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RELIABILITY AND RISK OPTIMIZATION OF MULTISTATE SYSTEMS
WITH APPLICATION TO PORT TRANSPORTATION SYSTEM

The complexity of technical systems’ operation processes and its influence on the changing in time systems’ structures and their
components’ reliability parameters posses a difficulty to first meet in real and then to fix and analyse those structures and reliability
parameters. By constructing a joint model of reliability of complex technical systems at variable operation conditions, which links a semi-
markov modelling of system operation processes with multi-state approach to system reliability analysis, we find the system’s main
reliability characteristics. Consequently, we use linear programming to build a model of complex technical systems reliability optimization.
We investigate the model’s application in marine transport, specifically in reliability and risk optimization of a bulk cargo transportation
system. The tools we develop can be used in reliability evaluation and optimization of a very wide class of real technical systems operating
at varying conditions that influence their reliability structures and the reliability parameters of their components. Consequently, the tools

we developed can be implemented by reliability practitioners from both maritime transport industry and other industrial sectors.
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NOMENCLATURE

Z(t),z; is a system operation process; a system
operation state; i=1,2,...,v,

Pp is an optimal transient probability;

U is a particular reliability state of the system;
u=12,.,z,;

T'(u) is a lifetime of a system in the reliability state subset
{u,u+1,..,z};

[R(z,u)]®) is a conditional reliability function of a system
at the operational state z;

R(t,u) is an optimal unconditional reliability function of
a system;

p(u) is a mean lifetime of the system in the reliability
state subset {u,u+1,...,z};

(u) is a mean lifetime of the system in the reliability
particular state u;

R is a critical state of the multi-state system;

7(?) is an optimal risk function of the multi-state system.

INTRODUCTION

Most real technical systems are very complex because
they are composed of large numbers of components and
subsystems and have high operating complexity. The
complexity of the systems’ operation processes and its
influence on the changing in time systems’ structures and
their components’ reliability parameters posses a difficulty to
first meet in real and then to fix and analyse those structures
and reliability parameters. A convenient tool to investigate
this problem is a semi-markov [2] modelling of the system
operation process linked with a multi-state approach for the
system reliability analysis [ 1,4, 9-10] and a linear programming
for the system reliability optimization [3]. Using this approach,
it is possible to find this complex system’s main reliability
characteristics including the system reliability function, the
system mean lifetimes in the reliability states subsets and the
system risk function [4, 6, 8]. Having those characteristics it
is possible to optimize the system operation process to get
optimal values [8]. To this end the linear programming [3] can
be applied to maximize the mean value of the system lifetime
in the subset of the system reliability states, which are not
worse than the system critical reliability state.
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1 SYSTEM RELIABILITY AT VARIABLE
OPERATIONS PROCESS

We suppose that the system has v different operation
states during its operation process. Thus, we can define the
system operation process Z(t), t €<0,+o00>, as the process
with discrete operation states from the set
Z ={zy,z,,..., 2, }. Further, we assume that Z(¢) is a semi-
markov process [2] with its conditional sojourn times 8, at
the operation state z;, when its next operation state is z;,

b,1=12,..,v, p=] In this case the process Z(¢) may be
described by:

— the vector of probabilities of the process initial
operation states [ pp (0)];,y >

— the matrix of probabilities of the process transitions
between the operation states [p,, ],

— the matrix of conditional distribution functions
[H p;(t)]yyy of the process sojourn times 6,;, b#1, in the
operation state z; when the next operation state is z;.

Under these assumptions, the sojourn times 6;; mean
values are given by

My =E0,1= JdHu . b 1212, v, bzl (1)
0

The mean values E[0,] of the unconditional sojourn
times 0, are given by

\4
M, =E[0,] = ZPblez, b=12,.,v, Q)
I=

where My, are defined by (1).
Limit values of the transient probabilities at the operation
states are given by

. M,
pp = limpp(0) = oMb b=12...v,
t—o© 4
2 mM,
=1
where the probabilities 7, of the vector [n}];,, satisfy the

A4
system of equations [m,]=[n;][py;] and an =1 and
=1
pb(t) = P(Z(t) = Zp ), te< 0,+OO), b=12,..,v.
We assume that the system is composed of »n

independent multistate components E;, i=12,...,n, and
that the changes of the operation process Z(f) states have
an influence on both the system components E; reliability
and on the system reliability structure. Consequently, we
denote the component E; lifetime in the reliability state

subset {u,u+1,....,z} by Tl.(b)(u) and by
IR, (¢, 1D =11, [R; (&, DI?, [R. ¢, 2], ...

[R; (1, )11,

where for t €< 0,0), b=1,2,...,v, u=12,.., z,

[R; (2] = PP ) > 4Z(1) = 23),

is the conditional reliability function while the system is at
the operational state z;,, b=12,...,v.
Next, we denote the system lifetime in the reliability state

subset {u,u+1,...,z} by T(b)(u) and by
(R NP =L, [REDIP [R@,2)]? ..., [R(1,2)] D],

where for t €<0,0), b=12,...,v, u=12,.., z,

[R(Lu)]? =PI ) >|Z(1) = z),

is the conditional reliability function of the system while the
system is at the operational state z.

In the case when the system operation time is large
enough, the unconditional reliability function of the system
is given by

R(, ) =[1, R(s,1), R(,2), ..., R(t,2z) ], t>0,

where

R(1,u) %bz_‘ipb[R(t,u)](b). 3)

The mean values of the system lifetimes in the reliability

state subset {u,u+1,...,z} are

W)= E[T@)]= Y pphip®), , =12, 2. )
b=1

and the mean values of the system lifetimes in the particular
reliability state u, are [4]

r@)=p@)—pww+1), u=12,..z-1, p(z) =p(z).  (S)

A probability r(¢) = P(s(f) < r | R(0) = z) = P(T?(r) < 1),
t € (—o0,),
that the system is in the subset of reliability states worse
than the critical state 7, » € {l1,...,z} while it was in the state z
at the moment ¢ = 0 is called a risk function of the multi-state
system [4].

Under this definition, from (3), we have

r(t): 1- R(t,l"), te (—OO’OO)’ (6)

and if 1 is the moment when the risk exceeds a permitted
level &, then

t=r71(5), (7)

where r‘l(t) , if it exists, is the inverse function of the risk
function r(?).

2 OPTIMAL TRANSIENT PROBABILITIES
MAXIMIZING SYSTEM LIFETIME

Considering the equation (3), it is natural to assume that
the system operation process has a significant influence on
the system reliability. This influence is also clearly expressed
in the equation (4) for the mean values of the system
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unconditional lifetimes in the reliability state subsets. From
linear equation (4), we can see that the mean value of the
u=12,.,z, is
determined by the limit values of transient probabilities py,

system unconditional lifetime p(u),

b= 12,...,v, of the system operation states and the mean
values pp(u), b =1,2,...,v, u=12,..,z, of the system
conditional lifetimes in the reliability state subsets
{fu,u+1,.,z},u =1.2,.., z. Therefore, the system lifetime
optimization approach based on the linear programming can
be proposed. Namely, we may look for the corresponding
optimal values p,, of the transient probabilities p;, in the
system operation states to maximize the mean value p(u) of
the unconditional system lifetimes in the reliability state
subsets {u,u +1,...,z} under the assumption that the mean
values p,(u) of the system conditional lifetimes in the
reliability state subsets are fixed. As a special case of the
above formulated system lifetime optimization problem: if 7,
r=1,2,..., z, is a system critical reliability state, then we want
to find the optimal values p;, of the transient probabilities
pp 1n the system operation states to maximize the mean value
u(r) of the unconditional system lifetime in the reliability

state subset {r,7+1,,..., z} under the assumption that the
mean values L, (7), b=12,...,v, of the system conditional
lifetimes in this reliability state subset are fixed. More exactly,
we formulate the optimization problem as a linear
programming model with the objective function of the
following linear form

\%
() =3 poky(r) ®)
b=1
for a fixed re{l,2,...,z} and with the following bound
constraints
\4
Zpbzl’ pbgpbgﬁb’ b=l,2,...,v, (9)
b=l

where n,(7), pp(r)20, b=1,2,..., v, arefixed mean values
of the system conditional lifetimes in the reliability state

subset {r,r+1,...,z} and

]V?b, Oﬁﬁb Slandﬁb, Oﬁﬁb Sl, ]V7b Sﬁb, b:1,2,,v,(10)

are respectively the lower and upper bounds of the unknown
transient probabilities pp.

Now, we can obtain the optimal solution to the formulated
by (8)—(10) the linear programming problem, i.e. we can find
the optimal values pj, of the transient probabilities py,

b=1,2,..., v, that maximize the objective function given by
(8). First, we arrange the system conditional lifetime mean

values (), b=1,2,...,v, in non-increasing order
Hp (1) = pp, (M) 2021y (1), by €{1,2,...,v} for
i=12,...,v.
Next, we substitute

Xi=Pp, X =Py, X =pp, fori=12..,v (11

112

and we maximize with respect to x;, i =1,2,..., v, the linear
form (8) that takes the form

\2
() = D it (1) (12)
i=1
for a fixed re{l,2,.,z} with the following bound
constraints

(13)

Z‘x[ :1’ )?l < X; < il" i= 1,2,..., Vv,

where Wy, (7), bp, (1) 20, j=1.2,..., v, are fixed mean values
of the system conditional lifetimes in

the reliability state subset {r,r +1,..., z} arranged in non-
increasing order and

‘fl.’ Oﬁ)?l <1 and iiﬂ 0321 Sl, )VCI' S;l‘, i=12,.,v, (14)

are the lower and upper bounds of the unknown probabilities
X;, i=1.2,..,v, respectively.

We define

i

\
¥=2 %, p=1-x (15)

and
1 4 !
=0, x%=0and ¥ =X 5, ¥/ =3% for
i=1 i=1
I1=12,.v. (16)
Next, we find the largest value [ €{0,1,...,v} such that

=1

715!

<y (17)

and we fix the optimal solution that maximize (12) in the
following way:

i)if I =0, the optimal solution is x; = p + X, and X; =X;
for i=23,.,v; (18)
ii) if 0 < I < v, the optimal solution is

X=X for i=12,.,1, x;,,=p-x! +x +x,,, and

X;=x; for i=1+2,1+3,.,v; (19)

ii)if 7 = v, theoptimalsolutionis x; = x; fori = 2,3,..., v. (20)
Finally, after making the inverse to (11) substitution, we
get the optimal limit transient probabilities

Py, =X; for i=12,..,v, 1)

that maximize the system mean lifetime p(7) in the reliability

state subset {r,r+1,...,z}, defined by the linear form (8)
giving its maximum value in the following form

A%
B =2 el () forafixed r e {12,.,21.  (22)
b=1
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From the above, replacing » by u, u = 1,2,..., z, we obtain
the corresponding optimal solutions for the mean values of
the system unconditional lifetimes in the reliability state
subsets {u,u+1,...,z} of the form

\4
n(u) = Zpbpb(u) for u=1,2,.., z (23)
b=l

Further, according to (3), the corresponding optimal
unconditional multistate reliability function of the system is

R(z,) =[1, R, R(t,2) 1, (24)

where

\4
. ~ . b
Rn () =1§pb[R(t’“)]( ) for >0, u=12,..,z, (25)

and by (5) the optimal solutions for the mean values of the
system unconditional lifetimes in the particular reliability
states are of the form

@) = w)— 1 +1), u=0,1..,z-1, fi(z) = p(z). (26)

Moreover, considering (6) and (7), the corresponding
optimal system risk function and the moment when the risk
exceeds a permitted level §, respectively are given by

F(t)=1- R(t,r) for t € (~0,00) and 1= ¥~'(5). (27)-28)

3 OPTIMAL SOJOURN TIMES OF COMPLEX
TECHNICAL SYSTEM OPERATION PROCESS

Replacing the limit transient probabilities pj, of the
system operation process at the operation states by their
optimal values p;, and the mean values M, of the
unconditional sojourn times at the operation states by their
corresponding unknown optimal values M , Maximizing the
mean value of the system lifetime in the reliability states
subset {r,r +1,...,z}, we get the system of equations

nbM b

. ,b=12,.,v. 29)
ZMM/
I=1

Db =

After simple transformations the above system takes
the form

(pl —l)nlMl +ﬁ1ﬂ2M2 +...+p17[vMV =0

Pamy M+ (py —DIyMy +...4+ pymy M, = 0

vaclMl +pVTl72M2 +...+(pv _I)TCVMV = O,

where M, are unknown variables we want to find, p;, are
optimal transient probabilities and m; are steady
probabilities.

Since the system of equations is homogeneous and it
can be proved that the determinant of its main matrix is
equal to zero, then it has nonzero solutions and moreover,

these solutions are ambiguous. Thus, if we fix some of the
optimal values Mb of the mean values M, of the
unconditional sojourn times at the operation states, for
instance by arbitrary fixing either one or multiple of them,
we may find the values of the remaining ones and using this
method arrive at the solution of this equation.

Another very useful and much easier applicable in
practice tool that can help in planning the operation
processes of complex technical systems are the system
operation process optimal mean values of the total system

operation process sojourn times éb at the particular
operation states z;, b =1,2,..., v, during the fixed system
operation time Q. They can be obtained by replacing the
transient probabilities p; at the operation states z; with
their optimal values pj. This results in the following
expession

My = E[0,]=pp0.0=12,...,v. 31

The knowledge of the optimal values M, of the mean
values of the unconditional sojourn times and the optimal

mean values )/ , Of the total sojourn times at the particular

operation states during the fixed system operation time may
be the basis for changing the complex technical systems
operation processes in order to ensure that these systems
operate both more reliably and more safely. This knowledge
may also be useful in these systems operation cost analysis.

4 THE BULK CARGO TRANSPORTATION
SYSTEM RELIABILITY AND RISK

The considered bulk cargo terminal placed at the Baltic
seaside is designated for storage and reloading of bulk cargo,
but its primary activity is loading bulk cargo on board the
ships for export. There are two independent transportation
systems: the system of reloading rail wagons and the system
of loading vessels.

Cargo is brought to the terminal by trains consisting of
self-discharging wagons, which are discharged to a hopper
and then by means of conveyors transported into one of
four storage tanks (silos). Loading of fertilizers from storage
tanks on board the ship is done by means of special
reloading system which consists of several belt conveyors
and one bucket conveyor which allows the transfer of bulk
cargo in a vertical direction. Researched system is a system
of belt conveyors, referred to as the transport system.

In the conveyor reloading system we distinguish three
bulk cargo transportation subsystems, the belt conveyors
S, S, and S,. The conveyor loading system is composed of
six bulk cargo transportation subsystems, the dosage
conveyor §,, the horizontal conveyor S, the horizontal
conveyor S,, the sloping conveyors S, the dosage conveyor
with buffer S,, the loading system S,.

The bulk cargo transportation subsystems are built,

respectively:

— the subsystem S; : 1 rubber belt, 2 drums, set of 121
bow rollers, set of 23 belt supporting rollers,

— the subsystem S,: 1 rubber belt, 2 drums, set of 44
bow rollers, set of 14 belt supporting rollers,
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— the subsystem S3: 1 rubber belt, 2 drums, set of 185
bow rollers, set of 60 belt supporting rollers,

— the subsystem Sy: 3 identical belt conveyors, each
composed of 1 rubber belt, 2 drums, set of 12 bow rollers,
set of 3 belt supporting rollers,

— the subsystem Ss: 1 rubber belt, 2 drums, set of 125
bow rollers, set of 45 belt supporting rollers,

— the subsystem Sg: 1 rubber belt, 2 drums, set of 65 bow
rollers, set of 20 belt supporting rollers,

— the subsystem .S-: 1 rubber belt, 2 drums, set of 12 bow
rollers, set of 3 belt supporting rollers,

— the subsystem Sg: 1 rubber belt, 2 drums, set of 162
bow rollers, set of 53 belt supporting rollers,

— the subsystem So: 3 rubber belts, 6 drums, set of 64
bow rollers, set of 20 belt supporting rollers.

Taking into account the operation process of the
considered system we distinguish the following as its three
operation states:

— an operation state z; — loading fertilizers from rail
wagons on board the ship is done using S|, S,, S,, S, S., S,
and S, subsystems.

— an operation state z, — discharging rail wagons to
storage tanks or hall when subsystems S|, S, and S,, are
used,

— an operation state z3 — loading fertilizers from storage
tanks or hall on board the ship is done by using S,, S, S,, S.,
S, and §,, subsystems.

The limit values of the bulk cargo transportation systems
operation process transient probabilities py(f) at the
operation states z;, b =1,2,3, determined in [5], on the basis
of data coming from experts are

P =02376, p, =0.6679, p3 =0.0945. (32)

Further, assuming that the system is in the reliability
state subset {u,u+1,...,z} if all its subsystems are in this
subset of reliability states, we conclude that the bulk cargo
transportation system is a series system [4] of subsystems
S,S,8,8,S, S, and S,.

Under the assumption that changes of the bulk cargo
transportation system operation states have an influence
on both the subsystem S; reliability and the entire reliability
structure [8], on the basis of expert opinions and statistical
data given in [9], [10], the bulk cargo transportation system
reliability structures and their components reliability
functions at different operation states can be determined.

Additionally, we assume that subsystems S,

i=123,..9, are composed of four-state exponential
components, with the reliability functions

IR, (, NP =11, [R, (6, D]?, [R (0,21, [R, (1,3]P1,
te<0,0), b=1,23, u=123.

At the operation state z,, at loading of fertilizers from

rail wagons on board the ship, the system is composed of
seven non-homogenous series subsystems S, S,, S,, S, S,
S, and S, forming a series structure.

114

The conditional reliability function of the system while
it is at the operation state z; is given by

(R, W =[L R DIV, [Re, 21V, [R(2, 31D ],
where

[R(, )] D = [R 47t )V [Rey (8 )]V [ Ryt )™ [Reg(t, 1)V

[Ry (& IV[Ry (6, )[Ry 2, ) Vfor £ €< 0,00),u=1.23,

1.€.

[R(z, )]V =exp[-74.426t], [R(z, 2)]V = exp[-93.472t],

[R(t, 3)]V = exp[-150.2067]. (33)-(35)
The expected values of the conditional lifetimes in the
reliability state subsets at the operation state z;, calculated

from the above result given by (33)—(35), are:
p (1) =0.013, py(2) =0.011, py(3) =0.007 years, (36)

and further, using (5), it follows that the conditional lifetimes
in the particular reliability states at the operation state z; are:

(1) =0.002, [(2) =0.004, iy (3) = 0.007 years.

At the operation state z,, i.e. at the state of discharging rail
wagons to storage tanks or hall, the system is built of three

subsystems S, S, and S5 forming a series structure [4].

The conditional reliability function of the bulk cargo
transportation system at the operation state z, is given by

R, )P =[LIR@ DIP, [R, 1P, [R(z, 31?1,

where

[R(t,u)1® = [Ryg7 (&, )] [Rey (¢, u)]® [Rogt, )]

for 1t €< 0,0), u=1,2,3,
ie.

[R(£,1)]® =exp[-39.5631], [R(r,2)]®) = exp[-49.6631],

[R(#,3)]® = exp[-64.2801]. (37)-(39)

The expected values of the conditional lifetimes in the

reliability state subsets at the operation state z,, calculated
from the above result given by (37)—(39), are:

15 (1) = 0.025, 115 (2) 0.020,0.016 years, (40)

and further, using (5), it follows that the conditional lifetimes
in the particular reliability states at the operation state z, are:

> (1) = 0.005, Ti5(2) = 0.004, [T, (3) = 0.016 years.

At the operation state z3, i.e. at the loading of fertilizers
from storage tanks or hall on board, the bulk cargo
transportation system is built of six subsystems one series-
parallel subsystem S, and five series subsystems S, S, S,
S, S, forming a series structure [4].
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The conditional reliability function of the system while
it is at the operation state z3 is given by
(R, NP =11 R DIP [Re, 2195 R 391,

where

[R(z, u)](3):[R3,1g(ta u)](3) IR 55 ”)](3) ‘[Rgg(ta ”)](3) ‘[ng(ta ”)](3)

Ry gt )]® +[Ros(t, u)]® for 1€<0,00), u=12.3,
ie.
[R(t, 1]®) =exp[ —57.758] ~3exp[—55.007¢] +3 exp[ ~52.256](41)
[R(t, 2)]® =exp[-70.974¢]-3 exp[ ~68.018¢] +3 exp[~65.062¢] (42)
[R(#, 3)]® = exp[-89.416f] —3exp[~86.140r] +3 exp[ -82.8641].(43)

The expected values of the conditional lifetimes in the
reliability state subsets at the operation state z3, calculated
from the above result given by (41)—(43), are:

13(1) 20.020, p3(2) =0.016, p3(3) = 0.013 years, (44)

and further, using (5), it follows that the conditional lifetimes
in the particular reliability states at the operational state z3
are:

13(1)=0.004, p3(2) =0.003, p3(3) =0.013 years.

In the case when the system operation time is large
enough, the unconditional reliability function of the bulk
cargo transportation system is given by the vector

R(, ) =[1, R(,1), R(,2), R(#,3)], t=0,
where, according to (3) and after considering the values of

pp, b =1,2,3, given by (32), its co-ordinates are as follows:
R(.1)= py {R(t] D+ py -[R(t)] P + py - [Re,u)] P 45)

fort> 0, u=1,2,3, where [R(,u)]" and [R(,u)]® and
[R(t,u)]®) are respectively given by (33)—~(35) and (37)-
(39) and (41)—(43), i.e.

R(z,1) = 0.6679 exp[—39.5631] + 0.0945 exp[—74.426¢] +
+0.2376[exp[—57.758t] -3 exp[—55.007¢]+ 3 exp[—52.256¢]] ,(46)

R(7,2) = 0.6679 exp[-93.472¢]+ 0.0945 exp[—49.663¢] +
+0.2376[exp[~70.974¢] - 3exp[—68.018¢] + 3 exp[—65.062¢]] ,(47)

R(2,3) = 0.6679 exp[—150.206¢] + 0.0945 exp[—64.280¢] +
+0.0945[exp[—89.416¢]— 3 exp[—86.140¢] + 3 exp[—82.864¢]].(48)

The mean values of the system unconditional lifetimes
in the reliability state subsets, according to (4) are
respectively:

n() =0.016, p(2) =0.013, p(3) =0.009.  (49)

The mean values of the system lifetimes in the particular
reliability states, (5), are

p()=p1)—p(2)=0.003, n(2)=w2)-p(3)=0.004,
E3) = p(3) =0.009.

If the critical reliability state is 7 = 2, then the system risk
function, according to (6), is given by
r(f)=1-[0.6679 exp[ —93.472¢] +0.0945 exp[ —49.663¢] +
+0.2376(exp[—70.974¢] -3 exp[ —68.018¢] +3 exp[ —65.062¢])]
for t >0. (50)

Hence, the moment when the system risk function (Fig. 1)
exceeds a permitted level, for instance § = 0.05, from (7), is

© =r1(§)=0.000627 years. (51

The system risk function

1,0
0,9

0,7
0,6
0,5
0,4
0,3
0,2

r(t)

0,0
0,00 0,05 0,10 0,15 0,20 0,25 0,30

t

Figure 1 — The graph of the port bulk cargo transportation system
risk function

5 OPTIMIZATION OF THE BULK CARGO
TRANSPORTATION SYSTEM OPERATION
PROCESS

In our case, as the critical state is = 2, then considering
the expression for p(2), the objective function (8), takes the
form

w(2) = p;-0.011 +p,-0.020 +p3-0.016 =0.013 years. (52)

The lower pj, and upper pj, bounds of the unknown
transient probabilities p;, b=1,2,3, coming from experts,
respectively are [6]:

Py =0.150, P =0.005, p3 =0.015,
P, =0.850, p, =0.120, p3=0.390.

Therefore, according to (9)—(10), we assume the
following bound constraints

3
225 =1 0.250 < p, <0.850,
b=1

0.005 < p, <0.150, 0.050 < p3 <0.550.

Now, before we find optimal values p; of the transient
probabilities p,, b=12,3, that maximize the objective
function (53), we arrange the system conditional lifetimes
mean values p,(2), =123, in non-increasing order

Ho(2) 2 p3(2) 2 i (2).
Next, according to (11), we substitute

X|=py = 0.0945, Xy =Pp3 :02376, X3 =D :06679, (53)
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% =0.005, ¥, =0.050, ¥; =0.250, X, =0.150,
X, =0.550, X3 =0.850, (54)

where X; and X; are lower and upper bounds of the unknown
limit transient probabilities x;, i=1,2,3, respectively and
we maximize with respectto x;, i=1,2,3, the linear form (52)
that according to (13) takes the form

n(2)=x;-0,011+ x,-0,020 + x3-0,016, (55)
with the following bound constraints

0.005 < x; £0.12, 0.015 < x, <0.390, 0.150< x3 <0.850. (56)

According to (15)—(17), we calculate and fix the optimal
solution that maximizes linear function (55) according to the
rule (19). Namely, we get

% =% =0.120 x> =x% =0.390;

X3 = 0.830—0.490+0.150 = 0.490.
Finally, according to (21) after making the inverse to (53)

substitution, we get the optimal transient probabilities
P, =%,=0490, p, =x; =0.120, p3 =X =0.390,(57)
that maximize the system mean lifetime in the reliability

state subset {2,3} expressed by the linear form (53) giving,
according to (12) and (57), its optimal value

1(2)= py-0,011+ py -0,020 + p3-0,016=0.49 -0.011 +

+0.12 -0.020+0.39 -0.016 = 0.014, (58)
6 OPTIMAL RELIABILITY CHARACTERISTICS
OF THE BULK CARGO TRANSPORTATION SYSTEM

Further, substituting the optimal solution (57) according
to (24), we obtain the optimal solution for the mean value of
the system unconditional lifetime in the reliability state

subset {1,2}, {3} that respectively amounts:
p() = 0.0172, 1(3) =~ 0.0104, (59)
and according to (26), the optimal solutions for the mean

values of the system unconditional lifetimes in the particular
reliability states are

H(1)=0.0032, 1(2)=0.0036, [i(3)=0.0104.
Moreover, according to (24)—(25), the corresponding

optimal unconditional multistate reliability function of the
system is of the form

R(t, ) = [1, R&1). R(t,2) . R(,3) ] for £> 0,
where according to (3) and after considering the values of
Pp, its co-ordinates are as follows:

R(7,u)= 0.49 {R(t,u)] M+ 0.12 - [R(£,u)] P+ 0.39 - [R(t,u)]>
for t>0, u=123, (60)

where [R(,u)]V, [R(t,u)]®, [R(t,u)] are respectively
given by (33)~(35) and (37)—(39), (41)~(43).
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If the critical reliability state is 7 = 2, then the system risk
function, according to (27), is given by
i(f) =1 R(2)=1-[0.49 exp[ -93.472¢] +0.12 exp[ —49.663¢]+

+0.39(exp[~70.974¢] -3 exp[ —68.018¢] +3 exp[ —65.062¢ 6

where R(,2) is given by (60) for 4 =2 .

Hence, considering (28), the moment when the optimal
system risk function (Fig. 2) exceeds a permitted level, for
instance §=0.05, is

1=1"(8) = 0.000676 years. (62)

Comparing the bulk cargo transportation system
reliability characteristics after its operation process
optimization given by (58)—(62) with the corresponding
characteristics before this optimization determined by (45)—
(51) justifies this action.

The optimal system risk function

1,0 4

0,8
0,6

r(t)

0,4 -
0,2

0,0

0,0 0,0 0,0 0,1 0,1 0,1
t

Figure 2 — The graph of the port bulk cargo transportation system
optimal risk function

7 OPTIMAL SOJOURN TIMES OF BULK CARGO
TRANSPORTATION SYSTEM OPERATION
PROCESS AT OPERATION STATES

Having the values of the optimal transient probabilities
determined by (57), it is possible to find the optimal
conditional and unconditional mean values of the sojourn
times of the bulk cargo transportation operation process at
the operation states and the optimal mean values of the
total unconditional sojourn times of the bulk cargo
transportation system operation process at the operation
states during the fixed operation time as well.

Substituting the optimal transient probabilities at operation
states determined in (57) and the steady probabilities

n; =0.315, 7wy =0.5, 73 =0.185,

we get the following system of equations

—0,16065M +0.245M 5 +.0.09065M 5 =0
0.0378M +(=0.44)M, +0.0222M 5 =0.

: . . (63)
0.12285M +0.195M, +(~0.11285)M3 =0

with the unknown optimal mean values M, of the system
unconditional sojourn times in the operation states.
Consequently, we get

My, My =0.154286M,, M5 =1216216M, .
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Thus, we may fix M, and determine the remaining ones.
In our case, after considering expert opinion, we conclude
that it is sensible to assume

Ml = 2.

This way the obtained solutions of the system of

equations, are
M, =2, My=0308571, M;=2432432.  (64)

It can be seen that these solutions differ substantially
from the values My, M,, M;.

Other very useful and much easier to apply in practice
tools that can help in planning the operation process of the
technical system are the system operation process optimal
mean values of the total sojourn times at the particular
operation states during the fixed system operation time 0,

Assuming the system operation time =1 year = 365 days,
after aplying (32), we get their values

M, = E[6,]1= p,0 = 0.49 -365 = 179 days,
A22 =E[0,]= p,0 =0.12-365 = 44days,
M = ElB3]= p30 =0.39-365 =142 days.  (65)

In practice, the knowledge of the optimal values of A/ ; and M b
given respectively by (64)—(65), is impornat and very helpful in
planing and improving the operation process, as it allows for
more reliable and safer system operation. From the performed
analysis of the results of the bulk cargo transportation system
operation process optimization it can be suggested to change
the operation process characteristics that result in replacing
(or the approaching/convergence to) the unconditional mean
sojourn times M}, in the particular operation states before the

optimization by their optimal values A/, after the optimization.
The easiest way of reorganizing the system operation process
leads to replacing (or the approaching/convergence to) the

total sojourn times, Mb = E[éb], of the bulk cargo
transportation system operation process, and in particular
operation states during the operation time @ =1 year, with their

optimal values M » =E[6 »l

CONCLUSIONS

The joint model of reliability of complex technical systems
at variable operation conditions linking a semi-markov
modelling of the system operation processes with a multi-
state approach to system reliability analysis was
constructed. Next, the final results obtained from this joint
model and linear programming were used to build the model
of complex technical systems reliability optimization. These
tools can be used in reliability evaluation and optimization
of a very wide class of real technical systems operating at

varying conditions that influence their reliability structures
and the reliability parameters of their components. The
practical application of these tools to reliability and risk
evaluation and optimization of a technical system of a bulk
cargo transportation system, operating in variable
conditions, and the results achieved can be implemented
by reliability practitioners from both maritime transport
industry and other industrial sectors.
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ONTUMM3BALIASL HAJEXKHOCTH U PUCKOB CUCTEM C HECKOJIBKMMH YCTOMYUBLIMU COCTOSIHUSIMHU B

HPAJIO)KEHUM K TPAHCIIOPTHOM CUCTEME ITIOPTA

CII0)XKHOCTh TIpo1ECCOB paﬁOTI)I TEXHUYCCKUX CUCTEM U UX BIIMAHUC HA U3MECHEHUE BO BPEMEHU CTPYKTYP CUCTEM U MAapaMETPOB HATICIKHO-
CTH UX KOMIIOHEHTOB 06yC.]'IOB.]'II/IBaIOT CJIO)KHOCTHU TIpU HCpBOﬁ BCTpE€UYE€ B pC€AJIbHOCTH, a 3aTE€EM B (bI/IKC&III/II/I " aHalIM3€ 3TUX CTPYKTYp U
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apaMeTpoB HaAEKHOCTH. IlyTeM mocTpoeHus: 0ObeJUHEHHON MOIENH HAJEKHOCTH CIIOMKHBIX TEXHHYECKHX CHCTEM B Pa3jIMUHBIX YCIOBHSX
9KCILTyaTalluH, CBSI3bIBAIONIEH I10TyMapKOBCKOE MOJEIUPOBAHUE MPOLIECCOB PAOOTHI CUCTEMBI C MOAXONO0M HECKOIBKUX COCTOSHUII B aHAIM3e
HAJI©KHOCTH CHCTEM, Mbl HAXOJMM OCHOBHBIE XapaKTEPUCTUKH HAJEKHOCTH CUCTEMBI. 3aT€M MbI HCIOJb3yeM JIMHEHHOE POrpaMMHPOBaHHE
JUISt TOTO, YTOOBI MOCTPOUTH MOAENb ONTHMH3ALUM HAJEKHOCTU CIOXKHBIX TEXHHYECKHX CHCTeM. MBI HCCleqyeM IPUIOKEHHE MOJEIU B
MOPCKOM TPAHCIIOPTE, B YACTHOCTH, B ONTUMU3ALUY HAJEKHOCTU 1 PUCKOB 00BEMHOH CHCTEMBI IpY3011epeBO30K. IHCTpYMeHTHI, pa3paboTaH-
HBIE HAMH, MOT'YT OBITb HCIIOJIb30BaHbl JUISl OLEHKH HAJEKHOCTU M ONTHMM3AlLMU OYEHb LIMPOKOrO KJIACCA PEalIbHBIX TEXHUUECKHX CUCTEM,
paboTaromux B pa3InuHbIX YCIOBUAX, KOTOPbIE BIUSIOT HA UX CTPYKTYPY HaJIGXKHOCTH U TApAMETPhl HAJEKHOCTH UX KoMIIOHEeHTOB. CiienoBa-
TEJbHO, pa3pab0TaHHbIe HAMU MHCTPYMEHTbI MOT'YT OBITh HCIOJIb30BaHbI CIIELUATUCTAMH-TIPAKTUKAMHU B 00JaCTH HAJIEKHOCTH KaK B OTPACIH
MOPCKOTO TPaHCIOPTa, TaK U B JPYrUX OTPACISAX IPOMBIILIEHHOCTH.
KumoueBblie cnoBa: QyHKUUsS HAEKHOCTH, (GYHKIMS pUCKa, pabouuii mporecc, OnTHMH3aLMS.

Konospoupskuii K., Ksanimescka-CapHernka B.2, CommHcbka-bynanit n3

!I-p Hayxk, npodecop, npodecop kapenpu maremarnku, Mopcska Axkasemis B Iuni, [iusst, [Tonbiia

*JT-p dinocodii, morent, poeHT Kadenpu MmareMaTuku, Mopcbka Axajemis B Ununi, [nnas, [ombina

3II-p dinocodii, an’toHKT Kadenpu matemaruku, Mopcbka Akanemis B Tnuni, [nunst, Tlonbina

ONTUMIBALIS HAIMHOCTI I PU3UKIB CUCTEM 3 KIJIbKOMA CTIMKUMU CTAHAMMU VY 3ACTOCYBAHHI 10
TPAHCIIOPTHOI CUCTEMH MOPTY

CKJIaJHICTh NPOLECIB pOOOTU TEXHIYHMX CHUCTEM Ta IXHill BIUIMB Ha 3MiHY B 4aci CTPYKTyp CHCTEM 1 napamerpiB HaJilHOCTI iXHIX
KOMIIOHEHTIB 00YMOBJIIOIOTH CKJIAIHOLII IIPH HepIIii 3ycTpidi y peabHOCTI, a HoTiM y ikcauii i aHai31 [UX CTPYKTYp i IapaMeTpiB HaliHHOCTI.
[nsxom oOynoBY 00’ €qHAHOT MOZENI HAIIHHOCTI CKIIAJHUX TEXHIYHUX CHCTEM B PI3HHX YMOBAaX €KCIUTyarallii, 0 3B’sI3y€ HaliBMapKOBCHKE
MOJIE/IIOBAHHS TIPOLIECIB POOOTH CUCTEMU 3 MiIXO[OM JIEKUIBKOX CTaHIB B aHaJi31 HAAIMHOCTI CUCTEM, MM 3HAXOIMMO OCHOBHI XapaKTepPUCTHKU
HaxiitHOCTI cucremu. I10TiM MM BUKOPHCTOBYEMO JIiHIHHE IpOrpaMyBaHHs JUIsl TOTO, 100 OOy yBaTH MOAENs ONTHMI3alil HAAIHHOCTI CKIIaz-
HHUX TEXHIYHMX CUCTeM. MHU HOCIIIKYEMO 3aCTOCYBaHHS MOJEN B MOPCHKOMY TPaHCIOPTi, 30KpeMa B ONTUMi3alii HafillHOCTI Ta pPU3HUKIB
00’€MHOI CHCTEMH BaHTaXOIEpeBe3eHb. IHCTpYMEHTH, po3po0iIeHi HaMHi, MOKYTh OyTH BUKOPUCTAHI AJIs OLIHKM HaAIMHOCTI Ta onrtuMizamii
Jly>Ke LIMPOKOTo KJIacy pealbHUX TEXHIYHUX CHCTEM, IO MPaLIOI0Th B PI3HUX yMOBAX, sIKi BIUIMBAIOTh Ha IX CTPYKTYpY HaJIHOCTI i mapameTpu
HaJIHHOCTI IXHIX KOMIIOHEHTIB. OTKe, po3po0ieHi HaMH IHCTPYMEHTH MOXYTb OyTH BUKOpPHCTaHi (haXiBLUSAMHU-TIPAKTHKAMH B TalTy31l HadilHOCTI
SIK y Taly31 MOPCBKOTO TPAaHCIOPTY, TaK 1 B IHIIMX raly3sX IPOMHCIOBOCTI.

KumouoBi cnoBa: (yHkuis HapiifHOCTI, (yHKILIS PU3UKY, pOOOUHii IIpoLeC, ONTHMI3aLLis.
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