# МАТЕМАТИЧНЕ ТА КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ

# MATHEMATICAL AND COMPUTER MODELING

UDC 621.394.74:519.872

# ANALYSIS OF THE RESULTS OF SIMULATION MODELING OF THE INFORMATION SECURITY SYSTEM AGAINST UNAUTHORIZED ACCESS IN SERVICE NETWORKS

**Ismailov B. G.** – Dr. Sc., Professor of the Department of Computer Systems and Programming, National Aviation Academy, Baku, Azerbaijan.

# ABSTRACT

**Context.** An analysis of the service network shows that insufficient information security in service networks is the cause of huge losses incurred by corporations. Despite the appearance of a number of works and materials on standardization, there is currently no unified system for assessing information security in the field of information security. It should be noted that existing methods, as well as accumulated experience in this area, do not completely overcome these difficulties. This circumstance confirms that this problem has not yet been sufficiently studied and, therefore, remains relevant. The presented work is one of the steps towards creating a unified system for assessing information security in service networks.

**Objective.** Development of an algorithm and simulation model, analysis of simulation results to determine the key characteristics of the Information Security System, providing the capability for complete closure, through the security system, of all potential threat channels by ensuring control over the passage of all unauthorized access requests through defense mechanisms.

**Method.** To solve the problem, a simulation method was applied using the principles of queuing system modeling. This method makes it possible to obtain the main characteristics of the Information Security System from the unauthorized access with a limited amount of buffer memory.

**Results.** Algorithms, models, and methodology have been developed for the development of Information Security System from unauthorized access, considered as a single-phase multi-channel queuing system with a limited volume of buffer memory. The process of obtaining model results was implemented in the General Purpose Simulation System World modelling system, and comparative assessments of the main characteristics of the Information Security System were carried out for various laws of distribution of output parameters, i.e., in this case, unauthorized access requests are the simplest flows, and the service time obeys exponential, constant, and Erlang distribution laws.

**Conclusions.** The conducted experiments based on the algorithm and model confirmed the expected results when analyzing the characteristics of the Information Security System from the unauthorized access as a single-phase multi-channel queuing system with a limited waiting time for requests in the queue. These results can be used for practical construction of new or modification of existing Information Security System s in service networks of objects of various purposes. This work is one of the approaches to generalizing the problems under consideration for systems with a limited volume of buffer memory. Prospects for further research include research and development of the principles of hardware and software implementation of Information Security System in service networks.

**KEYWORDS:** unauthorized access, information security systems, information security, queuing systems, defense mechanism, simulation modeling.

# ABBREVIATIONS

BM is a Buffer Memory;

DM is a Defense Mechanism; GPSS World is a General Purpose Simulation System (latest version of GPSS); ISS is an Information Security System; QS is a Queuing System; UA is an Unauthorized Access.

#### NOMENCLATURE

AVE.C is an Average Queue Length; CUM.% is a Cumulative Percentage, expressed as a percentage of the total number of random values; © Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4 ENTRIES is a number of requests in DM;

FREQUENCY is the number of random values falling within the given interval;

 $L_a$  is an average queue length;

 $L^0$  is the permissible limit values  $L_a$ ;

M is a mathematical expectation symbol;

MEAN is a mean value of the corresponding random variable;

N is a number of DMs in ISS;

 $N_0$  is the permissible limit values N;



 $p_1$  is a probability of blocking UA requests;

 $p_2$  is a probability of UA requests bypassing protected resources;

RANGE is a lower and upper bound of the frequency interval;

RETRY is a number of requests waiting for the fulfillment of a specific condition depending on the state of this table;

STD.DEV is a Standard Deviation of the random variable:

 $T_U$  is a time of requests' stay in the system;

 $T_W$  is a time of requests' waiting in the queue;

UTIL is a Utilization Coefficient of DM;

 $\lambda$  is an intensity of various threats at the entrance of ISS:

 $\lambda_0$  is the permissible limit values  $\lambda$ ;

 $\mu$  is an intensity of servicing UA requests;

 $\mu_0$  is the permissible limit values  $\mu$ ;

 $\tau_0$  is a service delays;

 $\rho$  is a normalized intensity.

# **INTRODUCTION**

This work is dedicated to approaches in researching ISS in service networks, addressing security issues characteristic of systems with limited BM capacities. When addressing security issues in service networks, the primary determinant is the security class of the network, defining a set of DMs that constitute the hardware or software part implemented in the network. In service networks, intentional UA requests are often received alongside regular requests, targeting confidential information from illegal users, which can lead to network disruptions. It should be noted that DMs, influencing the entire information security process, may operate in constant information interaction with other elements of the ISS. The operation of DMs is described by four possible states: operational, non-operational, diagnosed, and restored. In ISS, the possibility of an undesirable event related to the reliability characteristics of DMs, leading to various types of losses, is considered a risk. However, approaches associated with the risk arising from the reliability characteristics of DMs are not considered in this work, i.e., it is assumed that all DMs are reliable.

The task related to the security problem in service networks is addressed by examining the ISS, ensuring the complete closure of all possible channels of threat manifestation through the security system. This is achieved by controlling the passage of all UA requests through DM.

The object of the study is an ISS against UA with a limited amount of BM in service networks.

The subject of the study is to determine the structure of the object, i.e. determination of the main characteristics of the system - security of information from UA with a limited amount of BM in service networks.

The goal of the work is to develop an algorithm and simulation model, analyze the results of the simulation

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4 model, allowing us to determine the main characteristics of an ISS against UA with a limited amount of BM in service networks.

# **1 PROBLEM STATEMENT**

The structure of ISS with limited BM is considered (Fig. 1), where all input streams are directed to DM for servicing. As noted earlier, the security system allows for the complete closure of all possible channels of threat manifestation by controlling the passage of all UA requests through DM. It is assumed that the examined ISS structure ensures maximum information security for service networks. This structure constitutes a hardware and software complex interacting with random event streams, which are conditioned by the actions of attackers, improper access rights distribution, unauthorized software usage, as well as errors in identification and authentication software and technical complexes.



The assumption is that the intruder (attacker, UA requests) at the system's entrance generates various threats with intensity  $\lambda$ . The ISS consists of N DMs that introduce delays  $\tau_0 = 1/\mu$  in service. If we consider the intruder block as an information source and DMs as devices operating in parallel, the mathematical model of the ISS can be regarded as a single-phase, multi-channel QS with limited BM. Taking into account the complex nature of UA request servicing (filtering UA requests, detection and classification of UA attempts, blocking or allowing UA requests to access protected resources, etc.), Poisson formulas are suggested as the probability loss function for UA requests due to system overload in [1]:

$$P(\lambda,\mu,N) = \sum_{j=N}^{\infty} \left( \rho^j / j! \right) e^{-\rho}.$$

Then, the problem of determining the optimal values of ISS characteristics can be formulated as the minimization of the mathematical expectation of the probability loss function for UA requests due to system overload:



$$M\left[\sum_{j=N}^{\infty} \left(\rho^j / j!\right) e^{-\rho}\right] \to \min$$

with  $\lambda \ge \lambda_0$ ,  $\mu \ge \mu_0$ ,  $N \ge N_0$ ,  $L_q \le L^0$ ,

where  $\rho = \lambda/\mu$ . Problems related to insufficient information security in service networks, and the task of determining optimal ISS characteristics against UA for various cases, have been considered and analytically solved in [1] and optimal values for QS characteristics with and without waiting requests in the queue have been obtained.

However, for a detailed analysis of ISS characteristics against UA across a wide range of input and output parameters, it is preferable to utilize simulation modeling methods, considering it as a single-phase, multi-channel QS both with and without waiting. Given the volume of obtained results from the simulation model, we will limit the discussion here to the analysis of the simulation model results for a QS with limited waiting requests, encompassing a broad range of input and output parameters.

Thus, based on the presented structure of the ISS, the task in this work is to analyze the results of simulation modeling of a single-phase multi-channel QS with limited BM. To achieve this, using simulation modeling, it is necessary to determine the structural and temporal characteristics of the ISS within the specified values of concurrently operating service devices (DMs).

## **2 LITERATURE REVIEW**

Analysis and accumulated experience demonstrate that insufficient information security in service networks leads to significant losses for corporations. This underscores the high importance of the information security problem. An analysis of the current state of the issue in the field of information security and the development of ISS reveals serious challenges, largely stemming from the absence of a unified system for assessing information security. Such a system would enable a quantitative evaluation during the design and operation of service networks [2–8]. It is worth noting, that due to a lack of sufficient experience in designing ISS, tasks related to its construction must be addressed at the early stages of service network design.

Currently, given the increasing number of scientific studies and companies specializing in information security in service networks, this problem is insufficiently explored [4–11, 13]. It should be noted that one of the most obvious causes of ISS violation is intentional UA requests for confidential information by illegal users, followed by undesirable manipulations with this information [1, 2,12]. The effectiveness of information security protection in service networks is primarily determined by the service network's security class [1, 2, 11, 14–16], which defines the set of DMs implemented in the network.

In [1], due to the fact that the security system fails to completely close all possible threat channels, a structure for the ISS was proposed. Unlike existing structures, in this framework, each input stream is provided with a DM for maintenance.

In the work [1], a structure for the ISS with losses is proposed, featuring both limited and unlimited BM. This structure ensures maximum information security in service networks by controlling the passage of all UA requests through DMs. In contrast to [1], an analysis of the simulation model results for ISS with limited BM is conducted here, encompassing a broad range of input and output parameters.

# **3 MATERIALS AND METHODS**

To determine the characteristics of the ISS that allow it to operate within limited resources, it is assumed that the input flow of information, i.e., UA requests, is Poisson distributed, and the service time follows exponential, constant, and Erlang distribution laws. Algorithms for the simulation model of the service process have been developed for three cases to adequately describe the operation of the ISS against UA:

1. Incoming requests to the ISS and service time follow an exponential distribution.

2. Incoming requests to the ISS follow an exponential distribution, while the service time follows a uniform distribution.

3. Incoming requests to the ISS follow an exponential distribution, while the service time follows an Erlang distribution.

The developed algorithm for the operation of the ISS against UA includes the following steps:

- setting the minimum permissible limit values for the number of concurrently operating service devices (DMs) and the maximum permissible limit values for the queue length, defining the BM volume;

- to conduct a detailed analysis of the properties of the investigated system, a table structure is organized for queue waiting time and request residence time. An upper limit for the first frequency interval is specified, along with the values for all other frequency intervals and the quantity of frequency intervals. The goal here is to build histograms of the probability density function for the waiting time in the queue and the residence time of requests in the system based on the accumulation of the frequency of occurrence of random variables within the specified frequency intervals;

- when a request is received, the system checks for available places in the queue. If there is no available space in the queue, the request is rejected and exits the system;

- otherwise, if all DMs are occupied, the UA request waits in the system's BM queue until one of the DMs becomes available provided there is free space in the BM.

– upon the release of one of the DMs, the UA request enters this available DM, and the process of filtering UA requests, detecting, and classifying UA attempts takes place. As a result, the initial UA stream is thinned out with certain probabilities  $p_1$ ,  $p_2 = 1 - p_1$  forming an output stream, in other words, with a probability of  $p_1$  block-

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4



36

ing occurs, while with a probability of  $p_2$  UA requests are allowed to pass through to the protected resources.

Note 1. The values of probabilities  $p_1$ ,  $p_2$  are determined based on statistical analysis.

Based on the proposed algorithm covering three cases of ISS functioning against UA as single-phase, multichannel QS with a limited buffer size, simulation models were developed using the GPSS World modeling language. For  $N = \overline{2,5}$  during the simulation the model allows you to determine such characteristics as ENTRIES, UTIL, AVE.C, MEAN, STD.DEV, RANGE, RETRY, FREQUENCY, CUM.%.

#### **4 EXPERIMENTS**

Based on the execution of the simulation model for the average values of real data, with  $N = \overline{2,5}$ ,  $\lambda = 1/3500 \text{ ms}$  and  $\mu = 1/1700 \text{ ms}$  results were obtained for three cases:

1. Incoming requests to the ISS and service time follow an exponential distribution.

In the first case, the results of a simulation model of the functioning of the information system were obtained – reports and histograms of the distribution densities of the residence time  $T_{\rm U}$  and waiting time  $T_{\rm W}$  of requests, with

 $N = \overline{2,5}$  (see Appendix A, Fig. A.1–A.8).

Based on the obtained reports, Table 1 was created, providing the dynamics of changes in the number of requests in the DM, the average queue length, and the utilization coefficient of the DM depending on the number of DM (N) during the modeling period for the first case.

Table 1 – Dynamics of changes in characteristics depending on the number of DMs for the first case

| The       | The number of   | The aver- | The utilization |
|-----------|-----------------|-----------|-----------------|
| number of | requests in the | age queue | coefficient of  |
| DM        | DM              | length    | the DM          |
| 2         | 90266           | 1.866     | 0.933           |
| 3         | 99605           | 2.047     | 0.682           |
| 4         | 99989           | 2.056     | 0.514           |
| 5         | 100002          | 2.070     | 0.414           |

The analysis of the dynamics of these parameters shows that with an increase in the number of DM from 2 to 5:

- the number of requests in DM increases, with a difference of 9736 requests;

- the average queue length increases, with a difference of 0.204;

- the utilization coefficient of DM decreases, with a difference of 0.519.

In the models, 10 frequency intervals were chosen for building histograms, and the length of frequency intervals was selected as 0.0004 time units for waiting time in the queue and 0.0008 time units for the service time. The analysis conducted shows that in the first case, with a change in the number of DM from 3 to 5, the characteristics of the density distribution of the residence time

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4  $T\_U$  and waiting time  $T\_W$  of requests do not change.

**Note 2.** For clarity of histograms, it is desirable to have a large number of frequency intervals. To obtain an objective picture, it is necessary to have a large sample of random variables, which is not always possible and feasible.

**Note 3.** The values of interval lengths and the number of frequency intervals are selected experimentally during several runs of the simulation model or based on assumed values of the mean and standard deviation of the corresponding random variable.

2. The requests entering the ISS follow an exponential distribution, while the service time adheres to a uniform distribution.

In the second case, the results of a simulation model of the functioning of the ISS were obtained – reports and histograms of the distribution densities of the residence time and waiting time of requests, with  $N = \overline{2,5}$  (see Appendix B, Fig. B.1–B.8).

Based on the obtained reports, Table 2 was created, providing the dynamics of changes in the number of requests in the DM, the average queue length, and the utilization coefficient of the DM depending on the number of DM (N) during the modeling period for the second case.

Table 2 – Dynamics of changes in characteristics depending on the number of DMs for the second case

| The num-  | The number of   | The aver- | The utilization |
|-----------|-----------------|-----------|-----------------|
| ber of DM | requests in the | age queue | coefficient of  |
|           | DM              | length    | the DM          |
| 2         | 93922           | 1.932     | 0.966           |
| 3         | 99980           | 2.061     | 0.687           |
| 4         | 100002          | 2.056     | 0.514           |
| 5         | 100002          | 2.053     | 0.411           |

The analysis of the dynamics of these parameters shows that with an increase in the number of DM from 2 to 5:

- the number of requests in DM increases, with a difference of 6080 requests;

- the average queue length increases, with a difference of 0.121;

- the utilization coefficient of DM decreases, with a difference of 0.555.

The analysis conducted shows that in the first case, with a change in the number of DM from 3 to 5, the characteristics of the density distribution of residence time  $T_U$  and waiting time  $T_W$  of requests do not change.

3. The incoming requests to the ISS follow an exponential distribution, while the service time follows an Erlang distribution.

In the third case, the results of the ISS simulation model were obtained – reports and histograms of the density distribution of the residence time  $T_{\rm U}$  and the waiting

time  $T_W$  of requests at  $N = \overline{2,5}$  (see Appendix C, Fig. C.1–C.8).



Based on the obtained reports, Table 3 was created, providing the dynamics of changes in the number of requests in the DM, the average queue length, and the utilization coefficient of the DM depending on the number of DM (N) during the modeling period for the third case.

Table 3 – Dynamics of changes in characteristics depending on the number of DMs for the third case

| i         | the number of Divis for the third ease |           |                    |  |  |  |  |  |  |  |  |
|-----------|----------------------------------------|-----------|--------------------|--|--|--|--|--|--|--|--|
| The num-  | The number                             | The aver- | The utilization    |  |  |  |  |  |  |  |  |
| ber of DM | of requests in                         | age queue | coefficient of the |  |  |  |  |  |  |  |  |
|           | the DM                                 | length    | DM                 |  |  |  |  |  |  |  |  |
| 2         | 91907                                  | 1.898     | 0.949              |  |  |  |  |  |  |  |  |
| 3         | 99633                                  | 2.053     | 0.684              |  |  |  |  |  |  |  |  |
| 4         | 100003                                 | 2.061     | 0.515              |  |  |  |  |  |  |  |  |
| 5         | 100002                                 | 2.058     | 0.412              |  |  |  |  |  |  |  |  |

The analysis of the dynamics of these parameters shows that with an increase in the number of DM from 2 to 5:

- the number of requests in DM increases, with a difference of 8095 requests;

- the average queue length increases, with a difference of 0.159;

- the utilization coefficient of DM decreases, with a difference of 0.537.

The analysis conducted shows that in the first case, with a change in the number of DM from 3 to 5, the characteristics of the density distribution of the residence time  $T_U$  and waiting time  $T_W$  of requests do not change.

Based on Tables 1–3, the dynamics of changes in the differences in the number of requests in the DM, average queue length, and the utilization coefficient of the DM for three cases with  $N = \overline{2,5}$ , and the nature of these differences are presented in Fig. 2–4.





Figure 2 – The nature of the change in the differences in the number of requests in the DM for three cases with  $N = \overline{2,5}$ 

# AVE.C



age queue length for three cases with  $N = \overline{2,5}$ 



Figure 4 – The nature of changes in the differences in the coeffi-

cients of use of DM for three cases with  $N = \overline{2,5}$ 

The results obtained from Table 1–3 and Fig. 2–4 show that with an increase in the number of DM from 2 to 5 in three cases:

- the nature of the change in the differences in the number of requests in the DM is 9736, 6080 and 8095;

- the nature of the change in the differences in the average queue length is 0,204; 0,121 and 0.163;

- the nature of the change in the differences in the utilization coefficient DM is 0.519; 0.555 and 0.537.

#### CONCLUSIONS

The current task of developing an algorithm and simulation model, along with the analysis of simulation model results to determine the key characteristics of the ISS, is being addressed. This aims to provide the capability for complete closure, through the security system, of all potential threat channels by ensuring control over the transition of all UA through the DM.

The scientific novelty of the obtained results lies in the fact that, for the first time, algorithms, and simulation models, as well as a methodology for developing the ISS, have been proposed and developed based on the analysis of structural and temporal characteristics of ISS from UA. This includes treating it as a single-phase multi-channel queueing system with limited waiting time in the queue across a wide range of input and output parameters. The experiments conducted using the algorithm and model

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4



confirmed the expected results when analyzing the characteristics of the ISS from UA.

The practical significance of the results lies in their applicability for the practical construction of new or modification of existing ISS in networks for various purposes. This work represents one of the approaches to generalizing the considered problems for systems with a limited BM.

**Prospects for** further **research** include the exploration and development of hardware and software implementation principles for ISS from UA with a limited BM in service networks.

## ACKNOWLEDGMENTS

The work was carried out within the framework of the research topic "Mathematical modeling of computer and communication networks" of the Department of Computer Systems and Programming of the National Academy of Aviation (Azerbaijan).

## Appendix A

The first case's simulation model's results of the ISS's operation.

| QUEUE<br>CH_1   | MAX CONT.<br>10 1  | ENTRY E<br>90266 | NTRY (0)<br>10069 | AVE.CON<br>4.82 | NT. AVE.TIN<br>6 0.00 | ME AVE.(-0<br>02 0.00  | ) RETRY<br>2 O |
|-----------------|--------------------|------------------|-------------------|-----------------|-----------------------|------------------------|----------------|
| STORAGE<br>UZEL | CAP. REM.<br>2 0   | MIN. MA<br>O     | X. EN<br>2 90     | TRIES AVI       | L. AVE.C.<br>1.866    | UTIL. RETRY<br>0.933 0 | DELAY<br>0     |
| TABLE<br>T W    | MEAN ST<br>0.002 0 | D.DEV.           | 1                 | RANGE           | RET                   | TRY FREQUENC           | Y CUM.&        |
| -               |                    |                  |                   |                 | 0.000                 | 19250                  | 21.33          |
|                 |                    | 0                | .000 .            |                 | 0.001                 | 9868                   | 32.26          |
|                 |                    | 0                | .001 .            |                 | 0.001                 | 10215                  | 43.58          |
|                 |                    | 0                | .001 .            |                 | 0.002                 | 10616                  | 55.34          |
|                 |                    | 0                | .002 .            |                 | 0.002                 | 10424                  | 66.88          |
|                 |                    | 0                | .002 .            | -               | 0.002                 | 9052                   | 76.91          |
|                 |                    | 0                | .002 .            |                 | 0.003                 | 7398                   | 85.11          |
|                 |                    | 0                | .003 .            | -               | 0.003                 | 5324                   | 91.01          |
|                 |                    | 0                | .003 .            |                 | 0.004                 | 3461                   | 94.84          |
|                 |                    | 0                | .004 .            |                 |                       | 4657                   | 100.00         |
| T_U             | 0.002 0            | .001             |                   |                 | 0                     | )                      |                |
|                 |                    |                  |                   |                 | 0.001                 | 14294                  | 17.58          |
|                 |                    | 0                | .001 .            |                 | 0.002                 | 17199                  | 38.73          |
|                 |                    | 0                | .002 .            |                 | 0.002                 | 18110                  | 61.00          |
|                 |                    | 0                | .002 .            | -               | 0.003                 | 15313                  | 79.83          |
|                 |                    | 0                | .003 .            |                 | 0.004                 | 9382                   | 91.37          |
|                 |                    | 0                | .004 .            | -               | 0.005                 | 4420                   | 96.81          |
|                 |                    | 0                | .005 .            |                 | 0.006                 | 1704                   | 98.90          |
|                 |                    | 0                | .006 .            | -               | 0.006                 | 629                    | 99.68          |
|                 |                    | 0                | .006 .            |                 | 0.007                 | 206                    | 99.93          |
|                 |                    | 0                | .007 .            |                 |                       | 57                     | 100.00         |





Figure A.2 – Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N=2

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4

| QUEUE<br>CH_1   | MAX CONT. ENTRy<br>10 1 99605 | ENTRY(0) AVE<br>53200 0 | .CONT. AVE.TIME<br>.951 0.000 | AVE.(-0) REIRY<br>0.001 0  |
|-----------------|-------------------------------|-------------------------|-------------------------------|----------------------------|
| STORAGE<br>UZEL | CAP. REM. MIN.<br>3 0 0       | MAX. ENTRIES<br>3 99605 | AVL. AVE.C. UT<br>1 2.047 0.  | IL. RETRY DELAY<br>682 0 0 |
| TABLE           | MEAN STD.DEV                  | . RANGE                 | RETRY                         | FREQUENCY CUM. &           |
| TW              | 0.000 0.000                   |                         | 0                             |                            |
| -               |                               | -                       | 0.000                         | 75800 76.10                |
|                 |                               | 0.000 -                 | 0.001                         | 11400 87.55                |
|                 |                               | 0.001 -                 | 0.001                         | 6100 93.67                 |
|                 |                               | 0.001 -                 | 0.002                         | 3356 97.04                 |
|                 |                               | 0.002 -                 | 0.002                         | 1679 98.73                 |
|                 |                               | 0.002 -                 | 0.002                         | 809 99.54                  |
|                 |                               | 0.002 -                 | 0.003                         | 285 99.82                  |
|                 |                               | 0.003 -                 | 0.003                         | 109 99.93                  |
|                 |                               | 0.003 -                 | 0.004                         | 46 99.98                   |
|                 |                               | 0.004 -                 |                               | 20 100.00                  |
| T_U             | 0.001 0.001                   |                         | 0                             |                            |
|                 |                               |                         | 0.001                         | 51706 57.64                |
|                 |                               | 0.001 -                 | 0.002                         | 24423 84.87                |
|                 |                               | 0.002 -                 | 0.002                         | 9341 95.28                 |
|                 |                               | 0.002 -                 | 0.003                         | 3045 98.68                 |
|                 |                               | 0.003 -                 | 0.004                         | 828 99.60                  |
|                 |                               | 0.004 -                 | 0.005                         | 272 99.90                  |
|                 |                               | 0.005 -                 | 0.006                         | 68 99.98                   |
|                 |                               | 0.006 -                 | 0.006                         | 17 100.00                  |
|                 |                               | 0.006 -                 | 0.007                         | 3 100.00                   |
| Eiguna A 2      | Ero amont of                  | the remark              | for the mode                  | 1 $\dots$ $M = 2$          |





Figure A.4 – Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N=3

| QUEUE<br>CH_1           | MAX C0<br>10  | ONT.<br>O | ENTR)<br>99989 | 9 8130    | (0) AVE<br>9 0   | .CONT.    | AVE.TI          | ME AVE.(<br>00 0.  | -0) RETRY<br>000 0 |
|-------------------------|---------------|-----------|----------------|-----------|------------------|-----------|-----------------|--------------------|--------------------|
| STORAGE<br>UZEL         | CAP. 1<br>4   | REM.<br>3 | MIN.<br>0      | MAX.<br>4 | ENTRIES<br>99989 | AVL.<br>1 | AVE.C.<br>2.056 | UTIL. RET<br>0.514 | RY DELAY<br>0 0    |
| TABLE<br>T W            | MEAN<br>0.000 | SI        | ID.DE          | 7.        | RANGE            |           | RE              | TRY FREQUE         | NCY CUM.&          |
|                         |               |           |                |           | -                | 0.        | 000             | 94942              | 94.95              |
|                         |               |           |                | 0.000     | - 1              | ο.        | 001             | 3638               | 98.59              |
|                         |               |           |                | 0.001     | -                | 0.        | 001             | 1052               | 99.64              |
|                         |               |           |                | 0.001     | -                | 0.        | 002             | 258                | 99,90              |
|                         |               |           |                | 0.002     | -                | 0.        | 002             | 80                 | 99.98              |
|                         |               |           |                | 0.002     | -                | 0.        | 002             | 16                 | 100.00             |
|                         |               |           |                | 0.002     | -                | 0.        | 003             | 3                  | 100.00             |
| TU                      | 0.001         | (         | 0.001          |           |                  |           |                 | 0                  |                    |
|                         |               |           |                |           | -                | 0.        | 001             | 63515              | 70.46              |
|                         |               |           |                | 0.001     | -                | 0.        | 002             | 19535              | 92.13              |
|                         |               |           |                | 0.002     | -                | 0.        | 002             | 5254               | 97.96              |
|                         |               |           |                | 0.002     | -                | 0.        | 003             | 1343               | 99.45              |
|                         |               |           |                | 0.003     | - 1              | 0.        | 004             | 366                | 99.85              |
|                         |               |           |                | 0.004     | -                | 0.        | 005             | 106                | 99.97              |
|                         |               |           |                | 0.005     | -                | 0.        | 006             | 25                 | 100.00             |
|                         |               |           |                | 0.000     | - :              | 0.        | 006             | 1                  | 100.00             |
|                         |               |           |                | 0.006     |                  | 0.        | 007             | 1                  | 100.00             |
| <b>D</b> ' <b>A C D</b> |               |           | C /            | 1         |                  | .1        | 1               | 1 14               | 37 4               |

Figure A.5 – Fragment of the report for the model with N = 4





Figure A.6 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 4

| QUEUE<br>CH_1   | MAX CONT<br>9 ( | . ENTRY          | ENTRY<br>93071 | (0) AVE.<br>L 0. | CONT. AV<br>051 | E.TIME<br>0.000     | AVE.(-0)<br>0.000 | RETRY<br>0 |
|-----------------|-----------------|------------------|----------------|------------------|-----------------|---------------------|-------------------|------------|
| STORAGE<br>UZEL | CAP. REN<br>5 S | 4. MIN. 1<br>8 0 | MAX. H<br>5 1  | ENTRIES          | AVL. AV<br>1 2. | E.C. UTI<br>070 0.4 | IL. RETRY         | DELAY<br>0 |
| TABLE           | MEAN            | STD.DEV          |                | RANGE            |                 | RETRY               | FREQUENCY         | CUM.&      |
| ·_"             | 0.000           | 0.000            |                | -                | 0.000           |                     | 99001             | 99.00      |
|                 |                 |                  | 0.000          | -                | 0.001           |                     | 817               | 99.82      |
|                 |                 |                  | 0.001          | -                | 0.001           |                     | 167               | 99.98      |
|                 |                 |                  | 0.001          | -                | 0.002           |                     | 15                | 100.00     |
|                 |                 |                  | 0.002          | -                | 0.002           |                     | 2                 | 100.00     |
| T_U             | 0.001           | 0.001            |                |                  |                 | 0                   |                   |            |
|                 |                 |                  | _              | -                | 0.001           |                     | 66085             | 73.36      |
|                 |                 |                  | 0.001          | -                | 0.002           |                     | 17898             | 93.22      |
|                 |                 |                  | 0.002          | -                | 0.002           |                     | 4488              | 98.20      |
|                 |                 |                  | 0.002          | -                | 0.003           |                     | 1185              | 99.52      |
|                 |                 |                  | 0.003          | -                | 0.004           |                     | 318               | 99.87      |
|                 |                 |                  | 0.004          | -                | 0.005           |                     | 94                | 99.98      |
|                 |                 |                  | 0.005          | -                | 0.006           |                     | 20                | 100.00     |
|                 |                 |                  | 0.006          | -                | 0.006           |                     | 1                 | 100.00     |

Figure A.7 – Fragment of the report for the model with N = 5



Figure A.8 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 5

# Appendix **B**

Results of the second case's simulation model of the ISS's operation.

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4

| QUEUE<br>CH_1                                                  | MAX CONT<br>10 10 | ENTRY<br>93922 | ENTRY (<br>5263 | (0) AVE<br>5    | .CONT. AV       | 0.002                 | AVE.(-0<br>0.00    | ) RETRY<br>2 O |
|----------------------------------------------------------------|-------------------|----------------|-----------------|-----------------|-----------------|-----------------------|--------------------|----------------|
| STORAGE<br>UZEL                                                | CAP. REM.<br>2 0  | . MIN. 1<br>0  | MAX. E<br>2     | NTRIES<br>93912 | AVL. AV<br>1 1. | /E.C. UT1<br>.932 0.9 | IL. RETRY<br>966 0 | DELAY<br>10    |
| TABLE                                                          | MEAN              | STD.DEV        |                 | RANGE           |                 | RETRY                 | FREQUENC           | Y CUM.&        |
| TW                                                             | 0.002             | 0.001          |                 |                 |                 | 0                     |                    |                |
| -                                                              |                   |                |                 | -               | 0.000           | )                     | 13253              | 14.11          |
|                                                                |                   |                | 0.000           | -               | 0.001           | L                     | 10024              | 24.79          |
|                                                                |                   |                | 0.001           | -               | 0.003           | 1                     | 11128              | 36.64          |
|                                                                |                   |                | 0.001           | -               | 0.002           | 2                     | 12288              | 49.72          |
|                                                                |                   |                | 0.002           | -               | 0.002           | 2                     | 13158              | 63.73          |
|                                                                |                   |                | 0.002           | -               | 0.002           | 2                     | 13948              | 78.58          |
|                                                                |                   |                | 0.002           | -               | 0.003           | 3                     | 14840              | 94.39          |
|                                                                |                   |                | 0.003           | -               | 0.003           | 3                     | 5273               | 100.00         |
| T_U                                                            | 0.002             | 0.001          |                 |                 |                 | 0                     |                    |                |
|                                                                |                   |                | _               | -               | 0.003           | 1                     | 8029               | 9.49           |
|                                                                |                   |                | 0.001           | -               | 0.002           | 2                     | 18103              | 30.90          |
|                                                                |                   |                | 0.002           | -               | 0.003           | 2                     | 22165              | 57.11          |
|                                                                |                   |                | 0.002           | -               | 0.003           | 3                     | 25273              | 86.99          |
|                                                                |                   |                | 0.003           | -               | 0.004           | •                     | 11004              | 100.00         |
| Figure B.1 – Fragment of the report for the model with $N = 2$ |                   |                |                 |                 |                 |                       |                    |                |



Figure B.2 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests



0.001 0.002 0.002 0.003 65090 23406 1438 32 0.001 0.001 Figure B.3 – Fragment of the report for the model with N = 3



Figure B.4 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests





р-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2 е-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

| QUEUE<br>CH_1   | MAX CONT. ENTR<br>8 0 10000 | Y ENTRY(<br>2 82358 | 0) AVE.<br>0.   | CONT. AVE         | .TIME<br>0.000 | AVE.(-0<br>0.00    | ) RETRY<br>0 0 |
|-----------------|-----------------------------|---------------------|-----------------|-------------------|----------------|--------------------|----------------|
| STORAGE<br>UZEL | CAP. REM. MIN.<br>4 2 0     | MAX. E<br>4 1       | NTRIES<br>00002 | AVL. AVE<br>1 2.0 | .C. UT         | IL. RETRY<br>514 O | DELAY<br>0     |
| TABLE<br>T W    | MEAN STD.DE                 | v.                  | RANGE           |                   | RETRY          | FREQUENC           | Y CUM.♥        |
|                 |                             |                     | -               | 0.000             |                | 98663              | 98.66          |
|                 |                             | 0.000               | -               | 0.001             |                | 1293               | 99.95          |
| T_U             | 0.001 0.000                 |                     |                 |                   | 0              |                    |                |
| _               |                             | _                   | -               | 0.001             |                | 84401              | 93.84          |
|                 |                             | 0.001               | -               | 0.002             |                | 5542               | 100.00         |
|                 |                             | 0.002               | -               | 0.002             |                | 3                  | 100.00         |

Figure B.5 – Fragment of the report for the model with N = 4



Figure B.6 – Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 4

| QUEUE<br>CH_1   | MAX CONT. ENT<br>7 0 1000 | RY ENTRY(<br>02 93823 | 0) AVE.CONT<br>0.029   | . AVE.TIME<br>0.000    | AVE.(-0) RETRY<br>0.000 0 |  |
|-----------------|---------------------------|-----------------------|------------------------|------------------------|---------------------------|--|
| STORAGE<br>UZEL | CAP. REM. MIN<br>5 3 0    | . MAX. E<br>5 1       | NTRIES AVL.<br>00002 1 | AVE.C. UT<br>2.053 0.4 | IL. RETRY DELAY           |  |
| TABLE<br>T_W    | MEAN STD.D                | EV.<br>0              | RANGE                  | RETRY<br>0             | FREQUENCY CUM.&           |  |
|                 |                           | 0.000                 | - 0                    | 0.000                  | 99894 99.89<br>107 100.00 |  |
| T_U             | 0.001 0.00                | 0.001                 | - 0                    | 0.001                  | 1 100.00                  |  |
|                 |                           | o                     | - 0                    | .001                   | 88876 98.71               |  |
|                 | _                         | 0.001                 | - (                    | .002                   | 1105 100.00               |  |

Figure B.7 – Fragment of the report for the model with N = 5



Figure B.8 – Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 5

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4

#### Appendix C

Results of the third case's simulation model of the ISS's operation.

| QUEUE<br>CH_1   | MAX CONT. ENTRY<br>10 6 91907 | ENTRY(0) AVE.<br>7758 4. | CONT. AVE.TIME<br>921 0.002  | AVE.(-0) RETRY<br>0.002 0  |
|-----------------|-------------------------------|--------------------------|------------------------------|----------------------------|
| STORAGE<br>UZEL | CAP. REM. MIN.<br>2 0 0       | MAX. ENTRIES<br>2 91902  | AVL. AVE.C. UT<br>1 1.898 0. | IL. RETRY DELAY<br>949 0 5 |
| TABLE<br>T W    | MEAN STD.DEV<br>0.002 0.001   | . RANGE                  | RETRY                        | FREQUENCY CUM.&            |
| -               |                               | -                        | 0.000                        | 16613 18.08                |
|                 |                               | 0.000 -                  | 0.001                        | 10031 28.99                |
|                 |                               | 0.001 -                  | 0.001                        | 11184 41.16                |
|                 |                               | 0.001 -                  | 0.002                        | 11418 53.59                |
|                 |                               | 0.002 -                  | 0.002                        | 11645 66.26                |
|                 |                               | 0.002 -                  | 0.002                        | 10743 77.95                |
|                 |                               | 0.002 -                  | 0.003                        | 8832 87.56                 |
|                 |                               | 0.003 -                  | 0.003                        | 5696 93.76                 |
|                 |                               | 0.003 -                  | 0.004                        | 3276 97.32                 |
|                 |                               | 0.004 -                  |                              | 2463 100.00                |
| T_U             | 0.002 0.001                   | -                        | 0                            |                            |
|                 |                               |                          | 0.001                        | 11476 13.84                |
|                 |                               | 0.001 -                  | 0.002                        | 18300 35.92                |
|                 |                               | 0.002 -                  | 0.002                        | 20131 60.20                |
|                 |                               | 0.002 -                  | 0.003                        | 18139 82.08                |
|                 |                               | 0.003 -                  | 0.004                        | 10430 94.66                |
|                 |                               | 0.004 -                  | 0.005                        | 3405 98.76                 |
|                 |                               | 0.005 -                  | 0.006                        | 851 99.79                  |
|                 |                               | 0.006 -                  | 0.006                        | 161 99.98                  |
|                 |                               | 0.006 -                  | 0.007                        | 13 100.00                  |

Figure C.1 – Fragment of the report for the model with N = 2



Figure C.2 – Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N=2

| QUEUE<br>CH_1   | MAX<br>10 | CONT.     | ENTR)<br>99833 | ENTRY<br>5315 | (0) AVE.<br>2 0. | .CONT. AN       | 0.000               | AVE.(-0<br>0.00    | ) RETRY<br>0 0 |
|-----------------|-----------|-----------|----------------|---------------|------------------|-----------------|---------------------|--------------------|----------------|
| STORAGE<br>UZEL | CAP.<br>3 | REM.<br>1 | MIN.<br>0      | MAX.<br>3     | ENTRIES<br>99833 | AVL. AV<br>1 2. | 7E.C. UI<br>.053 0. | IL. RETRY<br>684 0 | DELAY<br>0     |
| TABLE<br>T W    | MEAN      | 5<br>0    | TD.DEV         | <i>.</i>      | RANGE            |                 | RETRY               | FREQUENC           | Y CUM.&        |
|                 |           |           |                |               | -                | 0.000           | ) -                 | 78532              | 78.66          |
|                 |           |           |                | 0.000         | -                | 0.001           |                     | 12483              | 91.17          |
|                 |           |           |                | 0.001         | -                | 0.001           |                     | 5268               | 96.44          |
|                 |           |           |                | 0.001         | -                | 0.002           | 2                   | 2232               | 98.68          |
|                 |           |           |                | 0.002         | -                | 0.002           | 2                   | 932                | 99.61          |
|                 |           |           |                | 0.002         | -                | 0.002           | 2                   | 284                | 99.90          |
|                 |           |           |                | 0.002         | -                | 0.003           | 3                   | 81                 | 99.98          |
|                 |           |           |                | 0.003         | -                | 0.003           | 3                   | 14                 | 99.99          |
|                 |           |           |                | 0.003         | -                | 0.004           | 1                   | 7                  | 100.00         |
| T_U             | 0.00      | 1         | 0.001          |               |                  |                 | 0                   |                    |                |
|                 |           |           |                | _             | -                | 0.001           | L.                  | 52246              | 58.16          |
|                 |           |           |                | 0.001         | -                | 0.002           | 2                   | 28786              | 90.21          |
|                 |           |           |                | 0.002         | -                | 0.002           | 2                   | 7193               | 98.21          |
|                 |           |           |                | 0.002         | -                | 0.003           | 3                   | 1388               | 99.76          |
|                 |           |           |                | 0.003         | -                | 0.004           | 1                   | 187                | 99.97          |
|                 |           |           |                | 0.004         | -                | 0.005           | 5                   | 26                 | 100.00         |
|                 |           |           |                | 0.005         | -                | 0.006           | 5                   | 4                  | 100.00         |
| Figure C.3 –    | Frag      | ame       | nt of          | the r         | eport            | for the         | mode                | el with            | N = 3          |





Figure C.4 – Histograms of the probability density functions of the residence time T = U and waiting time T = W of requests N = 3

| QUEUE<br>CH_1   | MAX CONT<br>10 3 | . ENTRY<br>100003 | ENTRY (<br>81249 | 0) AVE<br>0 | .CONT. AVE.<br>.166 0 | TIME<br>.000    | AVE.(-0)<br>0.000 | RETRY<br>0 |
|-----------------|------------------|-------------------|------------------|-------------|-----------------------|-----------------|-------------------|------------|
| STORAGE<br>UZEL | CAP. REM<br>4 0  | . MIN. 1          | MAX. E<br>4 1    | NTRIES      | AVL. AVE.<br>1 2.06   | C. UTI<br>1 0.5 | L. RETRY          | DELAY<br>2 |
| TABLE<br>T W    | MEAN             | STD.DEV           |                  | RANGE       |                       | RETRY           | FREQUENCY         | CUM        |
|                 |                  |                   |                  | -           | 0.000                 |                 | 96173             | 96.17      |
|                 |                  |                   | 0.000            | -           | 0.001                 |                 | 3194              | 99.37      |
|                 |                  |                   | 0.001            | -           | 0.001                 |                 | 509               | 99.88      |
|                 |                  |                   | 0.001            | -           | 0.002                 |                 | 91                | 99.97      |
|                 |                  |                   | 0.002            | -           | 0.002                 |                 | 26                | 99,99      |
|                 |                  |                   | 0.002            | -           | 0.002                 |                 | 7                 | 100.00     |
| T_U             | 0.001            | 0.000             |                  |             |                       | 0               |                   |            |
|                 |                  |                   | _                | -           | 0.001                 |                 | 64240             | 71.40      |
|                 |                  |                   | 0.001            | -           | 0.002                 |                 | 22423             | 96.33      |
|                 |                  |                   | 0.002            | -           | 0.002                 |                 | 2962              | 99.62      |
|                 |                  |                   | 0.002            | -           | 0.003                 |                 | 308               | 99.96      |
|                 |                  |                   | 0.003            | -           | 0.004                 |                 | 32                | 100.00     |
|                 |                  |                   | 0.004            | -           | 0.005                 |                 | 2                 | 100.00     |

Figure C.5 – Fragment of the report for the model with N = 4



Figure C.6 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 4

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4

| QUEUE<br>CH_1                                                  | MAX CC<br>10 | 0 100 | TRY EN1<br>002 93 | RY(0) 3<br>516 | VE.CONT.<br>0.040 | AVE.TIM<br>0.00 | E AVE.(-<br>0 0.0     | 0) RETRY<br>00 0 |  |  |  |
|----------------------------------------------------------------|--------------|-------|-------------------|----------------|-------------------|-----------------|-----------------------|------------------|--|--|--|
| STORAGE<br>UZEL                                                | CAP. F       | 3 0   | N. MAX.<br>5      | ENTR:<br>10000 | IES AVL.<br>02 1  | AVE.C.<br>2.058 | UTIL. RETR<br>0.412 0 | Y DELAY          |  |  |  |
| TABLE                                                          | MEAN         | STD.  | DEV.              | RAI            | NGE               | RET             | RY FREQUEN            | ICY CUM.&        |  |  |  |
|                                                                |              |       | 0.0               | - 500          | 0.<br>0.          | .000            | 99406<br>535          | 99.40<br>99.94   |  |  |  |
|                                                                |              |       | 0.0               | 001 -          | 0.                | .001            | 54                    | 99.99            |  |  |  |
| T_U                                                            | 0.001        | 0.0   | 00                |                |                   |                 |                       |                  |  |  |  |
|                                                                |              |       | 0.0               | 001 -          | 0.                | .001            | 20334                 | 97.03            |  |  |  |
|                                                                |              |       | 0.0               | 02 -           | 0.                | .002            | 2419                  | 99.71            |  |  |  |
|                                                                |              |       | 0.0               | 02 -           | 0.                | .003            | 239                   | 99.98            |  |  |  |
|                                                                |              |       | 0.0               | 03 -           | 0.                | .004            | 18                    | 100.00           |  |  |  |
|                                                                |              |       | 0.0               | 04 -           | 0.                | .005            | 1                     | 100.00           |  |  |  |
| Figure C.7 – Fragment of the report for the model with $N = 5$ |              |       |                   |                |                   |                 |                       |                  |  |  |  |



Figure C.8 - Histograms of the probability density functions of the residence time  $T\_U$  and waiting time  $T\_W$  of requests N = 5

#### REFERENCES

- 1. Ismailov B. G. Modelling and analysis of the security system information in service networks, Problemi informatizatsíí ta upravlínnya, 2022, Vol. 1, № 69, pp. 46-53. DOI: 10.1 837 2/2073-4751.6 9.16812
- 2. Fan L., Wang Y., Cheng X., Li J., Jin S. Privacy theft malware multi-process collaboration analysis, Security and Communication Networks, 2013, No. 8 (1), pp. 51-67. DOI:10.10 02/sec. 705
- Gordon L. A., Loeb M. P. The Economics of Information 3. Security Investment, ACM Transactions on Information and System Security, 2002, No. 5 (4), 438pp. 457. DOI:10.1145/58 127 1.5812 74. S2CID 1 500 788
- 4. Fienberg S. E., Slavković A. B. Data Privacy and Confidentiality, International Encyclopedia of Statistical Science, 2011, pp. 342-345, DOI:10.1007/978-3-642-04898-2 202
- Pevnev V. Model Threats and Ensure the Integrity of In-5. formation, Systems and Technologies, 2018, No. 2 (56), pp. 80-95. DOI:10.32836/2521-66 43-2018.2-56.6
- 6. Loukas G., Oke G. Protection Against Denial of Service Attacks: A Survey, Comput. J., 2012, No. 53 (7), pp. 1020-1037. Archived from the original on March 24, Retrieved August 28, 2015. DOI: 10.1 093/ com jnl/bxp078
- 7. Fowler Kevvie Developing a Computer Security Incident Response Plan, Data Breach Preparation and Response, Elsevier, 2016, pp. 49–77. retrieved June 5, 2021. DOI:10.1016/b978-0-12-803451-4.00003-4
- Parker D. B. A Guide to Selecting and Implementing Secu-8. rity Controls, Information Systems Security, 1994, No. 3 (2), pp. 75-86. DOI:10.1080/10658989 4093 42459





- Venter H. S., Eloff J. H. P. A taxonomy for information security technologies, *Computers & Security*, 2003, No.22 (4), pp. 299–307. DOI: 10. 1016/S0167-4048(03)00406-1
- McDermott B. E.,Geer D. Information security is information risk management, *In Proceedings of the 2001 Workshop* on New Security Paradigms NSPW'01, pp. 97–104. ACM. DOI:10.1 145/ 5081 71. 508187
- Authorization and approval program, *Internal Controls Policies and Procedures*. Hoboken, NJ, US, John Wiley & Sons, Inc., October 23, 2015, pp 69–72, retrieved June1, 2021. DOI:10.1002/9781119 20 39 64.ch10
- Almehmadi A., El-Khatib Kh. Authorized! Access denied, unauthorized! Access granted, Proceedings of the 6th International Conference on Security of Information and Networks. Sin '13.US: ACMPress. New York, 2013, pp. 363– 367. DOI:10.1145/2 52 3514.25 23612
- Joshi Ch., Singh U. K. Information security risks management framework A step towards mitigating security risks in university network, *Journal of Information Security and Applications*. August, 2017, No. 35, pp. 128–137. DOI:10.1016/j.jisa.2017.06.006
- 14. Randall A. Harm, risk and threat, Risk and Precaution. Cambridge, Cambridge University Press, 2011, pp. 31–42, retrieved May29, 2021. DOI:1 0.1017/ cbo97805 1197455 7.0 03
- Boritz J. E. IS Practitioners' Views on Core Concepts of Information Integrity, *International Journal of Accounting Information Systems*. Elsevier, 2005, No. 6 (4), pp. 260– 279. DOI:10.1016/j.accinf. 2005. 07.001
- 16. Keyser T. Security policy, *The Information Governance Toolkit*. CRC Press, April 19, 2018, pp. 57–62, retrieved May 28, 2021. DOI:10.1 201/978 1315385488-13 Received 09.01.2024.

Accepted 25.04.2024.

#### УДК 621.394.74:519.872

#### АНАЛІЗ РЕЗУЛЬТАТІВ ІМІТАЦІЙНОГО МОДЕЛЮВАННЯ СИСТЕМИ БЕЗПЕКИ ІНФОРМАЦІЇ ВІД НЕСАНКЦІОНОВАНОГО ДОСТУПУ У МЕРЕЖАХ ОБСЛУГОВУВАННЯ

Ісмайлов Б. Г. – д-р техн. наук, професор кафедри комп'ютерні системи та програмування, Національна Академія Авіації, Баку, Азербайджан.

#### АНОТАЦІЯ

Актуальність. Аналіз мережі обслуговування показує, що недостатня захищеність інформації в мережах обслуговування є причиною великих збитків, завданих корпораціями. Незважаючи на появу низки робіт, та матеріалів зі стандартизації, в даний час єдина система оцінки захищеності інформації в галузі інформаційної безпеки відсутня. Слід зазначити, що існуючі методи, і навіть накопичений досвід у цій галузі неможливо повністю подолати ці труднощі. Ця обставина підтверджує, що дана проблема ще недостатньо вивчена і, отже, зберігає свою актуальність. Представлена робота є одним із кроків на шляху створення єдиної системи оцінки безпеки інформації у мережах обслуговування.

**Мета роботи.** Розробка алгоритму та моделі імітації, аналіз результатів моделі імітації для визначення основних характеристик системи безпеки інформації, що надають можливість повного закриття, за допомогою системи безпеки, всіх можливих каналів прояву загроз, шляхом забезпечення контролю переходу всіх запитів несанкціонованого доступу через механізм захисту.

**Метод.** Для вирішення поставленого завдання було застосовано метод імітаційного моделювання з використанням принципів моделювання системи масового обслуговування. Даний метод дозволяють отримати основні характеристики системи безпеки інформації від несанкціонованого доступу з обмеженим обсягом буферної пам'яті.

**Результати.** Розроблено новий алгоритм, моделі та методологію розробки системи безпеки інформації від несанкціонованого доступу, що розглядається як однофазна багатоканальна системи масового обслуговування з обмеженим обсягом буферної пам'яті. Процес одержання результатів моделі було реалізовано системі моделювання General Purpose Simulation System World і проведено порівняльні оцінки основних характеристик системи безпеки інформації щодо різних законів розподілу вихідних параметрів, тобто. при цьому запити несанкціонованого доступу є найпростішими потоками, а час обслуговування підпорядковується експоненційному, постійному та законам Ерлангового розподілу.

Висновки. Проведені експерименти на основі алгоритму та моделі підтвердили очікувані результати при аналізі характеристик системи безпеки інформації від несанкціонованого доступу як однофазної багатоканальної системи масового обслуговування з обмеженим часом очікування запитів у черзі. Ці результати можуть бути використані для практичної побудови нових або модифікації існуючих системи безпеки інформації в мережах обслуговування об'єктів різного призначення. Дана робота є одним з підходів до узагальнення розглянутих проблем для систем з обмеженим обсягом буферної пам'яті. Перспективи подальших досліджень включають в себе дослідження та розробку принципів апаратно-програмної реалізації системи безпеки інформації в мережах обслуговування.

**КЛЮЧОВІ СЛОВА:** несанкціонований доступ, системи безпеки інформації, інформаційна безпека, системи масового обслуговування, механізм захисту, імітаційна моделювання.

© Ismailov B. G., 2024 DOI 10.15588/1607-3274-2024-2-4





#### ЛІТЕРАТУРА

- Ismailov B. G. Modelling and analysis of the security system information in service networks / B. G. Ismailov // Problemi informatizatsii ta upravlinnya. – 2022. – Vol. 1, №69. – P. 46–53. DOI:10.1 837 2/2073-4751.6 9.16812
- Privacy theft malware multi-process collaboration analysis / [L. Fan, Y. Wang, X.Cheng et al.] // Security and Communication Networks. – 2013. – No. 8 (1). – P. 51– 67. DOI:10.1002/sec.705
- Gordon L. A. The Economics of Information Security Investment / L. A. Gordon, M. P. Loeb // ACM Transactions on Information and System Security. 2002. No. 5 (4). P.438–457. DOI:10.1145/58 127 1.5812 74. S2CID 1 500 788
- Fienberg S. E. Data Privacy and Confidentiality / S. E. Fienberg, A. B. Slavković // Inter national Encyclopedia of Statistical Science, - 2011. - P. 342–345. DOI:10.1007/978-3-642-04898-2 202
- Pevnev V. Model Threats and Ensure the Integrity of Information / V. Pevnev // Systems and Technologies. 2018. – No. 2 (56). – P. 80–95. DOI:10.32836/2521-66 43-2018.2-56.6
- Loukas G. Protection Against Denial of Service Attacks: A Survey / G. Loukas, G. Oke // Comput. J. – 2012. – No. 53 (7). – P. 1020–1037. Archived from the original on March 24, Retrieved August 28, 2015. DOI: 10.1 093/ com jnl/bxp078
- Fowler Kevvie Developing a Computer Security Incident Response Plan / K. Fowler // Data Breach Preparation and Response, Elsevier. – 2016 – P. 49–77, retrieved June 5, 2021.DOI:10.1016/b978-0-12-80 3451-4.00003-4
- Parker D. B. A Guide to Selecting and Implementing Security Controls / D. B. Parker // Information Systems Security. 1994. No. 3 (2). P. 75–86. DOI: 10.1080/10 658989409342459
- 9. Venter H. S. A taxonomy for information security technologies. / H. S. Venter, J. H. P. Eloff // Computers & Secu-

rity. – 2003. – No. 22 (4). – P. 299–307. DOİ: 10. 1016/S0167-4048(03)00406-1

- McDermott B. E. Information security is information risk management / B. E. McDermott, & D. Geer // In Proceedings of the 2001 Workshop on New Security Paradigms NSPW'01. – P. 97–104. ACM. DOI:10.1145/508171. 508187
- Authorization and approval program // Internal Controls Policies and Procedures, Hoboken, NJ, US: John Wiley & Sons, Inc. – October 23, 2015. – P. 69– 72, retrieved June1, 2021.DOI:10.1002/9781119 20 39 64.ch10
- Almehmadi A. Authorized! Access denied, unauthorized! Access granted / A. Almehmadi, Kh. El-Khatib // Proceedings of the 6th International Conference on Security of Information and Networks. Sin '13.US: ACMPress. New York, 2013. – P. 363–367. DOI:10.1145/2 52 3514.25 23612
- Joshi Ch. Information security risks management framework A step towards mitigating security risks in university network / Ch. Joshi, U. K. Singh // Journal of Information Security and Applications. – August 2017. – No. 35. – P. 128– 137. DOI:10.1016/ j.jisa.2017.06.006
- 14. Randall A. Harm, risk and threat, Risk and Precaution / A. Randall. – Cambridge : Cambridge University Press, 2011. –P.31–42. retrieved May29, 2021. DOI:1 0.1017/ cbo978051197455 7.0 03
- Boritz J. E. IS Practitioners' Views on Core Concepts of Information Integrity / J. E. Boritz // International Journal of Accounting Information Systems. Elsevier. – 2005. – No. 6 (4). – P. 260–279. DOI:10.1016/j.accinf. 2005. 07.001
- 16. Keyser T. Security policy / T. Keyser // The Information Governance. – Toolkit, CRC Press. – April 19, 2018. – P. 57–62, retrieved May 28, 2021. DOI:10.1 201/978 1315385488-13

