
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

UDC 004.415

METHOD AUTOMATED CLASS CONVERSION FOR COMPOSITION
IMPLEMENTATION

Kungurtsev O. B. – PhD, Professor, Professor of the Software Engineering Department, Odessа Polytechnic

National University, Odessa, Ukraine.
Bondar V. R. – Student of the Software Engineering Department, Odessа Polytechnic National University, Odessa,

Ukraine.
Gratilova K. O. – Student of the Software Engineering Department, Odessа Polytechnic National University,

Odessa, Ukraine.
Novikova N. O. – PhD, Associate Professor of the Department of Technical Cybernetics and Information

Technologies named after professor R. V. Merct, Odessa National Maritime University, Odessa, Ukraine.

ABSTRACT
Context. Using the composition relation is one of the most effective and commonly used ways to specialize classes

in object-oriented programming.
Objective. Problems arise when “redundant” attributes are detected in an inner class, which are not necessary for

solving the tasks of a specialized class. To work with such attributes, the inner class has corresponding program
methods, whose usage not only does not solve the tasks of the specialized class, but can lead to errors in its work. The
purpose of this work is to remove “redundant” attributes from the inner class, as well as all methods of the class directly
or indirectly (through other methods) using these attributes.

Method. A mathematical model of the inner class was developed, which allowed us to identify “redundant”
elements of the class. The method of internal class transformation is proposed, which, based on the analysis of the class
code, provides the developer with information to make a decision about “redundant” attributes, and then in the
automated mode gradually removes and transforms the class elements.

Result. To approbate the proposed solutions, a software product Composition Converter was developed.
Experiments were carried out to compare the conversion of classes in “manual” and automated modes. The results
showed a multiple reduction of conversion time in the automated mode.

Conclusions. The proposed method of automated transformation of the inner class according to the tasks of the
outer class when implementing composition allows to significantly reduce the time or the number of errors when editing
the code of the inner class. The method can be used for various object-oriented languages.

KEYWORDS: object-oriented programming, classes, composition, syntactic analysis, class transformation.

ABBREVIATIONS
OOP – object-oriented programming.

NOMENCLATURE
attrName is a attribute identifier;
attrType is a attribute type;
cHead is a class header;
cHead1C2 is a new name of the inner class, reflecting

the use in the outer class;
cName is a class name;
cName1 is a parent class name for cName (can be

empty);
destr is a class destructor (if provided by the

programming language);
fName is a method name;
mArgs is a set of method arguments;
mAttr is a set of class attributes;
mAttr1 is a set of attributes of class C1;
mAttr` is a a subset of the mAttr set containing

redundant attributes;
mConstr is a set of class constructors;
mFunc is a set of ordinary methods of the class;

mMeth is a set of class methods;
mMeth1 is a set of methods of class C1;
mMeth11 is a methods of class C1 that are

independent of mAttr`;
mMethR is a set of edited methods that have become

independent of mAttr`;
mOperand is a set of operands:
mOperator is a set of method operators;
retType is a type of return value (empty for

constructors and destructor).

INTRODUCTION
In object-oriented programming (OOP) there are two

main ways of creating specialized classes based on
existing ones – inheritance and extending the
functionality of some class by using another class as an
object attribute [1, 2]. Let us call the specialized class an
outer class and the class of the included object an inner
class. The object control of the inner class by an object of
the outer class can be full and partial. In the first case the
connection between the classes is called composition, and
in the second case – aggregation. To implement

142

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

composition, the outer and inner classes must have the
following relations [3]:

– the inner class is a part of the outer class;
– the inner class can belong to only one outer class;
– the inner class (object) is controlled by the outer

class (object);
– the inner class (object) does not know about the

existence of the outer class (object).
Aggregation involves sharing of the inner class by

several outer classes. In this case, conflicts of interests of
outer classes may arise.

In practice, the use of composition is observed much
more frequently than the use of aggregation. This work
solves the problems associated with the composition
usage. Composition has two significant advantages over
inheritance [3]:

– allows adding additional functionality to the outer
class with minimal changes in its structure;

– significantly reduces debugging time of the outer
class, because the inner class is already ready-to-work.

The notion of a “ready-to-work class” requires
explanation. If specializing the outer class by inheritance
is understood as continuing to work on that class, then
connecting the inner class involves searching for a
suitable class from some library. By definition, the inner
class in the vast majority of cases was not created for use
in a particular outer class. To find a suitable inner class,
candidates that provide the required functionality are
considered. In many cases, a suitable candidate for the
inner class has functionality beyond the required one.
“Redundant functionality” consists of the existence of
“redundant” methods and attributes. For example, in order
to assign a bus to a driver to perform a trip, we can enter
the attribute “Bus” into the class “Driver”, which is a
class. The “Bus” class may have many attributes and
methods that model its engine, electrical system, running
gear, repair information, etc., while the composition needs
only the brand, registration number, number of seats, and
possibly a few more attributes and corresponding
methods. In case of the presence of “redundant” structural
units in the inner class, the following problems arise [4]:

– when initializing a “redundant attribute”,
information is needed that is not defined by the task,
which the outer class solves. This may be a source of
initialisation errors;

– when working with an object of an inner class, it is
possible to use methods directly or indirectly, which do
not solve the tasks of the outer class, but introduce errors
in their solution;

– methods that are “useful” from the point of view of
tasks solved by the outer class may perform some actions
on “redundant” attributes, which may also cause errors.

Thus, there is a problem of identifying, removing or
“neutralizing” redundant attributes and methods in a class
that is chosen as an inner class during composition.

According to the above problem, the following
research tasks have been formulated:

– create a model of the inner class;

– develop a method to identify and remove
“redundant” attributes and methods of the inner class, as
well as to correct methods dependent on the deleted class
elements.

1 PROBLEM STATEMENT

Suppose there is some program class c=<cHead,
mAttr, mMeth>. When using this class as an object of
another class c2 (composition), a subset of attributes
mAttr` turned out to be redundant. It is necessary to
perform the transformation

c c1,
where c1 = < cHead1С2, mAttr1, mMeth1 >.
Wherein mAttr1 = mAttr mAttr,
mMeth1 = mMeth11 mMethR,
where mMeth11 mMeth,
mMeth = F(mAttr) mMethR ≠ F(mAttr).

2 REVIEW OF THE LITERATURE
Composition in programming languages is analyzed

and applied at different levels. An attempt to develop a
general approach to composition is made in work [5].
From our point of view, the recommendation to compose
models for composition according to specific conditions
is useful in this work.

In work [6], composition is considered at the level of
language constructs of various domain-oriented
languages. Of interest is a framework that allows creating
a language from known constructs for a new subject area.
Some principles of framework construction may find
application to the present study.

In work [7] the principle of composition is applied at
the level of individual operators and in [8] at the level of
individual expressions, but it is also actually about
making changes to programming language constructs
rather than to program elements.

The conditions under which class-level composition
has advantages compared to inheritance are described in
sufficient detail in the literature [3,9], but the authors do
not analyze the problems arising in its implementation.

In work [4] the composition problems are formulated,
but the model is not developed. Therefore, the proposed
solution is applicable only for a special case.

In work [10] it is proposed to allocate key classes for
software understanding. This idea is relevant in the
realization of composition if we represent “useful”
attributes as key attributes. The authors did not formulate
the task of any work with “redundant” classes (elements).

The issue of identifying and analyzing the
effectiveness of class attributes is considered in work
[11]. However, the study concerns only the attributes, the
choice of which corresponds to the purpose of class
creation, whereas in the conditions of composition the
initial purpose of class application can be slightly
changed.

In work [12], a class model is proposed, which
represents its functionality quite completely, but does not
provide for changes in the class.

143

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

For the task of finding inheritance relations, an
appropriate class model was created in [13]. The model
provides class transformation by redistributing methods
and attributes between classes, which is also applicable
for this work, but does not allow identifying and
removing “redundant” attributes and methods.

Class transformation is based on the extraction of
certain constructs. Syntactic code analysis is considered in
works [14, 15], where the main focus is on parser
performance and creation of new convolution algorithms,
whereas for this work the main requirement is the
extraction of only certain code constructs.

A number of approaches to static code analysis [16]
are applicable in the conditions of this work when
“redundant” elements are used together with “useful”
ones within one operator. An interesting proposal
regarding combining static code analysis with object-
oriented structure extraction is made in [17], but the
authors do not offer an acceptable practical
implementation of their project.

The work [18] shows the role of refactoring on the
quality of object-oriented code. Accepting the
recommendations of the authors of the work, the present
study envisages not only checking the code for a given
functionality, but also for compliance with design patterns
[19].

3 MATERIALS AND METHODS

Class model.
Let’s represent the class as a tuple:

c = <cHead, mAttr, mMeth>. (1)

Let’s represent the class header as a tuple:

cHead = <cName, cName1>. (2)

Let’s represent each attribute from the set mAttr as:

Attr = <attrName, attrType>. (3)

Let’s represent the set of methods as a tuple:

mMeth =<mFunc, mConstr, destr> . (4)

Any element from mMeth has the form

mMethi = < fNamei, mArgsi, retTipei,
mOperatori >. (5)

Any operator is represented as a set of operands
(variables, constants, function calls)

operator = mOperator.

Method of class transformation by removing
redundant elements.

Initial data: some class C, which contains redundant
attributes and methods from the point of view of its usage
in composition.

Let’s consider the case when the composite class is
not inherited from another class.

First step. Let’s analyze the set of attributes mAttr
and form on its base the set of “redundant” attributes
mAttr' and “useful” attributes mAttr1.

mAttr1 = mAttr mAttr.

Second step. Let’s select from the set of all mMeth
methods a subset of mMeth' methods, which use only
attributes from the mAttr' set and do not use other
methods of the same class (constructors and destructor are
not analyzed yet).

mMeth = { methi | mAttr1k a methi methl m methi
}, i = 1, |mMeth|; k = 1, |mAttr|; l = 1, |mMeth|,

where a and a designate the use (non-use) of an
attribute in a method; m, m – use (non-use) of other
methods in this method.

Let’s form a set of mMeth1 methods that remain in the
class:

mMeth1 = mMeth mMeth.

Third step. Let’s select methods from the set mMeth1
that do not use attributes from the set mAttr1 and methods
from the set mMeth1:

mMeth = { methi | mAttr1j a methi mMeth1k m methi
}, i = 1, |mMeth1|; j = 1, |mAttr1|; k = 1, |mMeth1|.

Form the set of methods that remain in the class:

mMeth2 = mMeth1 mMeth.

Fourth step. Let’s select from the set mMeth2 a
subset of methods that require editing
(mMethForAdjustment). This category includes methods
that contain “redundant” attributes and methods along
with “useful” attributes and methods.

mMethForAdjustment = { methi | mAttrj a methi
 methk m methi }, i = 1, |mMeth2|; k = 1,

|mMeth|; j = 1, |mAttr|.

Fifth step. From each constructor the elements
associated with redundant attributes are removed.

Let’s represent the set of constructors in the form

mConstr = { constri }, i = 1, |mConstr|.

Let’s represent each constructor as a set of arguments
and operators:

constr = { < mArgs, mOperator >}.

The constructor operators should include not only
operators in the body of the constructor, but also elements
of the initialization list.

Operators that do not use the “useful” attributes
mAttr1 are defined

mOperator = { operatorj | mAttr1k op operatorj }, j = 1,
|mOperator|; k = 1, |mAttr1|,

where the relation op – designates non-use of the
attribute in the body of the operator.

144

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

A new set of constructor operators is created

mOperator1 = mOperator mOperator.

Arguments that are used to initialize only redundant
attributes are defined

mArgs = {argsj | argsj op mOperator1},
j = 1, |mArgs|.

A new set of the constructor arguments is created

mArgs1 = mArgs mArgs.

Let’s select from the set of remaining constructor

mOperator1 operators a subset of operators that require
correction (mOperatorForAdjustment). Operators that
contain “redundant” attributes and arguments along with
“useful” attributes and arguments should be included in
this category.

mOperatorForAdjustment = { operatorj | operatorj

mOperator1 (mAttrp op operatorj)}, j = 1,
|mOperator1|; p = 1, |mAttr|; l = 1, |mArgs|.

Sixth step (only for programming languages that use

destructors). The elements associated with redundant
attributes are removed from the destructor.

Let’s represent the destructor as a set of operators

destr = mOperator.

Operators that do not use attributes from set mMeth1

are defined

mOperator = { operatorj | mAttr1l op operatorl },
j = 1, |mOperator|; l = 1, |mAttr1|.

A new set of destructor operators is created

mOperator1 = mOperator mOperator

Seventh step. The class C1 is formed based on
mAttr1, mMeth2, transformed constructors and destructor.

c1=<cHead1C2, mAttr1, mMeth1>,

where the new name cHead1C2 indicates the
modification of the original class C to conform to the
requirements of class C2.

The case when an aggregate class is an inheritor of
another class.

Option 1. There is a code of a parent class.
First step. The method proposed above is applied to

the parent class.
Second step. The method proposed above is applied

to the generated class.
Option 2. The code of the parent class is inaccessible.
First step. The “redundant” attributes introduced in

the inherited class are determined. For them, the method
proposed above is applied without performing the fifth,
sixth and seventh steps.

Second step. The “redundant” attributes of the parent
class are determined.

Third step. Methods that use only “redundant”
attributes of the parent class are defined. Such methods
should be made “neutral” depending on the context of
their use. That is, such that their call does not lead to any
changes in the context of their use.

A method of the parent class with a private method
can be overridden. Then the call of the corresponding
method of the parent class will be possible only when
referring to the parent class.

The fourth and subsequent steps are performed
according to the method proposed earlier.

4 EXPERIMENTS

In accordance with the proposed model and method of
inner class transformation, a grammar is proposed that
allows to extract from the class code the attribute
description, the description of a regular method, the
description of a constructor, the description of a
destructor, an operator, an identifier and a method
argument. In order to shorten the record of a number of
rules widely used in grammars of programming
languages, some right parts of definitions are omitted or
replaced by an ellipsis

Grammar for highlighting necessary code elements:

$ class = {specifier} class class_name {specifier
class_name} "{" {/ (description | operator /} "}"

$ description = type description_list";"
$ description list = description_item | description list ","

description_item
$ type = standard_type | user_type
$ user_type = class_name | structure_name
$ standard_type = int | float | double | char |
 boolean |
$ identifier = (letter | "_") { letter | number | "_"}
$ class_name = identifier
$ method_name = identifier
$ method = { specifier } method_name "(" argument list ")"

"{" { (description | operator /} } "}"
$ any_sequence_of_characters_without_";"
=.............
$ operator= any_sequence_of_characters_without_; ";" | "{"

operator "}"

The Composition Converter software product was
created to implement the developed method. The scheme
of the software product operation is shown in Fig.1. The
Analyzer module allows you to select elements of the
inner class in accordance with the given grammar.
Command line compilers are used to check the
correctness of the code of the edited methods. The scheme
shows the sequential transformation of the original inner
class C C_1 C_2 C_3 by removing “redundant”
methods and attributes, as well as editing methods for
which “mechanical” removal of elements is impossible.

Fig. 2 shows a window with a list of attributes of the
inner class, where the programmer can indicate redundant
attributes.

145

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

Figure 1 – Scheme of Composition Converter work

Figure 2 – Attribute selection window

5 RESULTS

A series of experiments were conducted to approbate
the results of the study. The purpose of conducting the
experiments was:

1. Verification of the quality of the program work.
2. Evaluation of the effectiveness of the proposed

method.
In accordance with the first purpose, it was checked:
– identification of all cases of redundant constructions

usage;
– deleting and automatic editing of constructions that

do not require programmer intervention;
– providing the programmer with all constructions that

require editing.
In accordance with the second purpose, it was

determined:
– time for automated inner class transformation;
– time for “manual” inner class transformation.
For the study, 6 classes were developed from the

subject areas “transport” and “health”. The number of
attributes in the classes was 10, 20 and 30. The number of
methods was 2–3 per attribute. 12 students from among

the equally successful students of OO-programming
subject were involved in the experiments. Each student
performed conversion of 3 classes in “manual” mode and
other 3 classes in automated mode using Composition
Converter. Lists of “redundant” attributes were reported
immediately before the experiments were performed.

No errors were found in the program operation at the
stages of deletion and automatic transformation of class
elements. Errors were observed when editing methods
selected by the program. Errors in “manual” mode were
observed at all stages.

In the “manual” mode, the time for class conversion
ranged from 8 to 30 minutes. In the automated mode, the
main time was spent on editing the methods allocated by
the program and ranged from 2 to 10 minutes.

Fig. 3 shows the averaged data of the experimental
results in the form of a graph, where totalN – is the total
number of attributes, unnecN – is the number of
redundant attributes, mt – is the time of “manual” class
transformation, at – is the time of automated class
transformation.

146

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

Figure 3 – Comparison of manual and automatic class transformation

6 DISCUSSION

Fig. 3 shows that the proposed transformation method
proves to be effective for sufficiently large classes (10 or
more attributes).

Errors during the “manual” class transformation were
observed, but they were not counted because the result of
the transformation was a valid code. Thus, the errors
increased the transformation time.

The method leaves the programmer with the
responsibility to edit functions (class methods) that use
“useful” attributes along with “redundant” attributes. In
general, it is extremely difficult to automate such editing,
since it is determined by the tasks solved by the outer
class and about which we have no information at the time
of the research. Therefore, it was decided to limit to
selecting such class methods and operators that use
“redundant” attributes and loading them into the editor.

The proposed model and method are universal for
most object-oriented programming languages with a high
level of typing. However, the developed software product
so far supports only Java and C++ languages.

The quality of editing class methods by the
programmer is checked only for correct syntax, for which
purpose command line compilers were connected to
Composition Converter.

CONCLUSIONS
It is shown that the use of program classes as

attributes of other classes in the implementation of
composition is associated with significant problems
caused by the presence of “redundant” attributes and
“redundant” methods, the removal of which is a nontrivial
task.

A mathematical model of the inner class is proposed,
which allows us to consider a program class from the
point of view of using its attributes, making it possible to
formalize operations on class transformation.

A method is developed that allows automating the
process of transforming an inner class, as a result of
which all “redundant” attributes are removed from it, and
all methods that use them are removed or edited.

Software has been created, which implements the
proposed method of inner class transformation.

Approbation of the proposed solutions has shown their
efficiency in the form of multiple reduction of time for
class transformation (up to 10 times) in comparison with
the existing technology (taking into account the time for
error correction).

ACKNOWLEDGEMENTS

The work is supported by the state budget scientific
research project of the Software Engineering Department,
Odessа Polytechnic National University “Models,
methods and tools of software engineering” (state
registration number 0116U004528) and by of the
Department of Technical Cybernetics and Information
Technologies named after professor R.V. Merct, Odessa
National Maritime University “Computer systems and
information technology for the solution of applied
problems” (state registration number 0123U101986).

We thank Alina I. Vitnova, who directly participated
in the implementation of the class model.

REFERENCES

1. Forouzan B. A., Gilberg R. C++ Programming: An Object-
Oriented Approach. McGraw-Hill Education, 2019, 960 р.
https://www.booksfree.org/wp-content/uploads/2022/02/C-
Programming-An-Object-Oriented-Approach-Behrouz-
Forouzan.pdf

2. Lee G. Modern Programming: Object Oriented
Programming and Best Practices. Packt Publishing, 2019,
266 p.

3. Kanjilal J. Composition vs. inheritance in OOP and C#
[Electronic resource], InfoWord, 2023. Access mode:
https://www.infoworld.com/article/3699129/composition-vs-
inheritance-in-oop-and-c-sharp.html

4. Kungurtsev O., Bondar V., Gratilova K. Tranforming
Classes for Composition Implementation, Modern research
in science and education: The 2nd International scientific
and practical conference, Chicago, USA, 12–14 October
2023: proceedings. Chicago, BoScience Publisher, 2023,
pp. 143–148. ISBN 978-1-73981-123-5

5. Talcott C., Heinrich R., Duran F. et al. Composition of
Languages, Models, and Analyses. New York, Springer,
2021, 311 p.

6. Kihlman L. Framework for Composition of Domain Specific
Languages and the Effect of Composition on Re-use of
Translation Rules: abstract of the dissertation … doctor of

147

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

philosophy in computer science. Essex, University of Essex,
2021, 69 p.

7. Pfeiffer J., Rumpe B., Schmalzing D. et al. Composition
operators for modeling languages: A literature review,
Journal of Computer Languages, 2023, Vol. 76, P. 101226

8. Zhang W., Sun Y., Oliveira B. C. Compositional
Programming, ACM Transaction on Programming
Lanquages and Systems, 2021, Vol. 43, pp. 1–61
https://doi.org/10.1145/3460228

9. Nero R. Java inheritance vs. composition: How to choose
[Electronic resource], InfoWord, 2020. Access mode:
https://www.infoworld.com/article/3409071/java-
challenger-7-debugging-java-inheritance.html

10. Wang L., Du X., Jiang B. et al. KEADA: Identifying Key
Classes in Software Systems Using Dynamic Analysis and
Entropy-Based Metrics, PubMed, 2022,Vol. 24, № 5, P. 652
DOI: 10.3390/e24050652

11. Rashidi H., Azadi F. On Attributes of Objects in Object-
Oriented Software Analysis, International Journal of
Industrial Engineering & Production Research, 2019,
Vol. 30, pp. 341–352. DOI: 10.22068/ijiepr.30.3.341

12. Kungurtsev O., Novikova N., Reshetnyak M. et al. Method
for defining conceptual classes in the description of use
cases, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics
Experiments. Vilga, 6 November 2019, proceedings, SPIE
P. 11176 doi: 10.1117/12.2537070

13. Kungurtsev O. B., Vytnova A. I. Determination of
inheritance relations and restructuring of software class
models in the process of developing information systems,

Radio Electronics, Computer Science, Control, 2022,
№ 4(63), pp. 98–107.

14. Slivnik B., Mernik M. On Parsing Programming Languages
with Turing-Complete Parser, Mathematics, 2023, Vol. 11,
Issue 7. https://doi.org/10.3390/math11071594

15. Slivnik B. Context-sensitive parsing for programming
languages, Journal of Computer Languages, 2022, Vol. 73,
P. 101172. https://doi.org/10.1016/j.cola.2022.101172

16. Sudheer N., Hrushikesava S. Different Approach Analysis
for Static Code in Software Development, International
Journal of Computer Sciences and Engineering, 2016,
Vol. 4 (9), pp. 111–118.

17. Wojszczyk R., Hapka A., Królikowski T. Performance
analysis of extracting object structure from source code,
27th International Conference on Knowledge Based and
Intelligent Information and Engineering Sytems (KES 2023),
2023 : proceedings, Procedia Computer Science, 2023,
Vol. 225, pp. 4065–4073.
https://doi.org/10.1016/j.procs.2023.10.402

18. Kaur S., Singh P. How does object-oriented code refactoring
influence software quality? Research landscape and
challenges, Journal of Systems and Software, 2019,
Vol. 157, P. 110394.
https://doi.org/10.1016/j.jss.2019.110394

19. Wedyan F., Abufakher S. Impact of design patterns on
software quality: a systematic literature review, IET
Software, 2020, Vol. 14, Issue 1, pp. 1–17.
https://doi.org/10.1049/iet-sen.2018.5446

Received 22.02.2024.
Accepted 02.04.2024.

УДК 004.415

МЕТОД АВТОМАТИЗОВАНОГО ПЕРЕТВОРЕННЯ КЛАСІВ ДЛЯ РЕАЛІЗАЦІЇ КОМПОЗИЦІЇ

Кунгурцев О. Б. – канд. техн. наук, професор кафедри Інженерії програмного забезпечення Національного університету
«Одеська політехніка», м. Одеса, Україна.

Бондар В. Р. – студентка кафедри Інженерії програмного забезпечення Національного університету «Одеська
політехніка», м. Одеса, Україна.

Гратілова К. О. – студентка кафедри Інженерії програмного забезпечення Національного університету «Одеська
політехніка», м. Одеса, Україна.

Новікова Н. О. – канд. техн. наук, доцент кафедри Технічна кібернетика й інформаційні технології ім. професора
Р. В. Меркта Одеського національного морського університету, м. Одеса, Україна.

AНОТАЦІЯ

Актуальність. Використання відношення композиції – один із найефективніших і найчастіше використовуваних
способів спеціалізації класів в об’єктно-орієнтованому програмуванні.

Мета роботи. Проблеми виникають при виявленні у внутрішньому класі зайвих атрибутів, які не потрібні для
вирішення завдань спеціалізованого класу. Для роботи з такими атрибутами внутрішній клас має відповідні програмні
методи, використання яких не тільки не вирішує завдання спеціалізованого класу, але й може призводити до помилок у його
роботі. Метою роботи є видалення із внутрішнього класу «зайвих» атрибутів, і навіть всіх методів класу, які безпосередньо
чи опосередковано (через інші методи) використовують ці атрибути.

Метод. Розроблено математичну модель внутрішнього класу, яка дозволила виділити «зайві» елементи класу.
Запропоновано метод перетворення внутрішнього класу, який на основі аналізу коду класу надає розробнику інформацію
для ухвалення рішення про «зайві» атрибути, а потім в автоматизованому режимі поетапно видаляє та перетворює елементи
класу.

Результати. Для апробації запропонованих рішень розроблено програмний продукт Composition Converter. Проведено
експерименти для порівняння перетворення класів у «ручному» та автоматизованому режимах. Результати показали
багаторазове скорочення часу перетворення у автоматизованому режимі.

Висновки. Запропонований метод автоматизованого перетворення внутрішнього класу відповідно до завдань
зовнішнього класу при реалізації композиції дозволяє суттєво скоротити час або кількість помилок при редагуванні коду
внутрішнього класу. Метод може бути використаний для різних об’єктно-орієнтованих мов.

КЛЮЧОВІ СЛОВА: об’єктно-орієнтоване програмування, класи, композиція, синтаксичний аналіз, перетворення
класу.

148

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 2

© Kungurtsev O. B., Bondar V. R., Gratilova K. O., Novikova N. O., 2024
DOI 10.15588/1607-3274-2024-2-14

ЛІТЕРАТУРА
1. Forouzan B. A. C++ Programming: An Object-Oriented

Approach / B. A. Forouzan, R. Gilberg. – McGraw-Hill
Education, 2019. – 960 р. https://www.booksfree.org/wp-
content/uploads/2022/02/C-Programming-An-Object-
Oriented-Approach-Behrouz-Forouzan.pdf

2. Lee G. Modern Programming: Object Oriented
Programming and Best Practices. / G. Lee. – Packt
Publishing, 2019. – 266 p.

3. Kanjilal J. Composition vs. inheritance in OOP and C#
[Electronic resource] / J. Kanjilal. – InfoWord, 2023. – Access
mode: https://www.infoworld.com/article/3699129/composition-
vs-inheritance-in-oop-and-c-sharp.html

4. Kungurtsev O. Tranforming Classes for Composition
Implementation / O. Kungurtsev, V. Bondar, K. Gratilova //
Modern research in science and education: The 2nd
International scientific and practical conference, Chicago,
USA, 12–14 October 2023: proceedings. – Chicago :
BoScience Publisher, 2023. – P. 143–148. ISBN 978-1-
73981-123-5

5. Composition of Languages, Models, and Analyses /
[C. Talcott, R. Heinrich, F. Duran et al.]. – New York :
Springer, 2021. – 311 p.

6. Kihlman L. Framework for Composition of Domain Specific
Languages and the Effect of Composition on Re-use of
Translation Rules: abstract of the dissertation … doctor of
philosophy in computer science / L. Kihlman. – Essex:
University of Essex, 2021. – 69 p.

7. Composition operators for modeling languages: A literature
review / [J. Pfeiffer, B. Rumpe, D. Schmalzing et al.] //
Journal of Computer Languages. – 2023. – Vol. 76. –
P. 101226

8. Zhang W. Compositional Programming / W. Zhang, Y. Sun,
B. C. Oliveira // ACM Transaction on Programming
Lanquages and Systems. – 2021. – Vol. 43. – P. 1–61.
https://doi.org/10.1145/3460228

9. Nero R. Java inheritance vs. composition: How to choose
[Electronic resource] / R. Nero. – InfoWord, 2020. – Access
mode: https://www.infoworld.com/article/3409071/java-
challenger-7-debugging-java-inheritance.html

10. KEADA: Identifying Key Classes in Software Systems
Using Dynamic Analysis and Entropy-Based Metrics /
[L. Wang, X. Du, B. Jiang et al.]. – PubMed. – 2022. –
Vol. 24, № 5. – P. 652. DOI: 10.3390/e24050652

11. Rashidi H. On Attributes of Objects in Object-Oriented
Software Analysis / H. Rashidi, F. Azadi // International
Journal of Industrial Engineering & Production Research. –
2019. – Vol. 30. – P. 341–352. DOI:
10.22068/ijiepr.30.3.341

12. Method for defining conceptual classes in the description of
use cases / [O. Kungurtsev, N. Novikova, M. Reshetnyak et
al.] // Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics
Experiments, Vilga, 6 November 2019: proceedings. –
SPIE P. 11176 doi: 10.1117/12.2537070

13. Kungurtsev O. B. Determination of inheritance relations and
restructuring of software class models in the process of
developing information systems / O. B. Kungurtsev,
A. I. Vytnova // Radio Electronics, Computer Science,
Control. – 2022. – № 4(63). – P. 98–107.

14. Slivnik B. On Parsing Programming Languages with
Turing-Complete Parser / B. Slivnik, M. Mernik //
Mathematics. – 2023. – Vol. 11, Issue 7.
https://doi.org/10.3390/math11071594

15. Slivnik B. Context-sensitive parsing for programming
languages / B. Slivnik // Journal of Computer Languages. –
2022. – Vol. 73. – P. 101172.
https://doi.org/10.1016/j.cola.2022.101172

16. Sudheer N. Different Approach Analysis for Static Code in
Software Development / N. Sudheer, S. Hrushikesava //
International Journal of Computer Sciences and
Engineering. – 2016. – Vol. 4 (9). – P. 111–118.

17. Wojszczyk R. Performance analysis of extracting object
structure from source code /
R. Wojszczyk, A. Hapka, T. Królikowski // 27th
International Conference on Knowledge Based and
Intelligent Information and Engineering Sytems (KES
2023), 2023 : proceedings. – Procedia Computer Science,
2023. – Vol. 225. – P. 4065–4073.
https://doi.org/10.1016/j.procs.2023.10.402

18. Kaur S. How does object-oriented code refactoring influence
software quality? Research landscape and challenges /
S. Kaur, P. Singh // Journal of Systems and Software. –
2019. – Vol. 157. – P. 110394.
https://doi.org/10.1016/j.jss.2019.110394

19. Wedyan F. Impact of design patterns on software quality: a
systematic literature review / F. Wedyan, S. Abufakher //
IET Software. – 2020. – Vol. 14, Issue 1. – P. 1–17.
https://doi.org/10.1049/iet-sen.2018.5446

149

