the workload functions WСx(t), has
the ability to scale deployments in advance to maintain
the required QoS level.

Without losing the meaning of the research and to
simplify the experiments and presentation of the results,
this paper considers only the management of the CPU
time of computing resources. In general, this solution has
the ability to work with any metric, such as memory and
network bandwidth.

Figure 1 shows a structural simplified diagram of the
integration of the proposed solution into a Kubernetes
cluster. This diagram shows a user sending a request to an
application hosted in the cluster. A header-based network
proxy redirects the request to the target application’s bal-
ancer, which distributes all incoming requests among the
deployment instances. When a new application instance is
added, this balancer ensures that it is included in the load
balancing processing without additional network settings.

Figure 1 – Structure diagram of integration in Kubernetes

Processing a request requires the use of computing re-
sources, such as CPU time, memory, or disk. At regular
intervals, a monitoring system in Kubernetes, such as
Prometheus, collects data on the total usage of computing
resources from the pods. After aggregation, this informa-
tion is stored in a special storage – metrics storage – for
time series and is available for analysis.

The solution proposed in this paper relies on Prome-
theus as a source of historical data. Prometheus is a de
facto standard in Kubernetes and offers long-term data
storage and a specialized language for querying and ag-
gregating data.

Having historical data about the application workload,
it is necessary to calculate future values of the workload
in order to set the required number of application replicas.
Therefore, a crucial part of the proposed solution is a pre-
diction algorithm. The modern generation of prediction
algorithms, such as Prophet, Greykite, and TBATS, are
accurate and capable of detecting seasonality, trends, and
anomalies in an automatic mode. For this work, Prophet

223

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

was chosen, but any other method from the list can be
used in the future.

Prophet is a time series prediction library developed
by Facebook [7]. The main goal of the development was
to create a simple, transparent, and understandable model
generation algorithm that would simplify getting reliable
predictions quickly. Prophet provides convenient tools for
analyzing time-series and cross-validating the resulting
model and has a user-friendly API.

The Forecasting module is responsible for the work
with predictions and provides a unified API regardless of
which prediction algorithms are used. This module re-
quires the history of computing resource usage for previ-
ous periods of operation as input. In the current imple-
mentation, historical data is divided into training and
validation data. On the training data, a set of models is
trained, each with different input parameters. Then, the
accuracy of the predictions is checked on the validation
data. First, this allows us to choose the model with the
best parameters and, accordingly, with the best accuracy.
Secondly, this approach allows us to assess the accuracy
of the final model as a whole and the appropriateness of
its application.

When the proposed solution is initialized to automate
the scaling of the target application, there may be no pre-
vious usage metrics. In this case, the proposed solution
sets the number of defaultReplicas replicas set by the
administrator until a reliable prediction can be obtained.
Reliability of resource utilization prediction is calculated
using the mean absolute percentage error. If the model
error is less than the confidence parameter, then the pro-
posed solution, relying on the obtained values, sets the
calculated optimal number of replicas by changing the
replicas field in the Kubernetes deployment manifest [10].

Historical data is obtained through requests to the
Prometheus server, which is the data module’s responsi-
bility. To get historical CPU usage metrics, the query of
the form sum(rate(container_cpu_usage_total
{container!=""}[60s])) by (pod) is used. To get
the current specified requests, the Kubernetes API is used,
namely the spec.container[0].requests.cpu field
in the deployment manifest. The selected Prophet predic-
tion algorithm is capable of automatically detecting sea-
sonality, trends, and anomalies in time series, so it does
not require additional configuration. However, the admin-
istrator can specify base seasonalities with dedicated con-
figuration parameters to improve the accuracy of predic-
tions. The model is trained and evaluated with a specified
trainEvaluatePeriod period. When the model’s accu-
racy drops, this solution sets the number of replicas to
defaultReplicas until the required accuracy is ob-
tained. Internal or external load anomalies, incorrect op-
eration of the monitoring subsystem, or network problems
in the cluster can cause accuracy drops. This approach
ensures the correct operation of the application until it is
possible to get accurate predictions of resource utilization
again.

When designing a horizontal scaling solution, it is
necessary to take into account that applications need some
time to initialize. For example, in the case of a Redis da-
tabase, the application needs to read the last snapshot into

memory and establish connections to other cluster com-
ponents. In addition, after the command to increase the
number of application replicas, it takes some time to ini-
tialize the pod, namely, to deploy it on an available node,
download the image, and connect the volumes. Therefore,
the proposed solution has an additional parameter, ap-
plicationTimeToStart, to accurately calculate the
moment when it is necessary to increase the number of
application replicas. In addition, the process of determin-
ing the applicationTimeToStart parameter for an
application in a cluster can be automated.

Accordingly, the proposed solution checks the need to
scale the application at short intervals. When scaling up,
the Applier Module component checks the predicted utili-
zation values at the currentTime + applicationTi-
meToStart time to set the required number of replicas in
advance and not affect the QoS performance. When scal-
ing down, only the value at the current time is checked so
as not to reduce the number of replicas ahead of time.
Therefore, we have a simplified formula for calculating
the required number of replicas based on the forecast –
max(forecastedUsage[currentTime + time-
ToStart], actualUsage[currentTime]).

This solution is placed in a Kubernetes cluster as a de-
ployment and has direct access to the Prometheus server
and the Kubernetes API using the Data Module.

4 EXPERIMENTS
The proposed solution is compared with two other

configurations for resource management.
The first configuration uses HPA to compare a proac-

tive and reactive approach. In order for the comparison to
be valid, it is necessary to minimize the delays related to
collecting system metrics.

The second configuration is to provide the test appli-
cation with the required amount of resources and compare
whether the developed solution affects the QoS indicators.

To test the resulting solution and compare it with
other configurations, we use a Kubernetes cluster based
on minikube [11]. This cluster includes a single node that
has six processor cores with a clock frequency of 3.6GHz
and 16 gigabytes of RAM. Any network communication
does not go beyond a single machine. This cluster con-
tains an installed Prometheus for monitoring using the
kube-prometheus stack.

A scenario with a periodic load was chosen for testing.
The load period is 300 seconds. The total minimum load
is 100 millicores or 100m, the maximum is 550m.

Load testing is performed using the specialized locust
utility [12] for sending HTTP requests, an instance of
which is also deployed in the cluster. The load pattern of
requests consists of periodic oscillations. The oscillation
period is 300s, the minimum request frequency is ten re-
quests per second, and the maximum is 50.

The selected test application can be scaled both hori-
zontally and vertically. The test application is a web
server that performs some CPU-intensive work for each
request. The number of application replicas or the amount
of allocated resources does not affect the application’s
performance. The application is initialized for a specified

224

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

time before becoming available for requests and before
the readiness probe is considered successful. In our ex-
periments, this time is 5s.

In this work, scaling is performed only for the CPU
resource. The request for this resource for the test applica-
tion is 200m. If this value is exceeded, trotting will be
applied to the application, which may affect the test re-
sults. A limit of 250m was also set for this resource. The
initial number of replicas is five.

HPA is a built-in solution for automating horizontal
scaling in Kubernetes. HPA is a representative of the re-
active approach, so it does not contain any prediction al-
gorithms. The concept is to maintain the value of the av-
erage load per instance – targetAverageUtilization
– set by the administrator by adjusting the number of rep-
licas. The main difference is that the decision to scale is
made based on the current values of computing resource
utilization.

Since the reactive approach is highly dependent on de-
lays in obtaining current data, it is necessary to minimize
this impact on the results of the experiment. HPA uses
metrics-server as a data source, so the resolution setting
for metrics-server is set to the lowest possible value – 15s.
Also, the sync-period, cpu-initialization-period, initial-
readiness-delay settings were set to the minimum value to
speed up the HPA’s response time to changes. In addition,
the limits for downscaling and upscaling rates were re-
moved in the behavior scaling policies.

5 RESULTS
Figure 2 shows the results of the test scenario without

using automatic scaling. This pair of graphs contains data
on the actual total utilization, CPU time reservation, and
the resulting request processing time. In this case, the
application has enough instances to process the received
requests. At the maximum load, the total actual CPU time
usage is 570m. At the same time, the response time at
peak times increases from 12 to 90 milliseconds, which is
actually a QoS indicator in this experiment.

Figure 2 – No-autoscaling result

Figure 3 shows the results of testing the developed so-
lution. This graph shows that the response time of the test
application is similar to the first experiment – from 12 to
90 milliseconds so that this behavior can be interpreted as

a feature of the application. Upscaling occurred ahead of
time, and downscaling occurred after the peak load was
passed.

Figure 3 – Proactive scaling results

Figure 4 shows the results of HPA testing with the

configuration described earlier. It should be noted that the
metric for reserved resources is the sum of the requests of
all pods that are in the Ready status. Therefore, in this
figure, you can see that there is a slight delay between the
increase in actual resource utilization and the resource
provided. Because of this, there is a short-term deteriora-
tion in QoS at the time of this delay, namely an increase
in response time from 90 in previous experiments to 1700
milliseconds.

Figure 4 – Reactive scaling results

Figure 5 compares response times for all three con-

figurations.

225

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

Figure 5 – Response time comparison

Table 1 shows the average response time and the 95th

and 99th percentiles. In particular, on average, all re-
sponse times for the proactive and reactive configurations
differ by a factor of 8 in favor of the former but reserve
26% more resources. Also, the response times for this
solution and management without autoscaling are similar,
but the resource reservation is reduced by 47%. It is worth
noting that this experiment’s conditions aim to demon-
strate the advantage of the proactive approach under fast-
growing load patterns, which is a significant problem with
the reactive approach.

Table 1 – Response time comparison

Response time
Approach

Average, ms 95%, ms 99%, ms

Proactive 23 87 190

No autoscaling 22 88 188

Reactive 160 770 1350

6 DISCUSSION

The results obtained indicate the efficiency and effec-
tiveness of the developed solution. However, the experi-
ments were conducted for one type of load – processor
time. Future studies should also take into account more
complex patterns, such as those containing several sea-
sonalities or trends.

Also, this solution has not been tested for another es-
sential computing resource, memory. This type has its
own specifics of resource allocation since if the set re-
quests or limits are exceeded, the application may crash.
In addition, unlike CPU time, some part of the memory is
used to store the code and initial data for work regardless
of the load. This means that the calculation of the total
amount of memory during horizontal scaling should in-
clude the constant component described above.

In the above architecture, the DUP and DDOWN delays
are set by the user, but these parameters can also be de-
termined from historical data.

Vertical and hybrid scaling can also be built based on
this architecture since the main components – data mod-
ules, prediction, and application – are similar.

CONCLUSIONS
In this paper, we have developed a solution for

predictive horizontal scaling in Kubernetes. The obtained
experimental results allow us to conclude that in the
selected scenarios, the developed architecture allows to
significantly reduce the reservation of computing
resources while maintaining a high level of QoS
compared to HPA. That is, the proposed method uses
computing resources more efficiently.

The scientific novelty. We have proposed a relatively
simple architecture for horizontal scaling in Kubernetes,
which can be easily adapted to different types of loads or
types of scaling. In addition, the use of new time series
prediction methods for processing workloads was
proposed.

The practical orientation of the study. The main
part of this research is the development of an automated
subsystem for horizontal scaling in Kubernetes. The
resulting solution is a ready-to-use component that is fully
integrated into the orchestrator ecosystem.

Prospects for further research. In future research, it
makes sense to consider integrating the proposed method
with a reactive component. In addition, this architecture
can be used for vertical and hybrid scaling.

REFERENCES

1. Rolіk O. І., Telenik S. F., Yasochka M. V. Upravlіnnya
korporativnoyu іnfrastrukturoyu. Kyiv, Naukova Dumka,
2018, 576 p.

2. Omelchenko V. V., Rolik O. I. Automation of resource
management in information systems based on reactive
vertical scaling, Adaptive systems of automatic control, 2022
Vol. 2, No. 4, pp. 65–78. DOI: 10.20535/1560-
8956.41.2022.271344.

3. Lorido-Botran T., Miguel-Alonso J., Lozano J. A. A Review
of Auto-scaling Techniques for Elastic Applications in
Cloud Environments, Journal of Grid Computing: Springer
Science and Business Media LLC, 2014,Vol. 12, No. 4,
pp. 559–592. DOI: 10.1007/s10723-014-9314-7.

4. Caron E., Desprez F., Muresa A. Pattern Matching Based
Forecast of Non-periodic Repetitive Behavior for Cloud
Clients, Journal of Grid Computing: Springer Science and
Business Media LLC, 2011, Vol. 9, No. 1, pp. 49–64. DOI:
10.1007/s10723-010-9178-4.

5. Calheiros R. N., Masoumi E., Ranjan R., Buyya R.
Workload Prediction Using ARIMA Model and Its Impact
on Cloud Applications’ QoS, IEEE Transactions on Cloud
Computing: Institute of Electrical and Electronics
Engineers, 2015, Vol. 3, No. 4, pp. 449–458. DOI:
10.1109/tcc.2014.2350475.

6. Hosseini R., Chen A., Yang K., Patra S. Greykite:
Deploying Flexible Forecasting at Scale at LinkedIn, arXiv.
2022. DOI: 10.48550/ARXIV.2207.07788.

7. Taylor S. J., Letham B. Forecasting as scale, PeerJ, 2017.
DOI: 10.48550/ARXIV.2111.15397.

8. Zhenhuan G., Xiaohui G., Wilkes J. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems, 2010
International Conference on Network and Service
Management. IEEE, 2010. DOI:
10.1109/cnsm.2010.5691343.

9. Zhong J., Duan S., Li Q. Auto-Scaling Cloud Resources
using LSTM and Reinforcement Learning to Guarantee
Service-Level Agreements and Reduce Resource Costs,

226

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 1

© Rolik O. I., Omelchenko V. V., 2024
DOI 10.15588/1607-3274-2024-1-20

Journal of Physics: Conference Series, 2019, Vol. 1237,
No. 2, pp. 22–33. DOI: 10.1088/1742-6596/1237/2/022033.

10. “Deployment Controllers” Kubernetes Documentation.
[Online]. Available: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/.

11. “Minikube Documentation,” Minikube Documentation.
[Online]. Available: https://minikube.sigs.k8s.io/docs/.

12. Locust, “Locust GitHub Repository,” GitHub. [Online].
Available: https://github.com/locustio/locust.

Received 07.12.2023.
Accepted 12.02.2024.

УДК 004.94

МЕТОД ПРОАКТИВНОГО ГОРИЗОНТАЛЬНОГО МАСШТАБУВАННЯ В KUBERNETES

Ролік О. І. – д-р техн. наук, професор, завідувач кафедри інформаційних систем та технологій, Національний технічний

університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.
Омельченко В. В. – аспірант кафедри інформаційних систем та технологій, Національний технічний університет Украї-

ни «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.

АНОТАЦІЯ
Актуальність. Інформаційні системи можуть включати велику множину додатків, кожен з яких використовує обчислю-

вальні ресурси та має свої унікальні особливості роботи, що вимагає високого рівня автоматизації задля підвищення ефек-
тивності виконання процесів управління обчислювальними ресурсами. Проблема мінімізації збиткового резервування ре-
сурсів при підтриманні показників QoS на узгодженому рівні є важливою для сучасних інформаційних систем.

Мета роботи. Метою даної роботи є забезпечення якості ІТ-сервісів на узгодженому рівні в умовах суттєвої динаміці
запитів користувачів шляхом розробки та використання методу проактивного автоматичного масштабування додатків в
Kubernetes.

Метод. В даній роботі пропонується метод проактивного горизонтального масштабування на основі алгоритму передба-
чення часових рядів Prophet. Як джерело даних пропонується використовувати сховище метрик Prometheus. На основі істо-
ричних метрик використання обчислювальних ресурсів отримується модель для передбачення майбутніх об’ємів викорис-
тання за допомогою Prophet. Отримані значення валідуються, після чого застосовуються для обрахунку необхідної кількості
реплік додатку з врахуванням затримок розгортання подів.

Результати. Проведені досліди показали ефективність запропонованого методу для проактивного автоматичного масш-
табування додатків у порівнянні з існуючими рішеннями з використанням реактивного методу в обраних сценаріях. Даний
метод дозволив зменшити резервування обчислювальних ресурсів на 47% без втрати в якості обслуговування у порівнянні з
конфігурацією без масштабування.

Висновки. Запропоновано метод автоматизації горизонтального масштабування додатків в Kubernetes. Хоча проведені
досліди показали ефективність даного рішення, даний метод може бути значно доповнений. Зокрема, необхідно розглянути
можливість інтеграції реактивної складової для нетипових шаблонів навантаження.

КЛЮЧОВІ СЛОВА: динамічне виділення ресурсів, Kubernetes, автомасштабування, горизонтальне масштабування,
проактивне масштабування, Prophet, Horizontal Pod Autoscaler.

ЛІТЕРАТУРА

1. Ролік О. І. Управління корпоративною інфраструктурою
/ О. І. Ролік, С. Ф. Теленик, М. В. Ясочка. – Київ,
Наукова Думка, 2018. – 576 с.

2. Omelchenko V. V. Automation of resource management in
information systems based on reactive vertical scaling /
V. V. Omelchenko, O. I. Rolik // Adaptive systems of
automatic control. – 2022 – Vol. 2, No. 4. – P. 65–78. DOI:
10.20535/1560-8956.41.2022.271344.

3. Lorido-Botran T. A Review of Auto-scaling Techniques for
Elastic Applications in Cloud Environments / T. Lorido-
Botran, J. Miguel-Alonso, J. A. Lozano // Journal of Grid
Computing: Springer Science and Business Media LLC. –
2014. – Vol. 12, No. 4. – P. 559–592. DOI: 10.1007/s10723-
014-9314-7.

4. Caron E. Pattern Matching Based Forecast of Non-periodic
Repetitive Behavior for Cloud Clients / E. Caron,
F. Desprez, A. Muresa // Journal of Grid Computing:
Springer Science and Business Media LLC – 2011. – Vol. 9,
No. 1. – P. 49–64. DOI: 10.1007/s10723-010-9178-4.

5. Workload Prediction Using ARIMA Model and Its Impact
on Cloud Applications’ QoS / [R. N. Calheiros, E. Masoumi,
R. Ranjan, R. Buyya] // IEEE Transactions on Cloud
Computing: Institute of Electrical and Electronics

Engineers. – 2015. – Vol. 3, No. 4. – P. 449–458. DOI:
10.1109/tcc.2014.2350475.

6. Greykite: Deploying Flexible Forecasting at Scale at
LinkedIn / [R. Hosseini, A. Chen, K. Yang, S. Patra] //
arXiv. – 2022. DOI: 10.48550/ARXIV.2207.07788.

7. Taylor S. J. Forecasting as scale / S. J. Taylor, B. Letham //
PeerJ. – 2017. DOI: 10.48550/ARXIV.2111.15397.

8. Zhenhuan G. PRESS: PRedictive Elastic ReSource Scaling
for cloud systems / G. Zhenhuan, G. Xiaohui, J. Wilkes //
2010 International Conference on Network and Service
Management. IEEE. – 2010. DOI:
10.1109/cnsm.2010.5691343.

9. Zhong J. Auto-Scaling Cloud Resources using LSTM and
Reinforcement Learning to Guarantee Service-Level
Agreements and Reduce Resource Costs / J. Zhong,
S. Duan, Q. Li // Journal of Physics: Conference Series. –
2019 – Vol. 1237, No. 2. – P. 22–33. DOI: 10.1088/1742-
6596/1237/2/022033.

10. “Deployment Controllers” Kubernetes Documentation.
[Online]. Available: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/.

11. “Minikube Documentation,” Minikube Documentation.
[Online]. Available: https://minikube.sigs.k8s.io/docs/.

12. Locust, “Locust GitHub Repository,” GitHub. [Online].
Available: https://github.com/locustio/locust.

227

