
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

ПРОГРЕСИВНІ ІНФОРМАЦІЙНІ
ТЕХНОЛОГІЇ

PROGRESSIVE INFORMATION
TECHNOLOGIES

UDC 614.2+574/578+004.38

CRITICAL CAUSAL EVENTS IN SYSTEMS BASED ON CQRS WITH
EVENT SOURCING ARCHITECTURE

Lytvynov O. A. – PhD, Associate Professor of the Department of Electronic Computing Machinery, Oles Honchar
Dnipro National University, Dnipro, Ukraine.

Hruzin D. L. – Postgraduate student of the Department of Electronic Computing Machinery, Oles Honchar Dnipro
National University, Dnipro, Ukraine.

ABSTRACT
Context. The article addresses the problem of causal events asynchrony which appears in the service-oriented information

systems that does not guarantee that the events will be delivered in the order they were published. It may cause intermittent faults
occurring at intervals, usually irregular, in a system that functions normally at other times.

Objective. The goal of the work is the comparison and assessment of several existing approaches and providing a new approach
for solving the causal events synchronization issue in application to the systems developed using Command Query Responsibility
Segregation (CQRS) with Event Sourcing (ES) architecture approach.

Methods. Firstly, the method of estimation of the likelihood of causal events occurring within the systems as the foundation for
choosing the solution is suggested. Based on the results of the analysis of several projects based on CQRS with ES architecture it
shows that the likelihood of critical causal events depends on the relationships among entities and the use-cases connected with the
entities. Secondly, the Container of Events method, which represents a variation of event with full causality history, adapted to the
needs of CQRS with ES architecture systems, was proposed in this work. The variants of its practical implementation have also been
discussed. Also, the different solutions, such as Synchronous Event Queues and variation of Causal Barrier method were formalized
and assessed. Thirdly, the methods described have been discussed and evaluated using performance and modification complexity
criteria. To make the complexity-performance comparative assessment more descriptive the integrated assessment formula was also
proposed.

Results. The evaluation results show that the most effective solution of the issue is to use the Container of Events method. To
implement the solution, it is proposed to make the modifications of the Event Delivery Subsystem and event handling infrastructure.

Conclusions. The work is focused on the solution of the critical causal events issue for the systems based on CQRS with ES
architecture. The method of estimation of the likelihood of critical causal events has been provided and different solutions of the
problem have been formalized and evaluated. The most effective solution based on Container of Events method was suggested.

KEYWORDS: Service-Oriented Architecture, Event-Driven Architecture, Event Sourcing, Events synchronization, Domain
Driven Design.

ABBREVIATIONS
CQRS is a Command Query Responsibility

Segregation;
DDD is a Domain Driven Design;
DL is a Description logics;
EDS is an event-delivery subsystem;
ES is an Event Sourcing;
HSSM is a Halstead Software Science Metrics;
IoT is an Internet of Things;
SQL is a Structured Query Language.

NOMENCLATURE
α is a weight of integration complexity in comparison

with maintenance complexity;
β is a weight of maintenance complexity in

comparison with integration complexity;
Δ is a bounded lifetime of a broadcast message;
 is a set of all events occurred in domain;

𝒩 is a set of all notifications – messages sent by all
the publishers about the events;

ρ is a weight of performance in comparison with
complexity;

j is an interval of subscription;
a, b, c are events;
A is a certain type of events;
ℭ is a set of event types related to a subset of events;
Ci is a complexity of method’s integration;
Ci is a clock function be Lamport;
Cm is a complexity of maintenance the system with

integrated method;
C(a) is a timestamp of the event a;
C(A), C(B), C(H), C(P), C(S) are use cases connected

with creation;
c
b

c
a ee , are causal events connected with the creation of

the instances;

119

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

r
b

r
a ee , are events connected with the removing of the

instances;
m
b

m
a ee , are events connected with the modification of

the instances;

keee ,, 21 are 1-st, 2-nd, k-th events;

E is a set of events of a distributed computation;

kjiiii U
c

U
b

U
a

U
ca

U
ba

U
cba EEEEEE ,,,,, are event types for

specific use case Ui

E1, En are events of a distributed computation;
Ei is a subset of events of a certain type;
Eint is an integrated performance-complexity metric;

1.222 ,, hhh is a part of handler responsible for

processing events 21,ee in Causal Barrier variant;

2ex is an exceptional situation when 2e is lost or can

be considered as lost after a defined period of time, i.e.
bounded lifetime Δ has expired;

Hc is a set of command handlers;
He is a set of event handlers;
H(b) is a causal history of the event b;
H(Ej) is a set of handlers responsible for processing

different combinations of events from the Ej group of
events;

Ij is a subset of incoming events which j-th event
handler rj, is subscribed to;

k is a number of causal events within the Ej group;
l is an order of magnitude;
m is a modification function which denotes the

applying transformations to the existing system;
M(A), M(B) are use cases connected with modification;
n is a number of connected events within the Ej group;
nℓ , nu , mℓ , mu are multiplicity coefficients;

kn is a k-th notification;

1n is a represents the count of distinct operators;

2n is a represents the count of distinct operands;

1N is a total number of operators;

2N is a total number of operands;

ntf() is a notify function;
O is a set of four basic interface operations;

avgP is an average relative performance;

hlP is an average high load performance;

hplP is an average high parallel load performance;

kP is a relative performance of the k-th method;

iP is a subset of the events published by iw ;

llP is an average low load performance;

Py is a set of all notifications published by the
command handler;

pub() is a publish function;
r is a remove predicate;

jr is a j-th event handler;

R(A), R(B) are use cases connected with removing;
'','',',',,,, vuvuvuts are time markers;

As is a subscription to A-type events;

Sx is a set of active subscriptions for event handler;
sub() is a subscribe function;
Tk is a represents the time metric;
Tmin is a represents the lowest time metric across all

compared metrics;
Ui(A), Ui(B) are use case;
usub() is a unsubscribe function;

iw is a i-th command handler;

21,, www are worlds, using Kripke semantics;

W is a set of worlds, using Kripke semantics;
□ is a necessary truth;
 is a possibility;

 is a impossibility.

INTRODUCTION
Development of the Modern software is an essential

part of any business which helps to increase productivity,
reduce costs, and improve customer services. But the
modern business is always under the influence of
changing business rules, adding new activities,
modifications of procedures and processes. Thus, the
systems developed as a business infrastructure should be
flexible enough to be adapted to business and system
requirements changes as quickly as possible. To handle
this challenge different approaches [1], principles [2] and
architectures [3–6] are provided.

One of the effective solutions is to build the system
using event-driven architecture [4] which is based on
Publisher-Subscriber pattern [7] of communication. It
allows to enable indirect communication between
modules (usually cloud services [5, 6]) using an
intermediate infrastructure called Event Publisher which
is responsible for delivering the messages published by
the publishers to the subscribers. And thus, it allows to
increase the level of flexibility [8] and scalability of the
system.

Whilst event-driven and service-oriented architectures
offer advantages at the system level, the combination of
the Command Query Responsibility Segregation (CQRS)
with Event Sourcing (ES) architectural design patterns is
frequently employed in such systems to enhance
application-level performance [9–11].

CQRS [12] is a design pattern that separates the
command (write) side of an application from the query
(read) side. CQRS is used in conjunction with ES [13] to
provide a clear separation between the handling of
commands that change the application state and the
retrieval of data for querying. During a write operation,
events are recorded in the event store, and the client is
informed that the source of truth of the system has been
updated, and eventually [14], the other parts of the system
(e.g. projections [15], services) will be updated. The
projections, which are denormalized data representations
stored in the format requested by the client, are eventually
updated by the event handlers subscribed to certain events.
Projections may be based on SQL or NoSQL databases,
or even pre-rendered web pages.

120

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

The main advantages of CQRS with ES architecture
are as follows. Write operations are performed quickly in
comparison to the non-CQRS systems, because the
execution of the commands does not depend on database
manipulation, and data manipulation is restricted only to
saving events, which appear in the result of the command
execution, to the Event Store. Read operations are
reduced to selecting pre-prepared data causing significant
speed-up of user query processing. Clear separation of
concerns between commands and queries, facilitating a
more modular and maintainable codebase.

The CQRS with ES architecture is the most applicable
for systems that are based on events on a business level,
e.g. trip systems, financial systems [16]. But this
architecture is not applicable to systems that require a
strong degree of temporal consistency [17].

The systems based on CQRS with ES architecture can
also use the Publisher-Subscriber pattern to realize
flexible, indirect communication between command
handlers, which are the producers and publishers of the
events, to the event handlers, which are the subscribers of
the events.

The object of the study is a causal events
phenomenon which appears in information systems.

One of the important problems which appears in the
systems based on CQRS with ES architecture which uses
Publisher-Subscriber pattern for enabling indirect
communication between command handlers and events
handlers is the problem of synchronization of causal
events. Causal events are causally related events the order
of which should be preserved, i.e. the events connected by
happened-before relationship [18, 19]. The source of the
problem is the fact that the event delivery subsystem does
not guarantee that published events will be delivered in
the order they were published. It may cause intermittent,
hardly detected faults occurring at intervals, usually
irregular, in a system that functions normally at other

times. The existing solutions of this problem are not
formalized and evaluated, the likelihood of appearance of
the issue is not well understood. Therefore, to provide an
effective solution to this problem, preserving the
maintainability level of the system, it is necessary to
study and evaluate the existing methods of the solution.

The subject of the study is the issue of
synchronization of causal events in systems based on
CQRS with ES architecture.

The purpose of the work is evaluating the likelihood
of the appearance of causal events in systems based on
CQRS with ES architecture and provide the most
effective method of the solution to the problem based on
the results of the evaluation of different existing and
novel solutions using complexity and performance criteria.

1 PROBLEM STATEMENT
Among several well-known problems connected to

CQRS with ES architecture [20, 21] the problem of
critical causal events synchronization has not been fully
studied. Perhaps, the reason is that using Publisher-
Subscriber pattern is not only one way to realize the
communication between Write and Read subsystems. The
source of the problem is connected to Publisher-
Subscriber pattern and inability of the event delivery
subsystem to guarantee the preservation of the order of
published events, i.e. that published events will be
delivered in the order they were published. It may cause
intermittent synchronization faults which are considered
as one of the most difficult problems in distributed
programming [22].

The main phases of the typical workflow of the
command processing by the system built using CQRS
with ES architecture and Publisher-Subscriber pattern-
based communication subsystem considered in this paper
are as follows (See Fig. 1).

Figure 1 – The typical workflow of the command processing by the CQRS with ES system

121

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

After the request validation, the command enters a
command handler, a certain component of the application
business logic layer responsible for processing the request.
The command handler uses repositories to retrieve an
aggregate or some aggregates (domain layer entities)
needed to perform the task. Then it calls a method or
some methods of the aggregate [23]. In response,
aggregate generates domain events which reflect the
changes of the state of the aggregate.

Domain events are accepted and then put by the
command handler to the Event Store unit responsible for
saving and, publishing those events to Event Bus (the
module responsible for delivery of the messages to
subscribers, i.e. event handlers).

Event handlers subscribed to the different types of
events receive and process published events. Some of the
event handlers could be responsible for notification
delivery, others for dynamic reports preparation
(projections), etc.

Following [24] formally the system can be described
as a tuple.

,,,, yxHxec PSHH
e 𝒩, ℰ, E, T, ℭ, .O

Hc is a set of command handlers responsible for
processing incoming commands and publishing the
notifications to event-delivery subsystem (EDS); He – a
set of event handlers subscribed to notifications sent by
the EDS; – the set of all events occurred in domain;
𝒩 – the set of all notifications – messages sent by all the
publishers about the events; E: – a unary function
that maps a notification to the event the notification
represents; ℭ – the set of event types related to a subset
of events, and used to restrict the scope of variables,
control the formation of expressions, and classify
expressions by value [25]; T: ℭ – a function that
maps an event to the event type, consiquently the
notifications could also be mapped to event types using
the composition of functions E and T, so we can say that
ℭ represents the set of notification types as well; Sx – is a
set of active subscriptions for event handler Vx , where
one subscription relates to a specific type of events; Py –
is a set of all notifications published by the command
handler cHy ; O – a set of four basic interface

operations [26] which can be defined as follows.

)(k
u
i npub – notification kn 𝒩 related to event

ke (which happened in domain) is published by the i-

th command handler ci Hw to EDS at time u, that

means that not all domain events obtained in result of
command execution may be transformed to notifications
and published by the command handler to EDS, but all
the notifications are mapped to the events,

jrA
t
j SsAsub)(– event handler ej Hr can be

subscribed to notifications about the events of a certain
type A ℭ at time t. The result of the operation is the

subscription added to a set of active subscriptions of the

jr , i.e.
jrA Ss Following [27] we can define the

subscription
jrA Ss as a predicate: if the notification kn

matches the topic (or channel) of subscription (in our case
the channel is related to notification type A), i.e. if Ank : ,

then)(kA ns ⊤, and then the notification will be

delivered to the event handler jr at time tv , denoted

by)(k
v
j nnfy , otherwise)(kns , and the event will not

be delivered to jr .

)(k
v
j nnfy – is the operation of delivery of the

notification. Thus, if j-th event handler is subscribed to
notifications of A type, and the notification of that type is
published by a publisher (we use ‘_’ index to show the
independency of command handler).

.),()(: uvnnfySsnpubAn k
v
jrAk

u
k j

 (1)

jrA
t
j SsAusub)(– event handler ej Hr can be

unsubscribed from notifications about the events of a
certain type A at time t, the result of the operation is the
subscription excluded from the set of active subscriptions
of the jr .

This model does not reflect all the specific features of
the system (e.g. events storing, replay mechanisms etc.)
and is focused on the components connected with critical
causal events issue.

It should be noted that inspire the difference of the
meaning of the event and the notification terms we are
intended to use only event term denoting the events
passed by the command handler to EDS and then
delivered to subscribers. Formally the problem can be
described by the time diagram shown in Fig. 2.

EDS

wi

rj

e1 e2

e1 e2

e1e2

Time

s t

Figure 2 – A time diagram of a distributed computation

In the diagram command handler ci Hw in result of

a command processing passes two events 21,ee to the

EDS, the dotted line shows that 2e is an effect of 1e , i.e.

1e is the cause of 2e . The projection of position of the

events on the Time-axis shows their temporal relation as
follows:)()(21 epubepub ii , i.e. publishing of 1e by

122

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

iw precedes publishing of 2e by the same iw command

handler, “ ” denotes strict partial order relation. Another

way to denote the relation is)()(21 epubepub v
i

u
i , where

21,ee , tvus and tvus ,,, 𝒯, 𝒯 is the set of

the clock’s ticks.

ji IPee 21, , where iP – a subset of the events

published by iw , jI – a subset of incoming events which

j-th event handler Rrj , is subscribed to, i.e. ji IP , 𝒩.

The interval of subscription
jrAj Stss),,(of j-th

event handler jr to events of type A is an interval between

subscription occurred at time s that can be denoted as

)(Asub s
j and unsubscription occurred at time t denoted by

)(Ausubt
j , s and t are timestamps, i.e. ts, 𝒯 and ts .

It means that if Aek : matches the subscription sA in

the defined interval j , and the ke is published by a

command handler at time tus , then the event will be
necessarily delivered to the event handler jr by the EDS

and reversely, if the event is delivered then it was
published by a command handler and matches the
subscription in the defined interval. Formally this
assertion can be described by the following formula.

)(: k
u

rik epubSAe
j

□)(' k
u
j enfy , (2)

where tuus ' and tuus ,',, 𝒯. We use the
necessitation operator □ from modal logic in this formula
to underline the restrictions of the model applied to the
systems under consideration, because in different real
systems the inviolability of the rule seems doubtful.

The formal description of the problem using modal
logic [29] can be represented by following formula:

)()(, 21 epubepubS v
i

u
ir

B
j

A
j j

□)()()()(2
''

1
''

2
'

1
' enfyenfyenfyenfy v

j
u
j

v
j

u
j

(3)

where

,:,:),,,(),,,(21 BeAetsstss Bj
B
jAj

A
j (4)

tuvvus '' and tvuvus ''''

tvuvuvus ,'','',',',,, 𝒯.

This formula can be interpreted using Kripke

semantics [30] as follows. For a model with worlds (states)

21, ww accessible from actual world w, it is true that:

)()(,| 211 epubepubSw v
i

u
ir

B
j

A
j j

(5)

□ .)()(2
'

1
' enfyenfy v

j
u
j

)()(,| 212 epubepubSw v
i

u
ir

B
j

A
j j

□ .)()(2
''

1
'' enfyenfy v

j
u
j

(6)

Which implies

)()(,| 21 epubepubSw v
i

u
ir

B
j

A
j j

□)()()()(2
''

1
''

2
'

1
' enfyenfyenfyenfy v

j
u
j

v
j

u
j

(7)

.,, 21 Wwww

It means that for the system in w there could

necessarily be one of the situations, i.e. accessible worlds
w1 and w2, in which the events are delivered in the order
they have been published (w1 case) and – the reverse
situation (w2 case).

The consequence of this is:

)()(,| 21 epubepubSw v
i

u
ir

B
j

A
j j

)()(2
'

1
' enfyenfy v

j
u
j

(8)

which means that the systems under consideration allow
the situation when the causal events are not delivered in
the order they have been published. Here the existential
modality operator denotes the possibility of the
situation.

It is worth to note that for some event handlers the
order of handling causal events is not critical, and the
interpretation of the identified problem mostly depends on
the system configuration.

Let us see two examples of the projects where this
issue is acutely expressed.

The first example is the clinic information system.
The clinic specializes in surgery operations, including
emergent surgery, but also provides consulting services.
Each Hospitalization instance should refer to an instance
of the Patient class, but in some cases (for example,
emergent) the Hospitalization can be created as a result of
the ResisterPatientWithHospitalization command
execution. The appropriate command handler triggers the
creation of the Patient aggregate and calling its
AddHospitalization method. In result, command handler
reads PatientCreated and HospitalizationCreated domain
events from the Patient aggregate and passes them to EDS
in <PatientCreated, HospitalizationCreated> order.

The application that uses the API reacts to the
HospitalizationCreated event by checking the existence of
the Patient instance and if it does not exist in a cache, it
causes the error. But in the case of an EDS that does not
guarantee the order, the events that were published in
order <PatientCreated, HospitalizationCreated> can be
delivered in order <HospitalizationCreated,
PatientCreated> causing the error.

123

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Another example is a financial system, where the
broker is the owner of the group of users. Each broker
must be connected with the group, but the group can be
temporarily without an owner (this exceptional case can
happen when the broker leaves the system for some
reason). As a rule, the creation of the group is part of the
broker creation process, but it could be the situation when
the broker is assigned to the existing group which was
owned by another broker. Thus, when a user adds the
broker, the system can generate at least two variants of
event sequences: <GroupCreated, BrokerCreated>,
<BrokerCreated>. And, as in the previous example, it
could cause an error in case of reverse order of delivered
events.

Thus, this paper is devoted to resolving of these types
of issues.

The solution of the problem of critical causal events
synchronization depends on the solution of three main
tasks which are as follows:

1) Providing a method of assessment of the likelihood
of the issue which can be used to estimate the risks of
critical causal events issue and to choose a proper strategy
to address the issues discovered.

2) Providing a complex of methods and strategies to
solve the issues considering the experience for handling
the related problems in distributed information systems.

3) Providing a method of evaluation of effectiveness
of the methods using the complexity and performance
metrics.

2 REVIEW OF THE LITERATURE

The problem of synchronization of causal events was
first addressed by L. Lamport [18]. In his paper he
discussed the partial ordering defined by the “happened
before” relation which is accepted by the researcher’s
community as the definition of “causality”. In accordance
with Lamport

Definition 1:
The “happened before” relation, in literature after

Lamport denoted by →, is the smallest transitive relation
that satisfies the following properties for any two events:

1) If a and b are events in the same process pi, and a
comes before b, then a b.

2) If a is the sending of a message (send event) by one
process pi and b is the receipt of the same message
(receive event) by another process pj, then a b.

3) If a с … b then a b.
Happened before is strict partial order relation

)(which is irreflexive, asymmetric and transitive [22].

Thus, baba .
Firstly, it is worth to note that Lamport wrote that this

relation could be interpreted as that it is possible for event
a to causally affect event b. Thus, the relation shows only
causality potential, not true causality.

Secondly, the second property of the relation is very
important for understanding the methods suggested to
resolve problems of causality in distributed computing.
According to [22] a send event reflects the fact that a

message was sent; a receive event denotes the receipt of a
message together with the local state change according to
the contents of that message. A send event and a receive
event are said to correspond if the same message that was
sent in the send event is received in the receive event. It is
also assumed that a send event and its corresponding
receive event occur in different processes.

The presented semantics of event and a message term
is slightly different from the semantics used in event-
driven architecture, Publisher-Subscriber pattern [28],
software systems, where the event is a signal emitted by a
component upon reaching a given state, which carries an
information about the fact of state changed and can be
broadcasted to the processes subscribed to such type of
events. The message contains a request or command, and
it is point-to-point interaction oriented.

Lamport gave a distributed algorithm for extending it
to a consistent total ordering of all the events which is
based on logical clocks. Each process has its own clock
function iC that assigns a number (timestamp))(ki aC to

event ka in that process and)()(bCaCba .

Lamport’s algorithm has well-known restriction
)()(bCaC ⇏ ba to overcome which several

approaches (e.g. vector clocks) were suggested [31, 32].
These methods relate to different restrictions and
limitations. For example, in [22] assumed that each
process is strictly sequential, and the events of the process
are totally ordered by the sequence of their occurrence.
According to [33] a set of vector timestamps, one per
event, cannot fully characterize a distributed computation
in the systems that allow message “overtaking”.
According to [34] these methods can only be used when
the number of processes is known by every process, so
each process can be assigned an integer number as an
identifier.

Considering that causality is “cause-effect”
connection of phenomenon through which one event
(cause) under certain conditions gives rise to another
event (effect) [22] and the true causality of events can
only be denoted explicitly [35, 36].

There are two basic classes of methods connected with
explicit definition of the events causality.

The first class of methods is based on using the causal
history of events, which can be defined as follows [22]:

Definition 2:
Let E = E1 UU ... En denote the set of events of a

distributed computation and let a, b E, a ≠ b denote
events occurring in the course of that computation.

The causal history of b, denoted H(b), is defined

as }{)}(,|{)(ebaEaabH c . Where

c denotes true causality relation. The projection of
H(b) on Ei, denoted H(b)[i], is defined by

iEbHibH)(])[(.

124

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

It is worth to note that according to [22] Ei denotes the
subset of events occurring at process pi, while in the
context of this work, Ei denotes a subset of events of a
certain type, a subset defined by the characteristic
predicate Pi, i.e. }),(|{ EaaPaE ii .

Definition 3:
Causality and causal history are related as follows:

1) ba c iff)(bHa . (9)

2) ba || iff)()(aHbbHa . (10)

That means that causality relation is defined by the

causality history.
The history of events can be represented differently

depending on the specific of problems to be solved. For
example, to solve the problem of causality tracking for
distributed key-value stores in [36] proposed to describe
the history by dotted version vectors etc. But the main
idea is to attach causal history to the messages (in our
case events) passing through the nodes-processes.

The simple way is to attach full causal history to each
event, as it is proposed in [37]. Thus, the receiving
process knows the order of events and waits for the
completion of the causal event before reacting to the
consequential one. The disadvantage of the method is the
increasing of size of the additional information attached
to the event. To reduce the size of payload a set of
methods based on causal barrier has been proposed. These
methods propose carrying information about the
immediate predecessors of the event. This minimal
information constitutes the so-called causal barrier of a
message [34]. In [38][34] discussed a special type of
causal broadcast, called Δ-causal broadcast, that can be
used when the broadcast messages have a bounded
lifetime Δ.

The second class of methods is based on an
information protocol which allows to handle the causality
of events specifying the information dependencies
between the messages-communications that processes
(agents [35]) may send. An agent may send a message-
communication only if the state of the agent, which is
based on the communication history, and the message-
communication together satisfy the relevant information
dependencies.

This approach is represented in works of Munindar P.
Singh [35], who proposed a declarative, multi-agent
approach based on true causality called information
protocols. According to his works, the business process
consists of a sequence of protocols, and each protocol
reference must have at least one key parameter in
common with the protocol in which its declaration occurs.

Another variant is to use communication protocols for
point-to-point or multicast communications which enforce
only a causal delivery order [39] that means that the
delivery of messages has to be delayed according to
causality constraints.

Among different types of distributed systems, the
systems built using Publisher-Subscriber (Pub/Sub)
pattern are the closest to the systems considered in this
paper. Publishers and subscribers are interconnected by
means of the so-called Notification Service, which plays a
mediating role by storing the incoming subscriptions and
routing incoming notifications towards the right
destinations. For scalability reasons the notification
service can be implemented in a distributed manner [40].
In [41] presented the basic operations classification,
conditions and a Fault Model connected to Publisher-
Subscriber systems which considers the problem of
ordering.

In order to implement the causal order of published
messages, in [28] apply causal barriers, but in comparison
with the classical it does not enforce the causal order
based on the identifiers of the nodes (per node vector) but
by using direct message dependencies, which renders the
algorithm more suitable for dealing with node dynamics.
Thus, each causal barrier[t] keeps information on all
messages that are predecessors of the next message that
will be published by node i for topic t; the causal barrier
consists thus of a set of message identifiers of format

cs, (source and sequence counter).

In conclusion it should be highlighted that there are no
well-known works connected with resolving the problem
of critical causal events in the systems based on CQRS
with ES architecture using Pub/Sub pattern to interact
with the event handlers. The existing, described solutions
depends on the specific of the problems they have been
developed for, which makes it difficult to apply them
directly to the problem under consideration.

The solution described in [35] has many similarities
with the Saga pattern [42], suggested to address
distributed transaction tasks and widely employed in
information systems, for cases when modifying one
aggregate leads to creating a command for modifying
another aggregate. However, the considered issue arises
when synchronizing causal events generated by changes
to a single aggregate. While this approach could be
applied in this situation, it would lead to suboptimal
commands structure and performance degradation.

The solution provided in [37] is adapted to distributed
virtual environment and cannot be directly applied to the
systems under consideration. Additionally, it’s not well
understood how the authors resolve the problem with
transitive events (i.e. bca), and the case

bbcaba || and ca when the events b and

c can be processed concurrently after the event a has been
processed. Also, there is no information on how process
sends the message to the process which is interested in
only one event from the causal events package.

3 MATERIALS AND METHODS

The assessment of the likelihood of the causal events
could help us not only to evaluate the risks connected to
the issue, but also affects the choice of a method to
manage the risks and to resolve the problem.

125

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Based on research across several projects based on
CQRS with ES architecture and Publisher-Subscriber
pattern-based communication subsystem, conducted at
DBB-Software company [43], where causal events issue
was most acutely felt, the following dependencies has
been identified.

It was noticed that the likelihood of the issue is
contingent upon the interdependence of associated entities
within the aggregate (Fig. 3) and the relation of the use
cases connected with the entities. We preferably focused
our attention on the aggregation relationships between the
entities of 1–0..* and 1–1..* multiplicity as the most
common sources of the causal events issue in the
examined projects. It worth recalling that multiplicity in
UML describes how many instances of one class can be
connected to an instance of another class through a
given association.

Let us consider the following example. In a clinical
information system, a patient record can include
information on several hospitalizations (at least one) and
all the hospitalizations must be connected to a certain
patient. In other words, the instance of patient aggregate
must be associated with at least one instance of the
hospitalization (association of 1–1..* multiplicity).

Thus, in result of CreatePatient command execution
we may say that the patient creation event (PatientCreated)
causes the hospitalization creation domain event

(HospitaliztionCreated). On the other hand, a patient may
not require surgery (i.e. the multiplicity of the
“hospitalization-surgery” association is 1–0..*). In this
case, the attached hospitalization information may not
contain any information about surgery planning, etc.
Thus, the likelihood of causal events in this case is rather
lower than in the variant of 1–1..* association, but is not
impossible.

To formalize the association, we use DLR description
logic [44] which is the most suitable formalization
mechanism (e.g. in comparison to [45]) for representing
domain entities by means of concepts and relations.
Description logics (DL) are regarded as late descendants
of Minski’s frames [29] with an explicit model-theoretic
semantics. There are a number of automated reasoning
systems, that have been successfully applied to various
application domains.

According to [44] an aggregation A, saying that
instances of the class C1 have components that are
instances of the class C2, is formalized in DLR by means
of a binary relation A together with the following
assertion (Fig. 4):

A ⊑ (1:C1) ⊓ (2:C2). (11)

Figure 3 – The typical example of relations between entities causing causal event issue

C1
ml..mu

C2
nl..nu

A

Figure 4 – Aggregation in UML [44]

The following convention is used: the first argument

of the relation is the containing class (C1). The first
component of the association is C1, the second is C2.

The multiplicity of an aggregation is expressed in
DLR as follows.

C1 ⊑ (Anl]1[) ⊓ (Anu]1[), (12)

C2 ⊑ (Aml]2[) ⊓ (Amu]2[). (13)

If nℓ = 0, i.e., the association is optional, the first

conjunct could be omitted, and if nu = (infinity) the
second one is omitted.

Thus, using the example shown in Fig. 3. we can
define following formulas.

Patient ⊑ (≥ 1 [1]hasHospitalization), (14)
Hospitalization ⊑ (=1 [2]hasHospitalization). (15)

where =1 [2]hasHospitalization is simplified variant of
≥1 [2]hasHospitalization ⊓ ≤1 [2]hasHospitalization

Hospitalization ⊑ ([1]hasSurgery), (16)
Surgery ⊑ (=1[2]hasSurgery). (17)

Before we start examining the use cases connected
with the entities, we should formulate the restrictions and
the specific of using terms and concepts.

Rigorously use case can be represented as a function
which maps the request (in our case the request relates to
command) into response and changes of the state of the
system. Firstly, the function may map the request to
different responses depending on the request content and
the state of the system. Secondly, the function can be
composed of other functions, considering different
alternatives, i.e. λx.g(f(x)) : A → C where f : A → B and
g : B → C. In accordance with Type theory [46] these
functions can be described by the dependent functions
(general productions) type denoted by Пx: A.B(x), which
means that if A is a type, we may have the family of types
B(x) where x: A.

Understanding the above specific, considering the
works devoted to use cases formalization [47, 48], but
guided by the purposes of the work trying to avoid
unnecessary complexities connected to formulas
representation, we should declare the following
restrictions. Firstly, in this paper we are focusing only on
the use cases related to the entities thus connected to three
main operations (create, modify, remove). Secondly, we
restrict the further using of the use case term to only the
basic scenario omitting the exceptions, regarding only

126

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

conditional success-oriented alternatives (e.g. alternatives
which may trigger the use case extension connected with
the other entity).

Three basic use cases connected with the create
operation for the entities shown in Fig. 3 are as follows:
CreatePatient, CreateHospitalization, CreateSurgery (in
real system the names of use cases can be different,
considering the requirements dictated by the ubiquitous
language used to design the software).

Table 1 – Relations between use cases

Relation Meaning

)()(HCPC
inc C(P) always invokes C(H)

)()(HCSC
ext

C(H) invokes C(S) only when a
condition is met, not always

)()(HCPC
pre

C(H) cannot be invoked if C(P) was not
invoked before

)()(SC
pre

HC
C(S) cannot be invoked if C(H) was not
invoked before

Let us denote CreatePatient use case as C(P) (i.e. a

successful path of the create patient scenario)
CreateHospitalization as C(H), CreateSurgery as C(S).

The possible relations [49] between the use cases in
accordance with the described model (Fig. 3) are
presented in Table 1. To simplify the representation the
relations are denoted as follows: the relation “C(A)

includes C(B)” as)()(BCAC inc , the relation “C(B)

extends C(A)” as)()(ACBC ext the relation “C(A)

precedes C(B)” as)()(BCAC pre . It is worth to note

that in according with terminology [50] in the relations
“C(P) includes/precedes C(H)” – C(P) called the base use
case, while in the relation “C(H) extends C(H)” – the base
use case is C(H).

Let us denote hasHospitalization relation with the
multiplicity in direction from Patient to Hospitalization as
<P, H>+ (here “+” denotes 1..*) and the same association
in opposite direction as <H, P>, analogically hasSurgery
relation as <H, S>*, where “*” denotes 0..* multiplicity.

Let us denote PatientCreated event as c
pe ,

HospitalizationCreated as c
he and SurgeryCreated as c

se .

The relation)(
c
h

cc
p ee denotes that c

pe is the cause of c
he .

The dependency of the likelihood of causal events on
use cases is presented in Table 2. The likelihood is
expressed using modal logic operators (□ – stands for
necessary truth, – possibility, – imposibility of the
situation).

Table 2 – Likelihood of causal events

Trigger Use cases relation
Entities
relation

Likelihood of causal
events

C(P))()(HCPC
inc

<P,H>
+ □)(

c
h

cc
p ee

C(H))()(HCSC
ext

<H,S>*)(

c
s

cc
h ee

C(H))()(HCPC
pre

<P,H>
+)(

c
p

cc
h ee

C(S))()(SCHC
pre

<H,S>*)(
c
h

cc
s ee

Considering use cases connected with modification

(denoted by M operation) and remove (denoted by r
predicate) types of commands (for example, the activation
of account belongs to the use case of m-type) the
following types of relations among use cases should also
be analysed:

1) Relations between creation use cases connected to
one entity and modification use cases connected to other
entities.

2) Relations between modification use cases
connected to one entity and the creation use cases
connected to other entities.

3) Relations between modification use cases
connected to one entity and the modification use cases
connected to other entities.

4) Relations between remove use cases connected to
one entity and the modification use cases connected to
other entities.

5) Relations between remove use cases connected to
one entity and the remove use cases connected to other
entities.

On the base of several projects analysis the following
results were obtained. There are two generic necessary
truth rules which can be represented as follows.

The first necessary truth rule considers creation of the
instances of classes connected by r]1[1 type of relation.

Let us say A and B are the entities connected by r, and
C(A) and C(B) are the use cases connected with the
creation of their instances a: A and b: B,

)()(BCAC inc means that use case C(A) includes use

case C(B), c
b

c
a ee , are the events connected with the

creation of the instances, c
b

cc
a ee denotes that c

ae is the

cause of c
be , □ – stands for necessary truth. Then the first

rule of the dependency between the relation of the entities,
creation use cases and the corresponding causal events
can be described by the logic formula as follows:

Iff A ⊑ ≥ 1 [1]r, B ⊑ = 1 [2]r Then

)()(BCAC inc □)(c
b

cc
a ee (18)

Consequently

Iff A ⊑ ≥ 1 [1]r, B ⊑ = 1 [2]r Then □)(c
b

cc
a ee (19)

127

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

The second necessary truth rule considers removal of
the instances of classes. Independently of the first
component of the relationship, if the multiplicity of the
second is =1, then the remove use cases will be connected
with includes relationship and cause the events causality,
which can be described by the logic formula as follows
Iff B ⊑ = 1 [2]r Then

)()(BRAR inc □)(r
b

cr
a ee (20)

)()(BRAR inc means that use case R(A) includes

use case R(B), r
b

r
a ee , are the events connected with the

removing of the instances.
The other relations between the use cases depend on

the functional requirements of the system and cannot be
generalized, but they could significantly affect the risk of
the issue, therefore we tried to organize the information
which was obtained from the realized projects using
relationship matrices shown in Fig. 5 and Fig. 6.

A B
1..*

1

C(A)

M(A)

R(A)

C(B) M(B) R(B)

C(B)

M(B)

R(B)

C(A) M(A) R(A)

?

?

?

?

?

?

Figure 5 – Dependency of causal events on the relations
between the use cases for 1–1..* relation

A B
0..*

1

C(A)

M(A)

R(A)

C(B) M(B) R(B)

C(B)

M(B)

R(B)

C(A) M(A) R(A)

?

?

?

?

?

?

Figure 6 – Dependency of causal events between the use cases

for 1–0..* relation

The left matrix shows the relations in direction from
the use cases engaging A entity, to the use cases engaging
B one, i.e. <Ui(A), Uj(B)> pairs, where B is the
aggregated entity, the right matrix shows the relationships
of the use cases in opposite direction. Ui(X) and Uj(X)
stand for one of 𝔄 use case types (the basic types are C, M,
R), engaging X entity. □ – stands for necessary truth,
– possibility, empty space means that the relation is
impossible, i.e. necessary false. “?” – means that the
likelihood is undefined because it depends on the specific
of the system requirements and whilst for one subset of

the existing systems under consideration it may be
necessary truth, for second it may be only possible and for
the third it is absolutely impossible. For example, if, in
accordance with the requirements, the relation between
M(A) and M(B) is “M(A) includes M(B)” then the
likelihood of the causal events is necessary truth, i.e.

□)(m
b

cm
a ee etc.

Some of the presented dependencies are not trivial and
connected to the certain type of the projects. For example,
the relation <C(A), C(B)> (Fig. 6) is rear: it appeared in
the financial system where C(A) caused the modification
of several existing instances of B in accordance with the
settings rule, which can then be aggregated by the object.

The generic use cases diagrams for two basic variants of
the entities relations mentioned above are shown in Fig. 7.
The dotted edges without labels denote undefined
relations.

C(A) C(B)
<<include>>

M(B) M(A)

R(B)R(A)
<<include>>

A B
1..*1

C(A) C(B)
<<extend>>

M(B) M(A)

R(B)R(A)
<<include>>

A B
0..*1

Figure 7 – Relations between basic use cases for 1–0..* and 1–

1..* associations
Undefined dependencies for the certain project can be

resolved using the information on the projects (ideally of
the same type) which has been previously realized.

The probability of the include or extend type relation
occurrence can be evaluated by the ratio of frequency of
occurrence of such relation to the number of aggregation
relationships within the project.

In result, we can evaluate the number of potential
cases where the issue could appear, and, consequently, to
choose the method of its resolution.
For example, if we have the probabilities of the include-
type relation between the use cases connected with A and
B entities linked by the association of 1–1..* multiplicity
for a project of a certain type as it is shown in Fig. 8.
Then we can guess that the number of the potential causal
events for each aggregation relation with the 1–1..* for a
new project of the same type will be approximately 2.9
(i.e. for 10 cases it will be 29 etc.). The same way we can
evaluate the number of cases for the relation of the
extend-type.

To increase the accuracy of the estimation not only
projects should be classified, but also the entities and their
relations should be also considered.

Of course, the evaluation cannot identify the number
of critical causal events. To evaluate the potential number
of critical causal events we may monitor the ratio of their

128

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

number to the number of the inclusion and extension
probabilities.

Thus, the result may be as it is shown in Fig. 9.

A B
1..*

1

C(A)

M(A)

R(A)

C(B) M(B) R(B)

C(B)

M(B)

R(B)

C(A) M(A) R(A)

0.1

0.3

0.1

1

1

0.2

0.1

0.1

Figure 8 – The probabilities of the include-type relation between

the use cases for a project

A B
1..*

1

C(A)

M(A)

R(A)

C(B) M(B) R(B)

C(B)

M(B)

R(B)

C(A) M(A) R(A)

0

0.1

0.02

0.5

0.1

0.1

Figure 9 – The probabilities of the potential number of critical
causal events for include-type relation between the use cases for

a certain type of entities

This approach can give a more or less accurate
assessment of the probability of potential critical causal
events for a project if the company has already
implemented similar projects using the same architecture.
It should be noted that the classification of projects,
entities, and maintaining statistics on projects is a labour-
intensive task and cannot be implemented without
automation.

In conclusion, to summarize the presented information
we can define as follows. The best way to estimate the
risk of critical causal events occurrence is to use the
history related to the same type of projects, considering
relations of 1–1..* and 0–1..* types between the entities
and the derived relations among use cases. Whether the
absence of the history it is very important to take into
consideration the dependencies of causal events on the
relations between the use cases shown in Fig. 5 and Fig. 6
and thoroughly analyse the project trying, firstly, to
choose the entities linked by the relations of such type,
secondly, to analyse the use cases identifying the
causality of the events, and, thirdly, choosing critical
causal events of them.

Depends on the likelihood of critical causal events,
different solutions are favourable. Let’s consider four
solutions to the issue of synchronizing critical causal

events in systems based on CQRS with ES architecture,
along with their advantages and disadvantages.

The first variant is “New event introduction”. The
main idea is to create a new event that represents the
composition of critical causal events.

Let us see the modifications of the system in case
when the use cases connected by the “includes”
association.

)()()(AUBUAU ij
inc

i □)(iU
baE (21)

In this case)(AUi triggers execution of)(BU j use

case which results in generating one composed event

□)(iU
baE which can be linked to iU use case (e.g.

PatientWithHospitalizationCreated which contains
included HospitalizationCreated event). At first glance the
number of events remains the same (just PatientCreated
event is substituted by
PatientWithHospitalizationCreated), but the handler

subscribed to jU
bE type of events should be also

subscribed to the events of iU
baE , because in case when

)(BU j occurs independently of)(AUi , which can

happen in case of 1–1..* relation, an event of jU
bE will be

generated, i.e.

)()()(BUBUAU jj
inc

i

□)(jU
bE .iU

baE

(22)

In case when the use cases connected by the “extends”
association the situation is as follows.

)()()(AUAUBU ii
ext

j □)(ii U
a

U
ba EE (23)

and

)()()(BUAUBU ji
ext

j □).(jU
bE (24)

Thus, three events should be introduced and all
jU

bE and iU
aE handlers should be also subscribed to iU

baE
event.

The situation becomes worse when we have the
following relation of the use cases (Fig. 10).

In this case)(AUi can result four different types of

events.

)()()()()(AUAUCUAUBU ii
ext

ki
ext

j

□).(iiii U
a

U
ca

U
ba

U
cba EEEE

(25)

129

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Ui(A) Uk(C)
<<extend>>

Uj(B)

<<extend>>

Figure 10 – Multiple extend relation example

iU
aE handler should be subscribed to and consider

handling of iii U
ca

U
ba

U
cba EEE ,, types of events.

ii U
ca

U
ba EE , handlers should consider iU

cbaE .

jU
bE handler to ii U

ba
U

cba EE , .

kU
cE handler to ii U

ca
U

cba EE , .

For example, there is HospitalizationCreated event
created as a result of processing the command. It can
optionally cause the creation of surgery and diagnostic
procedures. Such case can lead to creation of three
composite events:

– HospitalizationWithSurgeryAndDiagnosticCreated;
– HospitalizationWithSurgeryCreated;
– HospitalizationWithDiagnosticCreated.
HospitalizationCreatedHandler should probably need

the subscription to all three of them,
HospitalizationWithSurgeryCreatedHandler and
HospitalizationWithDiagnosticCreatedHandler potentially
need the subscription to
HospitalizationWithSurgeryAndDiagnosticCreated.
SurgeryCreatedHandler and DiagnosticCreatedHandler
both need subscription to
HospitalizationWithSurgeryAndDiagnosticCreated as
well as HospitalizationWithSurgeryCreated and
HospitalizationWithDiagnosticCreated respectively. So,
using this synchronization method with such a
relationship can generate 8 additional subscriptions for
existing handlers to new events, increasing code
complexity and deteriorate code readability.

Now, let’s imagine that there are 10 occurrences of
such three use cases relations. It results in introduction 30
extra events, and 80 new subscriptions, as well as extra
work related to updating the handlers. Thus, the provided
solution can lead to an increase in code complexity and
often results in code duplication [51].

Of course, here is presented the worst-case scenario. If
the a + b and a + c combinations of events are not critical,
these types of events can be ignored and only one a + b +
c extra type of events must be added.

The second variant of the problem’s solution is based
on using synchronous event queues instead of a classical
event bus variant [52, 53]. It solves the issue by ordering
the handling of events, but it may cause performance
issues.

The third variant is the variation of Causal Barrier
method [28] [38], the main idea of which is to provide
partial history of causality considering the bounded
lifetime Δ for the events-messages [34]. This method is

effective when the number of causal events in the history
can be high, which can negatively affect the performance
of the event-driven system. The other assumption
connected to that method is that handling of the events
may not require full history of causality. But for the
systems under consideration the history of causal events
does not exceed 3–4 events and dividing the history into
chunks results in handlers’ complication and decreasing
the usability of API (when the handlers are the third-party
services). The cases of handling events by the subscribers
using only partial history are the exception rather than the
rule. As it is mentioned in [19], to maintain the causal
order of events, a site must verify that all events within
the causal history of the received event have been handled
before processing it.

The complexity of the modification can be expressed
in terms of the number of scenarios that the client needs
to handle depending on the number of causal events
within the Ej group.

The modifications that should be applied to each
handler for two causal events are shown in Fig. 11.

Figure 11 – The modifications must be applied according to the

Causal Barrier approach to process two causal events

For the case of two causal events the following
notation is used:

 21,ee – an ordered set of causal events, where

21 ee (“<” means the strict partial order relation).

2h – basic-positive part of the handler responsible for

processing zE according to the scenario when the events

come in proper order i.e. 221121 :,:,, EeEeee . This

part cannot be omitted and can be regarded as a minimal
part of the handler needed to process a 2e event.

2h – alternative-negative part of the handler

responsible for processing the following situations:

1.2h – when the order of events 12 ,ee instead of

 21,ee ;

2ex – an exceptional situation when 2e is lost or can

be considered as lost after a defined period of time, i.e.
bounded lifetime Δ has expired.

130

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Figure 12 – The modifications must be applied according to the

Causal Barrier approach to process three causal events

The three causal events case (Fig. 12) looks much
more complicated. The case 2h should be considered,

when 2e has come but 1e has not come yet, and 2e is in

the state of waiting for confirmation. It is notable that the
current description doesn’t touch the part responsible for
exception handling which can be realized in different
ways.

Thus, the number of scenarios that the client needs to
handle (the complexity of the modification) depending on
the number of connected events within the Ej group can
be evaluated using the formula (26).

.1*2)(kEjC (26)

Let us see the variant of client modification in the
example for the sequence of events <PatientCreated,
HospitalizationCreated>.

The first scenario is when the sequence of events is
received by the client application in the order as it was
sent, e.g. in the proper order. In this case, the events are
processed sequentially (see Fig. 13).

The second scenario involves a situation where the
HospitalizationCreated notification arrives first. In this
case, after receiving the HospitalizationCreated
notification and determining that the patient to which the
hospitalization belongs does not exist, the client waits for
a PatientCreated event for a specified period. Upon
receiving the PatientCreated notification, both
notifications are processed together (see Fig. 14).

In the last scenario, if the PatientCreated notification
does not arrive within the specified waiting time, the
Client logs an error and/or requests a full initial context
from the server (see Fig. 15).

This solution solves the problem, but it significantly
complicates the construction of the client, negatively
affecting the usability of the system’s API, i.e. each client
such as different mobile and desktop applications,
including other services should be prepared to handle
these cases.

Figure 13 – The basic scenario of events processing using the Causal Barrier approach. The case when the PatientCreated event is

received before HospitalizationCreated

131

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Figure 14 – The basic scenario of events processing using the Causal Barrier approach. The case when the PatientCreated event is

received after HospitalizationCreated

Figure 15 – The basic scenario of events processing using the Causal Barrier approach. The case when the PatientCreated event is not

received

The last variant of the solution is based on presenting
of full history of causality. The variation proposed in this
paper differs from the classical solutions (e.g. [37]) in that

it is more flexible and more effective for CQRS with ES
architecture.

The solution is based on introduction of an abstract
container of events that can be used for delivering the

132

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

causal events. It can be called a complex event or a
Container of Events (Code snippet 1).

There are three basic ways of event publishing unit
modifications in order to deliver event containers. The
first one which is based on Event Bus modification is as
follows.

For each container, Event Bus (i.e. event publishing
unit) analyses its content and if some handler is
subscribed to one or more events from the group, it
delivers these events in proper order to that handler. This
variant requires spending more effort to modify the event
publishing unit, but it does not touch the handlers.

The second variant, which is the opposite variant to
the first one, is to deliver all event containers to all the
event handlers (a variant of broadcast notification)
making the handlers responsible for analysing the content
of containers and choosing the right method to process the
events. This variant requires the introduction of an
abstract handler able to get the events from the container
and choose the proper method/methods of their
processing. The advantage of the solution is avoiding
Event Bus modification.

The third variant is the composition of the first and the
second. Instead of doing container of events broadcasting,
Event Bus sends the event containers only to the event
handlers subscribed to one or more events from the group,
using a generic method. In this case, the event handler is
responsible for analysing the payload, defining the order
of events publishing, and choosing the proper
method/methods to process the events. This variant seems
to be the most effective solution, because of reducing the
number of handlers to notify, but it requires a slight
modification of the Event Bus.

At the implementation level, for the third variant, two
following approaches should be considered. The first one
involves creating a container event handler within the
base class, which unpacks the container of events and
then invokes the appropriate methods of the derived
classes, passing subgroups of events from the container.
This approach is based on defining method signatures,
using reflection mechanisms. It does not require any
modifications to the handle methods of the derived
classes and proves effective when integrating Container
of Events solutions into a system that already has a large
number of handlers. The second approach entails defining
in the base class only the function for unpacking the
container of events, which is then utilized in the handle
methods of the subclasses. After unpacking, these
methods process events in the defined order. This solution
is more flexible, as it allows adding additional logic for
handling events section of handle methods of each
handler.

The complexity of this solution is independent of the
number of causal events within the Ej group. All the
necessary changes are made to the system’s infrastructure,
and it plays a crucial role in assessing the ease of
implementing future changes in the system across
observable solutions.

To reduce resource costs when implementing new
handlers, a base handler with an implementation of the
UnpackContainer function is created (Code snippet 2) All
handlers processing causal events inherit from the
BaseHandler (Fig. 16). Upon receiving the event
container, the handler unpacks it and processes the events
synchronously (Code snippet 3).

Figure 16 – The variant of solution based on the introduction of the BaseHandler.

Code snippet 1
{
 Title: string,
 Events: [
 {

header: string,
body: JSON string

}
]

}

133

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Code snippet 2

class HandlerBase {
 UnpackContainer<T1, T2, ..., Tn>(container: IContainer): []Event<T1 | T2 | ... | Tn> {
 events: []Event<T1 | T2 | ... | Tn> = []

For container.Events (event: Event) {
 if ([T1, T2, ..., Tn].includes.(event.type) {
 events.Add(events)

}
}
return events

}
}

Code snippet 3

class Handler inherits HandlerBase {
 Handle(container: IContainer): void {
 events = self.UnpackContainer<_handledTypes>(container)

For events (event: Event<_handledTypes>) {
 Process event synchronously
}

}
}

Figure 17 – The basic scenario of events processing according to the Container of Events approach

For the above example, it works as follows. For the

hospitalization creation task, the command handler puts
the sequence of generated events into a container with the
title “HospitalizationCreation” (<PatientCreated,
HospitalizationCreated>). Then it passes the container to
the Event Store which unpacks the container, saves events,
and publishes the container. Then the event handlers
subscribed to the PatientCreated or

HospitalizationCreated events receive the container. In
our case UpdatePatientProjection handler is subscribed to
PatientCreated event, UpdateHospitalizationProjection –
to HospitalizationCreated event and ClientNotifier
handler – to both of them. So all these handlers will
receive the container, unpack that container and process
the events in proper order which is <PatientCreated,
HospitalizationCreated> (see Fig. 17). After processing

134

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

the Container of Events by Notification handler, the
Notifications are sent to the Client Application. If the
connection between the Notification Service and the
Client Application guarantees that the order of delivery is
preserved, the service sends notifications one by one in
the correct order (e.g. WebSockets guarantees the
preservation of the delivery order [54]). Otherwise, the
Notification Service builds a notification, that includes
information from container of events, and sends it to the
client application as a single message. In that case, the
client application should be adapted for notifications
handling making the client application able to transform
the Container of Events into a sequence of events calling
them one by one in the correct order.

4 EXPERIMENTS
The strategy chosen to conduct the experiment is as

follows.
The typical test application to realize the tasks

described in part 3 was created and published to GitHub
[55]. Initially, the system domain contained only two
causal events that were processed asynchronously. The
four solutions proposed above were realized concurrently
and published to different Git branches.

The first phase of the experiment involves evaluating
the complexity of the code required for integrating each
of the four modifications.

In the second phase of the experiment two additional
causal events were added to the domain of the system,
and these changes were merged into each version with the
integrated methods for solving the causal events
synchronization issue. Then, after merging, the versions
were updated to be operational and the complexity of
code changes for the update was evaluated for each
method.

The third phase of the experiment involves evaluating
the performance of each of the integrated methods.

The fourth phase can be considered as calculating the
complexity-performance comparative assessment of the
considered methods.

Several methods for assessing the complexity of task
implementation were considered [56][57]:

Lines of Code [57]. The approach suggests that the
complexity of a software product is directly dependent on
the number of lines of code in the product. It’s a simple
but not very accurate and relevant estimation.

The Number of Statements Metrics [56] serves as an
indicator of the quantity of statements within a method.
On the positive side, the Number of Statements Metrics
offers a nuanced measure of method complexity,
providing a more stable evaluation compared to Lines of
Code. It encourages the identification of logical groupings
within a method, fostering improved code organization.
However, a potential drawback lies in its reliance on the
subjective process of method extraction, which could
introduce variability in interpretation.

Object Points [57] is a metric method that assigns
weights to software modules. While it can be described,
the process of assigning weights may lack clarity, and it

does not inherently consider the uniqueness of the code.
This metric primarily serves estimation purposes rather
than evaluating the finalized code.

Information flow complexity [58]. The method entails
evaluating information flow complexity in a software
system through the analysis of function call quantity,
frequency of invocation, and the number of functions
each function calls. Its robustness lies in offering a
holistic perspective on the data and control flow within
the system, facilitating the identification of dependencies
and potential bottlenecks. This approach is especially
valuable for assessing and managing the complexity of
software codebases characterized by considerable
function nesting.

Cognitive functional size [59]. The Cognitive
Functional Size (CFS) approach involves quantifying the
functional size of software based on the cognitive load
required for developers to comprehend and interact with
the system. Notably, it excels in providing a user-centric
measurement, capturing the complexity from the
perspective of understanding and processing functionality.
This method is particularly valuable for comparing the
complexity of entities, such as classes, offering a more
insightful evaluation that aligns with the cognitive
demands placed on developers interacting with those
entities.

Dep-degree metrics [60]. The approach operates on
the principle that a program becomes more challenging to
understand as the programmer’s short-term memory is
burdened with more chunks to remember. The DepDegree
is a method of the cumulative count of dependencies for
its statements, aligning with the psychological
understanding that immediate memory has a limited
capacity.

McCabe’s cyclomatic complexity [61]. The
complexity measurement is based on the amount and
level of functions, methods, and procedures (e.g. loops
and conditions). The higher this amount, the more
difficult it will be for the developer to build, understand,
and modify the code. This method excels most when
evaluating complex algorithms. For simple operations, it
may not provide high accuracy and may not reveal the
true variability in the complexity of implementation.

Halstead Software Science Metrics (HSSM) [62].
These metrics are used to quantify the complexity of
software by analysing the composition of code within
program modules. The approach calculates three primary
complexity metrics of a program: volume (V), difficulty
(D), and an effort (E). The formula for calculating the
effort in Halstead Software Science Metrics is as follows:

.*VDE (27)

V represents the program’s volume, which is
calculated using formula 28. D represents the program’s
difficulty, which is computed using formula 29.

).(log*)(21221 nnNNV (28)

)./(*)2/(221 nNnD (29)

135

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

The Halstead Software Science Metrics is a
straightforward method for measuring code complexity
that performs well in assessing the intricacy of simple
code. It takes into consideration both the volume of code
and its uniqueness. The main cons of the method are
ignoring the higher-level software design and
architectural considerations and limited scope. Halstead
Metrics primarily focuses on the code itself and may not
provide a comprehensive view of software code quality,
performance, or other important factors.

Another critical metric in such systems, besides
complexity and the effort required to implement a
solution, is performance. The performance metric was
determined by measuring the time taken, experimentally,
from the submission of a data change request to the data
update on the Client side.

To provide an overview and highlight the pros and
cons of each approach, three different measurements were
conducted:

– Average update time when sending 100 data update
requests with a 10-millisecond interval.

– Average update time when sending 1000 data update
requests with a 10-millisecond interval.

– Average update time when sending 100 parallel data
update requests, repeated 100 times with a 200-
milliseconds interval.

For a more accurate assessment, the experiment was
repeated three times using machines with different
technical specifications. The final evaluation is the
arithmetic mean of the three obtained measurements. It is
also worth noting that a relatively simple implementation
of the considered solution methods was provided for the
experiment. For example, for the variant with a queue, the
in-memory queue “Sync-Queue” [63] was used; using
other tools such as AWS SQS [64] or Apache Kafka [65]
would yield different assessment results.

To compare this metric across multiple solutions, a
specific system runtime metric was measured for each
solution multiple times and the average value was
calculated. Thus, this average value is a percentage
relative to the maximum performance solution variant
(formula 30).

.min

k
k T

T
P (30)

To make the complexity-performance comparative
assessment of the considered methods more descriptive,
formula 31 is derived. When using this formula, the effort
expended on integrating the solution (iC) is considered

equally important to the effort expended on the system’s
maintenance (mC) with the integrated solution. Therefore,

the coefficients α and β are set to 0.5. In other situations,
the coefficient selection may involve using the Rank
Correlation method [66]. Since the comparison is
conducted within the scope of a single system, the
significance of performance relative to implementation
complexity can be disregarded, and the coefficient ρ = 1.

.10*
**

*int
l

mi

avg

CC

P
E

 (31)

The effort for integration (iC) is calculated using the

Halstead Software Science Metrics method in Phase 1 of
the experiment. The effort required for system’s
maintenance (mC) calculated in Phase 2 of the

experiment. For the average relative performance (avgP)

the arithmetic mean is taken among the three metrics
obtained during the third phase of the experiment
(formula 32).

.
3

hplhlll
avg

PPP
P

 (32)

Given that the relative performance is a percentage
metric, and the effort calculated using the Halstead
Software Science Metrics method has the order of four,
let us assume the order of magnitude coefficient (l) to be
3.

5 RESULTS

Phase 1. The Halstead Software Science Metric
provides a reasonably accurate reflection of the time spent
on implementing each solution variant. The code of each
solution was analysed and the number of distinct
operators and operands (Distinct operators, Distinct
operands, Occurrences of operators, and Occurrences of
operands) were obtained. The metrics required for each
variant implementation (Volume, Difficulty, and Effort)
were calculated by formulas 27–29. The results of the
calculation are represented in Table 3 and visualized in
charts (Figs. 18–20).

Figure 18 – Program Volume. Phase 1

Figure 19 – Program Difficulty. Phase 1

136

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Figure 20 – Programming Effort. Phase 1

Phase 2. The second phase of the experiment was
conducted to assess the additional efforts required for
adding new pair of critical causal events to the system. I.e.
the provided solution is already implemented, and new
causal events are introduced. Similar to the previous

phase of the experiment metrics are calculated and
represented in Table 4 and Fig. 21.

Figure 21 – Programming Effort. Phase 2

Table 3 – Complexity metrics calculated for each method. Phase 1

Metric \ Approach
Variant 1 (New event

introduction)
Varian 2 (Synchronous

Queue)
Variant 3 (Causal Barrier)

Variant 4 (Container of
Events)

Distinct operators 18 9 16 17

Distinct operands 55 4 29 40

Occurrences of operators 64 12 37 58

Occurrences of operands 86 8 62 62

Program Length 150 20 99 120

Halstead Vocabulary 72 13 45 57

Program Volume 925.49 74.01 543.69 699.95

Program Difficulty 14.33 9 17.1 13.18

Programming Effort 13262.27 666.09 9297.1 9225.34

Table 4 – Complexity metrics calculated for each method. Phase 2

Metric \ Approach
Variant 1 (New event

introduction)
Varian 2 (Synchronous

Queue)
Variant 3 (Causal Barrier)

Variant 4 (Container of
Events)

Distinct operators 13 0 16 9

Distinct operands 48 0 30 19

Occurrences of operators 49 0 36 26

Occurrences of operands 77 0 63 29

Program Length 126 0 99 55

Halstead Vocabulary 61 0 46 28

Program Volume 747.27 0 546.83 264.4

Program Difficulty 10.43 0 16.8 6.87

Programming Effort 7794.03 0 9186.74 1816.43

137

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Phase 3. For reasons of clarity, testing was conducted
with the simplest possible command to minimize
command validation time and aggregate state updates.
Additionally, the time required for creating an aggregate
was minimized through caching.

Table 5 contains average time metrics from several
experiments repeated on three different computers. The
chart in Fig. 22 represents the ratio of each approach
metric to the fastest one in the category (which is Variant
1 – New event introduction) calculated by formula 30,
that can roughly show the performance comparison of
these solutions.

Phase 4. Table 6 contains the Integrated Performance-
Complexity evaluation results for considered methods,
calculated using formulas 31 and 32.

Figure 22 – Relative performance. Phase 3

Table 5 – Performance metrics calculated for each method. Phase 3

Approach \ Metric avg 100 requests (ms) avg 1000 requests (ms)
avg 100 requests in parallel 100

times (ms)

Variant 1 (New event introduction) 7 7 138

Variant 2 (Synchronous Queue) 453 4187 96117

Variant 3 (Causal Barrier) 11 15 301

Variant 4 (Container of Events) 8 11 147

Table 6 – Integrated Performance-Complexity evaluation. Phase 4

Metric \ Approach
Variant 1 (New event

introduction)
Varian 2 (Synchronous

Queue)
Variant 3 (Causal Barrier)

Variant 4 (Container of
Events)

Average performance 100 0.62 52.05 81.67

Integration complexity 13262.27 666.09 9297.1 9225.34

Maintenance complexity 7794.03 0 9186.74 1816.43

Evaluation 9.49 1.86 5.63 14.79

6 DISCUSSION
According to the results presented in Table 3 the

solution involving the synchronous queue (Variant 2)
requires minimal Programming Effort (666.09).

The most challenging aspect is Causal Barrier solution
(Variant 3). The volume of added code (543.69) is larger
than that of adding for the synchronous queue variant
(74.01), and the task itself proves considerably more
complex (17.1 against 9) and demands more development
and testing effort (9297.1 against 666.09).

The “New event introduction” (Variant 1) approach
can be regarded as the simplest to implement, but due to
the amount of routine work this approach is time-
consuming. It can be used only for the systems with low
degree of probability of casual events. It should also be
noted that as the domain of the application gets more
complex (i.e. new aggregates, functions, and causal
events are introduced), this approach would lead to
naming complexity causing the problems with
maintainability of the application.

As it can be seen the Variant 4 (Container of Events)
is in the second place in terms of effort (9225.34) and
difficulty (13.18), following the synchronous queue
solution (Variant 2. Difficulty: 9, Effort: 666.09). The
effort invested in the Container of Events method
(Variant 4. 9225.34) implementation is nearly identical to
that of Causal Barrier (Variant 3. 9297.1). However, the
“New event introduction” method requires more
development effort due to the amount of routine work
(Variant 1 13262.27). It also takes the third place in terms
of volume (699.95), following the solutions with a queue
(Variant 2. 74.01) and “Causal Barrier” (Variant 3.
543.69). The first phase of the experiment includes just a
simple case for two causal events. In the case of more
events, the volume of the “Causal Barrier” approach
remains stable, while the volume for the “Container of
Events” approach decreases.

In accordance with the results presented in Table 4,
for the “Causal Barrier” approach (Variant 3), the
program effort remained almost unchanged in comparison

138

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

to the effort spent on Phase 1 (9297.1 vs 9186.74). For the
“New event introduction” approach (Variant 1), the
difficulty decreased due to fewer changes but remained
relatively high (14.33 vs 10.43). Meanwhile, for Variants
2 and 4, the program effort significantly decreased in
comparison with Phase 1. It can be explained by the fact
that the main part of the code changes is applied to the
infrastructure and the implementation complexity is
almost independent of the number of causal events. For
example, the “Container of Events” method (Variant 4)
only requires routine updates to event handlers, while the
“Synchronous Queue” implementation (Variant 2) used in
the experiment does not require any additional changes at
all.

The best performance was demonstrated by the “New
event introduction” method (Variant 1). This is because
this solution does not introduce any new logic into the
system’s workings. However, as previously described,
frequent use of this approach can lead to significant code
duplication and the expansion of a list of narrowly
focused events.

As expected, the solution with a synchronous queue
(Variant 2) turned out to be the slowest. The performance
drawbacks are especially evident when sending a large
number of commands in parallel (average: 96 seconds).

The performance of the Container of Events method
(Variant 4) takes the second place, trailing slightly behind
Variant 1. Causal Barrier approach (Variant 3) ranks third.
For tests with 100 and 1000 consecutive requests, it
performs slightly slower. However, under parallel load,
the difference becomes twofold. In the context of our
experiment, this is explained by the inability to scale the
client (browser); for clients with “server” type, such a test
should yield better results.

Thus, the following conclusion can be drawn:
– If the assessment shows that the likelihood of

critical causal events is low, it is better to use the “New
event introduction” method, taking into account its
drawbacks.

– If the assessment indicates that the likelihood of
critical causal events is high, it is preferable to use either
the “Synchronous Queue” method (if the system will not
be under heavy load) or the “Container of Events” method.

– If predicting the likelihood of critical causal events
is challenging and the system may evolve, according to
the integrated comparative assessment calculations for
specific systems and conditions, the “Container of
Events” method (Variant 4) can be considered as the most
favourable with the score of 14.79 against 9.49 for the
“New event introduction” solution, which takes second
place.

The use of the “Synchronous Queue” solution
(Variant 2) shows poor performance, making it a
situational approach that doesn’t align with our specific
use cases. When comparing “Container of Events”
(Variant 4) with the others, the program effort of
implementing this approach is lower than the complexity
of “Causal Barrier” (Variant 3) and the “New event
introduction” approach (Variant 1). Nevertheless, just

plain adding of new events for each case (Variant 1)
works slightly faster. Across performance-appropriate
solutions, the “Container of Events” solution effectively
addresses the issue with the lowest development effort for
implementation and maintenance. It is worth noting it
helps to avoid code duplication.

CONCLUSIONS
The scientific novelty. For the first time the method

of estimation of the likelihood of causal events occurring
within the systems based on CQRS and ES architecture
and its formal description are suggested. The method is
based on analysis of entities, their interconnection and the
analysis of use cases connected to the entities and their
relationships. The variant of precise prediction of the
critical causal events occurrence based on the history of
existed solutions has been also provided.

The “Container of Events” method is firstly proposed
to solve the problem of critical causal-events for system
based on CQRS with ES architecture. It effectively
addresses the issue for most of the researched systems
with the lowest development effort for implementation
(HSSM Effort: 9225.34) and maintenance (HSSM Effort:
1816.43) across performance-appropriate solutions and
without code duplication. The method of Integrated
Performance-Complexity evaluation which helps to make
complexity-performance comparative assessment more
descriptive is firstly proposed. Evaluation based on this
method are 14.79 for the “Container of Events” method
against 9.49 for the “New event introduction” solution,
which takes second place.

Commonly used synchronization methods such as
Variant 1 (New event introduction), Variant 2
(Synchronous Queue), and Variant 3 (Causal Barrier) are
formalized and assessed.

The practical significance of the obtained results is
as follows. The formalized and assessed methods can be
used for effective real information systems development.
The strategy of experiment conducting applied to assess
the complexity of the modification can be used in practice
to resolve similar tasks (e.g. conducting similar
experiments). The proposed indicators and methods can
be used to determine effective conditions for the
experiments connected with the complexity and
performance evaluation.

The proposed solution which is provided to the
systems based on CQRS with ES Architecture can also be
applied to other systems in which the sequential delivery
of events is not guaranteed.

ACKNOWLEDGEMENTS

The experiment was conducted on the DBB Software
company’s [43] proprietary platform, which provided the
necessary infrastructure and tools for data collection and
analysis. This platform offered essential capabilities for
our research, ensuring the accuracy and reliability of our
experimental results.

139

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

We also want to express our deep appreciation to
Volodymyr Khandetsky, Head of Electronic Department,
for his valuable comments and suggestions.

REFERENCES

1. Evans E. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2004, 534 p.
ISBN: 978-0321125217.

2. Martin R. C. Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall, 2019, 464 p. ISBN: 978-
0132350884.

3. Newman S. Building Microservices: Designing Fine-Grained
Systems 2nd Edition. O’Reilly, 2021, 500 p. ISBN: 978-
1492034025.

4. Michelson B. M. Event-Driven Architecture Overview, Patricia
Seybold Group and Elemental Links. Boston, 2011, 9 p. DOI:
10.1571/bda2-2-06cc.

5. Taylor H., Yochem A., Phillips L. et al. Event-Driven
Architecture: How SOA Enables the Real-Time Enterprise.
Addison-Wesley Professional, 2009, 272 p. ISBN: 978-
0321591388.

6. Neamtiu I., Dumitras T. Cloud software upgrades: Challenges
and opportunities, 2011 International Workshop on the
Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems: status, 26–26 September 2011: proceedings.
Williamsburg: IEEE, 2011, pp. 1–10. ISBN: 978-1457706479.

7. Tarkoma S. Publish / Subscribe Systems: Design and Principles.
Wiley, 2012, 352 p. ISBN: 978-1119951544.

8. Brandolini A. Introducing EventStorming [Electronic resource].
Access mode: https://leanpub.com/introducing_eventstorming.

9. Stopford B. Designing Event-Driven Systems. O’Reilly Media,
2018, 171 p. ISBN: 978-1492038221.

10. Garofolo E. Practical Microservices. Build Event-Driven
Architectures with Event Sourcing and CQRS. Pragmatic
Bookshelf, 2020, 292 p. ISBN: 978-1680507799.

11. Hoffman K. Building Microservices with ASP.NET Core / K.
Hoffman. O’Reilly Media, 2017, 232 p. ISBN: 978-1491961735.

12. Young G. CQRS Documents by Greg Young [Electronic
resource]. Access mode: https://
cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf.

13. Young G. Event Centric: Finding Simplicity in Complex
Systems. Addison-Wesley Professional, 2017, 560 p. ISBN:
978-0321768223.

14. Burckhardt S. Principles of Eventual Consistency (Foundations
and Trends(r) in Programming Languages). Now Publishers,
2014, 170 p. ISBN: 978-1601988584.

15. Practical and focused guide for survival in post-CQRS world.
Projections. [Electronic resource]. Access mode:
http://cqrs.wikidot.com/doc:projection.

16. Comartin D., Young G. Answers your Event Sourcing questions!
[Electronic resource]. Access mode:
https://codeopinion.com/greg-young-answers-your-event-
sourcing-questions.

17. Lloyd W., Freedman M. J., Kaminsky M. et al. Don’t Settle for
Eventual Consistency, Communications of the ACM, 2014, Vol.
57, Issue 5, pp. 61–68. DOI: 10.1145/2596624.

18. Lamport L. Time, clocks, and the ordering of events in a
distributed system, Communications of the ACM, 1978, Vol. 21,
Issue 7, pp. 558–565. DOI: 10.1145/359545.359563.

19. Mostéfaoui A., Raynal M., Tredan G. On the Fly Estimation of
the Processes that Are Alive in an Asynchronous Message-
Passing System, IEEE Transactions on Parallel and Distributed
Systems, 2009, Vol. 20, Issue 6. pp. 778–787. DOI:
10.1109/TPDS.2009.12.

20. Microsoft documentation. CQRS pattern. Implementation issues
and considerations [Electronic resource]. Access mode:
https://learn.microsoft.com/en-

us/azure/architecture/patterns/cqrs#implementation-issues-and-
considerations.

21. Young G. Versioning in an Event Sourced System [Electronic
resource]. Access mode: https://leanpub.com/esversioning.

22. Schwarz R., Mattern F. Detecting causal relationships in
distributed computations: In search of the holy grail, Distributed
Computing, 1994, Vol. 7, pp. 149–174. DOI:
10.1007/BF02277859.

23. Vernon V. Implementing Domain-Driven Design. Addison
Wesley, 2013, 656 p. ISBN: 978-0321834577.

24. Hens P., Snoeck M., Poels G. et al. A Petri Net Formalization of
a Publish-Subscribe Process System, Social Science Research
Network, 2011. DOI: 10.2139/ssrn.1886198.

25. Farmer W. M. The seven virtues of simple type theory, Journal
of Applied Logic, 2008, Vol. 6, Issue 3, pp. 267–286. DOI:
10.1016/j.jal.2007.11.001.

26. Muhl G., Fiege L., Pietzuch P. Distributed Event-Based
Systems. New York, Springer-Verlag, 2006, 388 p. ISBN: 978-
3540326519.

27. Baldoni R., Contenti M., Piergiovanni S. T. et al.Modelling
Publish/Subscribe Communication Systems: Towards a Formal
Approach, Object-Oriented Real-Time Dependable Systems :
8th IEEE International Workshop, 15–17 January 2003 :
proceedings. Guadalajara, WORDS, 2003, pp. 304–311. DOI:
10.1109/WORDS.2003.1218097.

28. Araujo J. P., Arantes L., Duarte E. P. et al. VCube-PS: A causal
broadcast topic-based publish/subscribe system, Journal of
Parallel and Distributed Computing, 2019, Vol. 125, pp. 18–30.
DOI: 10.1016/j.jpdc.2018.10.011.

29. Ohlbach H. J., Koehler J. Modal logics, description logics and
arithmetic reasoning, Artificial Intelligence, 1999, Vol. 109, pp.
1–31. DOI: 10.1016/S0004-3702(99)00011-9.

30. Badra F. Case Adaptation with Modal Logic: The Modal
Adaptation, Case-Based Reasoning Research and Development:
22nd International Conference Reason, 29 September 2014 – 1
October 2014: proceedings. Cork, ICCBR, 2014.

31. Fidge C. J. Timestamps in Message-Passing Systems that
Preserve Partial Ordering, Australian Computer Science
Communications, 1988, Vol. 10, No. 1, pp. 56–66.

32. Mattern F. Algorithms for distributed termination detection,
1987. DOI: 10.1007/BF01782776.

33. Singh A. Matrix Clock Synchronization in the Distributed
Computing Environment, International Journal of Computer
Science and Information Technologies, 2015, Vol. 6, Issue 4. pp.
3510–3513.

34. Guidec F., Launay P., Mahéo T. Causal and Δ-causal broadcast
in opportunistic networks, Future Generation Computer
Systems, 2021, Volume 118, Issue 1, pp. 142–156. DOI:
10.1016/j.future.2020.12.024.

35. Wan F., Singh M. P. Commitments and Causality for
Multiagent Design, 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, 14 – 18 July 2003:
proceedings. Melbourne: AAMAS, 2003, pp. 749–756. DOI:
10.1145/860575.860696.

36. Preguiça N. M., Bauqero C., Almeida P. S. Brief
announcement: efficient causality tracking in distributed storage
systems with dotted version vectors, ACM symposium on
Principles of distributed computing, 2012, pp. 335–336 DOI:
10.1145/2332432.2332497.

37. Zhou S., Cai W., Turner S. J. Critical causal order of events in
distributed virtual environments, ACM Transactions on
Multimedia Computing, Communications and Applications,
2007, Vol. 3. DOI: 10.1145/1236471.1236474.

38. Baldoni R., Prakash R., Raynal M. Efficient Delta-Causal
Broadcasting, International Journal of Computer Systems
Science and Engineering, 1998, Vol. 13, pp. 263–271. DOI:
10.3923/jas.2009.1711.1718.

39. Schiper A., Eggli J., Sandoz A. A New Algorithm to Implement
Causal Ordering, Distributed Algorithms : 3rd International

140

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

Workshop, 26–28 September 1989: proceedings. Nice, pp. 219–
232. DOI: 10.1007/3-540-51687-5_45.

40. Carzaniga A., Rosenblum D. S., Wolf A. L. Design and
Evaluation of a Wide-Area Event Notification Service, ACM
Transactions on Computer Systems (TOCS), 2001, Vol. 19,
Issue 3, pp. 332–383. DOI: 10.1145/380749.380767.

41. Esposito C., Cotroneo D., Gokhale A. Reliable
Publish/Subscribe Middleware for Time-sensitive Internet-scale
Applications, Distributed Event-Based Systems : the 3rd ACM
International Conference, 6–9 July 2009 : proceedings.
Nashville, DEBS, 2009, pp. 1–12. DOI:
10.1145/1619258.1619280.

42. Microsoft. Saga distributed transactions pattern [Electronic
resource]. Access mode: https://learn.microsoft.com/en-
us/azure/architecture/reference-architectures/saga/saga.

43. DBB Software’s official company site [Electronic resource].
Access mode: https://dbbsoftware.com/.

44. Berardi D., Calvanese D., Giacomo G. Reasoning on UML
Class Diagrams, Artificial Intelligence, 2005, Vol. 168, Issue 1–
2, pp. 70–118. DOI: 10.1016/j.artint.2005.05.003.

45. Calvanese D., Lenzerini M., Nardi D. A unified framework for
class based representation formalisms, Principles of Knowledge
Representation and Reasoning : 4th International Conference,
24–27 May 1994 : proceedings. San Francisco, pp. 109–120.

46. Danforth S., Tomlinson C. Type theories and object-oriented
programming, ACM Computing Surveys, 1988, Vol. 20, Issue 1,
pp. 29–72. DOI: 10.1145/62058.62060.

47. Zaman Q., Nadeem A., Sindhu M. A. Formalizing the use case
model: A model-based approach, PLoS ONE, 2020, Vol. 15,
Issue 4. DOI: 10.1371/journal.pone.0231534.

48. Kautz O., Rumpe B., Wachtmeister L. Semantic Differencing of
Use Case Diagrams, Journal of Object Technology, 2022, Vol.
21, Issue 3, pp. 1–14. DOI: 10.5381/jot.2022.21.3.a5.

49. Rosenberg D., Stephens M. Use Case Driven Object Modeling
with UML. Theory and Practice. Apress, 2013, 472 p. ISBN:
978-1430243052.

50. Genova G., Llorens J., Quintana V. Digging into use case
relationships, The Unified Modeling Language : 5th
International Conference, 30 September – 4 October 2002 :
proceedings. Berlin, UML, 2002, pp. 115–127. DOI: 10.1007/3-
540-45800-X_10.

51. Daan. The Impact of Duplicate Code [Electronic resource] /
Daan. – Access mode: https://levelup.gitconnected.com/the-
impact-of-duplicate-code-31c0bceab831.

52. How Event-Driven Architectures Benefit from Stream
Processing [Electronic resource]. Access mode:
https://pandio.com/event-streams-queues/

53. Seshadri P. Handling out of order events in a Event driven
systems [Electronic resource]. Access mode:
https://medium.com/@prabhu.seshadri/handling-out-of-order-
events-in-a-event-driven-systems-93349bd20c26.

54. Lombardi A. WebSocket. Lightweight Client-Server
Communications 1st Edition. O’Reilly, 2015, 144 p. ISBN:
978-1449369279.

55. Hruzin D. Link to GitHub repository with experiment
[Electronic resource]. Access mode:
https://github.com/dmitryhruzin/causal-event-experiment.

56. Mens T. Research trends in structural software complexity,
Computer Science, Engineering, 2016. DOI:
10.48550/arXiv.1608.01533.

57. Bogdan St. Software development cost estimation methods and
research trends, Computer Science, 2003, Vol. 5, pp. 67–86.
DOI: 10.7494/csci.2003.5.1.3608.

58. Sarala S., Jabbar A. Information flow metrics and complexity
measurement, Computer Science and Information Technology :
3rd International Conference, 9–11 July 2010 : proceedings.
Chengdu, ICCSIT, 2010,Vol. 2. pp. 575–578. DOI:
10.1109/ICCSIT.2010.5563667.

59. Misra S. Measurement of Cognitive Functional Sizes of
Software, International Journal of Software Science and
Computational Intelligence, 2009,Vol. a, Issue 2, pp. 91–100.
DOI: 10.4018/jssci.2009040106.

60. Beyer D., Häring P. A Formal Evaluation of DepDegree Based
on Weyuker’s Properties, Program Comprehension : the 22nd
International Conference, 2–3 June 2014 : proceedings.
Hyderabad, ICSE, 2014, pp. 258–261. DOI:
10.1145/2597008.2597794.

61. McCabe T.J. A Complexity Measure, IEEE Transactions on
Software Engineering, 1976, Vol. SE-2, Issue 4, pp. 308–320.
DOI: 10.1109/TSE.1976.233837.

62. Halstead M. H. Elements of Software Science. New York,
Elsevier, 1977, 128 p. ISBN: 978-0444002051.

63. Sync-Queue Node.js package. GitHub [Electronic resource].
Access mode: https://github.com/tessel/sync-queue.

64. Amazon Simple Queue Service [Electronic resource]. Access
mode: https://aws.amazon.com/sqs/.

65. Apache Kafka [Electronic resource]. Access mode:
https://kafka.apache.org/.

66. Blest D. Theory & Methods: Rank Correlation – an Alternative
Measure, Australian & New Zealand Journal of Statistics, 2000,
Vol. 42, Issue 1, pp. 101–111. DOI: 10.1111/1467-842X.00110.

Received 18.06.2024.
Accepted 30.08.2024.

УДК 614.2+574/578+004.38

КРИТИЧНІ ПРИЧИННО-НАСЛІДКОВІ ПОДІЇ

В СИСТЕМАХ ЗАСНОВАНИХ НА ОСНОВІ АРХІТЕКТУРИ CQRS З EVENT SOURCING

Литвинов О. А. – канд. техн. наук, доцент кафедри електронних обчислювальних машин Дніпровського національного
університету імені Олеся Гончара, Дніпро, Україна.

Грузін Д. Л. – аспірант кафедри електронних обчислювальних машин Дніпровського національного університету імені Олеся
Гончара, Дніпро, Україна.

АНОТАЦІЯ

Актуальність. У статті розглядається проблема асинхронності причинно-наслідкових подій, що виникає в сервісно-
орієнтованих інформаційних системах, які не гарантують доставку подій у порядку їх публікації. Це може призвести до помилок,
які виникають випадково, як правило нерегулярно, у системі, яка протягом основного часу функціонує без збоїв.

Мета роботи. Метою роботи є порівняння та оцінка кількох існуючих підходів та пропонування нового підходу до вирішення
проблеми синхронізації причинно-наслідкових подій у системах, які побудовані з застосуванням архітектури Command Query
Responsibility Segregation (CQRS) з Event Sourcing (ES).

Методи. По-перше, пропонується метод оцінки ймовірності виникнення причинно-наслідкових подій у системах, як основа для
вибору рішення. Так, на основі результатів аналізу кількох проектів, побудованих з застосуванням архітектури CQRS з ES,
показано, що ймовірність критичних причинно-наслідкових подій залежить від взаємозв’язків між сутностями та юз-кейсів,
пов’язаних із сутностями. По-друге, у цій роботі пропонується метод “Container of events”, який представляє варіацію події з

141

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

повною історією причинно-наслідкових зв’язків, адаптовану до потреб систем побудованих з застосуванням архітектури CQRS з
ES. Також обговорено варіанти його практичного впровадження. Крім того, були формалізовані та оцінені різні рішення, такі як
синхронні черги подій та варіація методу “Causal Barrier”. По-третє, представлені методи, були описані та оцінені за критеріями
продуктивності та складності модифікації. Для отримання порівняльної оцінки складності та продуктивності була вперше
запропонована інтегрована формула оцінки.

Результати. Результати оцінки показують, що найефективнішим рішенням проблеми є використання методу “Container of
events”. Для впровадження рішення необхідно внести зміни до підсистеми доставки подій та інфраструктури обробки подій.

Висновки. Робота зосереджена на вирішенні проблеми критичних причинно-наслідкових подій для систем, побудованих з
застосуванням архітектури CQRS з ES. Запропоновано метод оцінки ймовірності виникнення критичних причинно-наслідкових
подій, а також формалізовано та оцінено різні рішення цієї проблеми. Було запропоновано найефективніше рішення на основі
методу “Container of events”.

КЛЮЧОВІ СЛОВА: Сервісно-Орієнтована Архітектура, Архітектура, заснована на подіях, Event sourcing, Синхронізація
подій, Проектування на основі домену.

ЛІТЕРАТУРА

1. Evans E. Domain-Driven Design: Tackling Complexity in the
Heart of Software / E. Evans. – Addison-Wesley Professional,
2004. – 534 p. ISBN: 978-0321125217.

2. Martin R. C. Clean Code: A Handbook of Agile Software
Craftsmanship / R. C. Martin. – Prentice Hall, 2019. – 464 p.
ISBN: 978-0132350884.

3. Newman S. Building Microservices: Designing Fine-Grained
Systems 2nd Edition / S. Newman. – O’Reilly, 2021. – 500 p.
ISBN: 978-1492034025.

4. Michelson B. M. Event-Driven Architecture Overview / B. M.
Michelson // Patricia Seybold Group and Elemental Links. –
Boston, 2011. – 9 p. DOI: 10.1571/bda2-2-06cc.

5. Event-Driven Architecture: How SOA Enables the Real-Time
Enterprise / [H. Taylor, A. Yochem, L. Phillips et al.]. –
Addison-Wesley Professional, 2009. – 272 p. ISBN: 978-
0321591388.

6. Neamtiu I. Cloud software upgrades: Challenges and
opportunities / I. Neamtiu, T. Dumitras // 2011 International
Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems: status, 26–26 September
2011: proceedings. – Williamsburg: IEEE, 2011. – P. 1–10.
ISBN: 978-1457706479.

7. Tarkoma S. Publish / Subscribe Systems: Design and Principles
/ S. Tarkoma. – Wiley, 2012. – 352 p. ISBN: 978-1119951544.

8. Brandolini A. Introducing EventStorming [Electronic resource]
/ A. Brandolini. – Access mode:
https://leanpub.com/introducing_eventstorming.

9. Stopford B. Designing Event-Driven Systems / B. Stopford. –
O’Reilly Media, 2018. – 171 p. ISBN: 978-1492038221.

10. Garofolo E. Practical Microservices. Build Event-Driven
Architectures with Event Sourcing and CQRS / E. Garofolo. –
Pragmatic Bookshelf, 2020. – 292 p. ISBN: 978-1680507799.

11. Hoffman K. Building Microservices with ASP.NET Core / K.
Hoffman. – O’Reilly Media, 2017. – 232 p. ISBN: 978-
1491961735.

12. Young G. CQRS Documents by Greg Young [Electronic
resource] / G. Young. – Access mode: https://
cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf.

13. Young G. Event Centric: Finding Simplicity in Complex
Systems / G. Young. – Addison-Wesley Professional, 2017. –
560 p. ISBN: 978-0321768223.

14. Burckhardt S. Principles of Eventual Consistency (Foundations
and Trends(r) in Programming Languages) / S. Burckhardt. –
Now Publishers, 2014. – 170 p. ISBN: 978-1601988584.

15. Practical and focused guide for survival in post-CQRS world.
Projections. [Electronic resource]. – Access mode:
http://cqrs.wikidot.com/doc:projection.

16. Comartin D. Answers your Event Sourcing questions!
[Electronic resource] / D. Comartin, G. Young. – Access mode:
https://codeopinion.com/greg-young-answers-your-event-
sourcing-questions.

17. Don’t Settle for Eventual Consistency / [W. Lloyd,
M. J. Freedman, M. Kaminsky et al.] // Communications of the

ACM. – 2014. – Vol. 57, Issue 5. – P. 61–68. DOI:
10.1145/2596624.

18. Lamport L. Time, clocks, and the ordering of events in a
distributed system / L. Lamport // Communications of the ACM.
– 1978. – Vol. 21, Issue 7. – P. 558–565. DOI:
10.1145/359545.359563.

19. Mostéfaoui A. On the Fly Estimation of the Processes that Are
Alive in an Asynchronous Message-Passing System /
A. Mostéfaoui, M. Raynal, G. Tredan // IEEE Transactions on
Parallel and Distributed Systems. – 2009. – Vol. 20, Issue 6. – P.
778–787. DOI: 10.1109/TPDS.2009.12.

20. Microsoft documentation. CQRS pattern. Implementation issues
and considerations [Electronic resource]. – Access mode:
https://learn.microsoft.com/en-
us/azure/architecture/patterns/cqrs#implementation-issues-and-
considerations.

21. Young G. Versioning in an Event Sourced System [Electronic
resource] / G. Young. – Access mode:
https://leanpub.com/esversioning.

22. Schwarz R. Detecting causal relationships in distributed
computations: In search of the holy grail / R. Schwarz,
F. Mattern // Distributed Computing. – 1994. – Vol. 7. –
P. 149–174. DOI: 10.1007/BF02277859.

23. Vernon V. Implementing Domain-Driven Design / V. Vernon. –
Addison Wesley, 2013. – 656 p. ISBN: 978-0321834577.

24. A Petri Net Formalization of a Publish-Subscribe Process
System / [P. Hens, M. Snoeck, G. Poels et al.] // Social Science
Research Network. – 2011. DOI: 10.2139/ssrn.1886198.

25. Farmer W. M. The seven virtues of simple type theory / W. M.
Farmer // Journal of Applied Logic. – 2008. – Vol. 6, Issue 3. –
P. 267–286. DOI: 10.1016/j.jal.2007.11.001.

26. Muhl G. Distributed Event-Based Systems / G. Muhl, L. Fiege,
P. Pietzuch. – New York : Springer-Verlag, 2006. – 388 p.
ISBN: 978-3540326519.

27. Modelling Publish/Subscribe Communication Systems:
Towards a Formal Approach / [R. Baldoni, M. Contenti, S. T.
Piergiovanni et al.] // Object-Oriented Real-Time Dependable
Systems : 8th IEEE International Workshop, 15–17 January
2003 : proceedings. – Guadalajara: WORDS, 2003. – P. 304–
311. DOI: 10.1109/WORDS.2003.1218097.

28. VCube-PS: A causal broadcast topic-based publish/subscribe
system / [J. P. Araujo, L. Arantes, E. P. Duarte et al.] // Journal
of Parallel and Distributed Computing. – 2019. – Vol. 125. –
P. 18–30. DOI: 10.1016/j.jpdc.2018.10.011.

29. Ohlbach H. J. Modal logics, description logics and arithmetic
reasoning / H. J. Ohlbach, J. Koehler // Artificial Intelligence. –
1999. – Vol. 109. – P. 1–31. DOI: 10.1016/S0004-
3702(99)00011-9.

30. Badra F. Case Adaptation with Modal Logic: The Modal
Adaptation / F. Badra // Case-Based Reasoning Research and
Development: 22nd International Conference Reason, 29
September 2014 – 1 October 2014: proceedings. – Cork :
ICCBR, 2014.

142

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Lytvynov O. A., Hruzin D. L., 2024

 DOI 10.15588/1607-3274-2024-3-11

31. Fidge C. J. Timestamps in Message-Passing Systems that
Preserve Partial Ordering / C. J. Fidge // Australian Computer
Science Communications. – 1988. – Vol. 10, No. 1. – P. 56–66.

32. Mattern F. Algorithms for distributed termination detection /
F. Mattern. – 1987. DOI: 10.1007/BF01782776.

33. Singh A. Matrix Clock Synchronization in the Distributed
Computing Environment / A. Singh // International Journal of
Computer Science and Information Technologies. – 2015. – Vol.
6, Issue 4. – P. 3510–3513.

34. Guidec F. Causal and Δ-causal broadcast in opportunistic
networks / F. Guidec, P. Launay, T. Mahéo // Future Generation
Computer Systems. – 2021. – Volume 118, Issue 1 – P. 142–
156. DOI: 10.1016/j.future.2020.12.024.

35. Wan F. Commitments and Causality for Multiagent Design / F.
Wan, M. P. Singh // 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, 14–18 July 2003:
proceedings. – Melbourne : AAMAS, 2003. – P. 749–756. DOI:
10.1145/860575.860696.

36. Preguiça N. M. Brief announcement: efficient causality tracking
in distributed storage systems with dotted version vectors / N.
M. Preguiça, C. Bauqero, P. S. Almeida // ACM symposium on
Principles of distributed computing. – 2012. – P. 335–336 DOI:
10.1145/2332432.2332497.

37. Zhou S. Critical causal order of events in distributed virtual
environments / S. Zhou, W. Cai, S. J. Turner // ACM
Transactions on Multimedia Computing, Communications and
Applications. – 2007. – Vol. 3. DOI:
10.1145/1236471.1236474.

38. Baldoni R. Efficient Delta-Causal Broadcasting / R. Baldoni, R.
Prakash, M. Raynal // International Journal of Computer
Systems Science and Engineering. – 1998. – Vol. 13. – P. 263–
271. DOI: 10.3923/jas.2009.1711.1718.

39. Schiper A. A New Algorithm to Implement Causal Ordering / A.
Schiper, J. Eggli, A. Sandoz // Distributed Algorithms : 3rd
International Workshop, 26–28 September 1989: proceedings. –
Nice. – P. 219–232. DOI: 10.1007/3-540-51687-5_45.

40. Carzaniga A. Design and Evaluation of a Wide-Area Event
Notification Service / A. Carzaniga, D. S. Rosenblum,
A. L. Wolf // ACM Transactions on Computer Systems (TOCS).
– 2001. – Vol. 19, Issue 3. – P. 332–383. DOI:
10.1145/380749.380767.

41. Esposito C. Reliable Publish/Subscribe Middleware for Time-
sensitive Internet-scale Applications / C. Esposito, D. Cotroneo,
A. Gokhale // Distributed Event-Based Systems : the 3rd ACM
International Conference, 6–9 July 2009 : proceedings. –
Nashville: DEBS, 2009. – P. 1–12. DOI:
10.1145/1619258.1619280.

42. Microsoft. Saga distributed transactions pattern [Electronic
resource]. – Access mode: https://learn.microsoft.com/en-
us/azure/architecture/reference-architectures/saga/saga.

43. DBB Software’s official company site [Electronic resource]. –
Access mode: https://dbbsoftware.com/.

44. Berardi D. Reasoning on UML Class Diagrams / D. Berardi, D.
Calvanese, G. Giacomo // Artificial Intelligence. – 2005. – Vol.
168, Issue 1–2. – P. 70–118. DOI: 10.1016/j.artint.2005.05.003.

45. Calvanese D. A unified framework for class based
representation formalisms / D. Calvanese, M. Lenzerini,
D. Nardi // Principles of Knowledge Representation and
Reasoning : 4th International Conference, 24–27 May 1994 :
proceedings. – San Francisco. – P. 109–120.

46. Danforth. S. Type theories and object-oriented programming / S.
Danforth, C. Tomlinson // ACM Computing Surveys. – 1988. –
Vol. 20, Issue 1. – P. 29–72. DOI: 10.1145/62058.62060.

47. Zaman Q. Formalizing the use case model: A model-based
approach / Q. Zaman, A. Nadeem, M. A. Sindhu // PLoS ONE.
– 2020. – Vol. 15, Issue 4. DOI: 10.1371/journal.pone.0231534.

48. Kautz O. Semantic Differencing of Use Case Diagrams /
O. Kautz, B. Rumpe, L. Wachtmeister // Journal of Object
Technology. – 2022. – Vol. 21, Issue 3. – P. 1–14. DOI:
10.5381/jot.2022.21.3.a5.

49. Rosenberg D. Use Case Driven Object Modeling with UML.
Theory and Practice / D. Rosenberg, M. Stephens. – Apress,
2013. – 472 p. ISBN: 978-1430243052.

50. Genova G. Digging into use case relationships / G. Genova, J.
Llorens, V. Quintana // The Unified Modeling Language : 5th
International Conference, 30 September – 4 October 2002 :
proceedings. – Berlin : UML, 2002. – P. 115–127. DOI:
10.1007/3-540-45800-X_10.

51. Daan. The Impact of Duplicate Code [Electronic resource] /
Daan. – Access mode: https://levelup.gitconnected.com/the-
impact-of-duplicate-code-31c0bceab831.

52. How Event-Driven Architectures Benefit from Stream
Processing [Electronic resource]. – Access mode:
https://pandio.com/event-streams-queues/

53. Seshadri P. Handling out of order events in a Event driven
systems [Electronic resource] / P. Seshadri. – Access mode:
https://medium.com/@prabhu.seshadri/handling-out-of-order-
events-in-a-event-driven-systems-93349bd20c26.

54. Lombardi A. WebSocket. Lightweight Client-Server
Communications 1st Edition / A. Lombardi. – O’Reilly, 2015. –
144 p. ISBN: 978-1449369279.

55. Hruzin D. Link to GitHub repository with experiment
[Electronic resource] / D. Hruzin. – Access mode:
https://github.com/dmitryhruzin/causal-event-experiment.

56. Mens T. Research trends in structural software complexity / T.
Mens // Computer Science, Engineering. – 2016. DOI:
10.48550/arXiv.1608.01533.

57. Bogdan St. Software development cost estimation methods and
research trends / St. Bogdan // Computer Science. – 2003. – Vol.
5. – P 67–86. DOI: 10.7494/csci.2003.5.1.3608.

58. Sarala S. Information flow metrics and complexity
measurement / S. Sarala, A. Jabbar // Computer Science and
Information Technology : 3rd International Conference, 9–11
July 2010 : proceedings. – Chengdu: ICCSIT, 2010. – Vol. 2. –
P. 575–578. DOI: 10.1109/ICCSIT.2010.5563667.

59. Misra S. Measurement of Cognitive Functional Sizes of
Software / S. Misra // International Journal of Software Science
and Computational Intelligence. – 2009. – Vol. a, Issue 2. – P:
91–100. DOI: 10.4018/jssci.2009040106.

60. Beyer D. A Formal Evaluation of DepDegree Based on
Weyuker’s Properties / D. Beyer, P. Häring // Program
Comprehension : the 22nd International Conference, 2–3 June
2014 : proceedings. – Hyderabad: ICSE, 2014. – P. 258–261.
DOI: 10.1145/2597008.2597794.

61. McCabe T. J. A Complexity Measure / T. J. McCabe // IEEE
Transactions on Software Engineering. – 1976. –Vol. SE-2,
Issue 4. – P. 308–320. DOI: 10.1109/TSE.1976.233837.

62. Halstead M. H. Elements of Software Science / M. H. Halstead.
– New York : Elsevier, 1977. – 128 p. ISBN: 978-0444002051.

63. Sync-Queue Node.js package. GitHub [Electronic resource]. –
Access mode: https://github.com/tessel/sync-queue.

64. Amazon Simple Queue Service [Electronic resource]. – Access
mode: https://aws.amazon.com/sqs/.

65. Apache Kafka [Electronic resource]. – Access mode:
https://kafka.apache.org/.

66. Blest D. Theory & Methods: Rank Correlation — an
Alternative Measure / D. Blest // Australian & New Zealand
Journal of Statistics. – 2000. – Vol. 42, Issue 1. – P. 101–111.
DOI: 10.1111/1467-842X.00110.

143

