DECOMPOSITION OF SUM OF GAUSSIANS DISTORTED BY IMPULSIVE NOISE
DOI:
https://doi.org/10.15588/1607-3274-2017-1-11Keywords:
Gaussian decomposition, data processing, extent.Abstract
Context. Using of the conventional methods of Gaussian decomposition in the case, when the original data are distorted by impulsivenoise, leads to considerable errors. The object of this study is the process of Gaussian decomposition in an impulsive noise environment.
Objective. The goal of this work is the development of a method of Gaussian decomposition for the case when the data are distorted by
impulsive noise.
Method. The proposed method of Gaussian decomposition is based on solving the problem of unconstrained minimization the objective
function by unknown parameters. The problem statement is built on the criterion of a minimum extent which is used to the solution residual.
Process of Gaussian decomposition is implemented iteratively by successive selecting from the sum of Gaussian functions such a Gaussian function, which initially is the most extended, and then the one which is less extended, etc. To determine the parameter values of Gaussian function the two approaches are described. The first approach is based on the iterative method, which is used for solving the set of nonlinear equations, derived from the necessary conditions for the minimum of objective function. The second approach is based on the method of
passive searching of objective function minimum, where the test points are chosen from the condition that in these points the discrepancy is
zero. It is indicated that the second approach has a wider range of applicability than the first one. On the basis of the second approach, an
iterative algorithm is built. The way of selecting the initial parameter values of Gaussian function under impulsive noise environment is
presented. Also, the rule for choosing the best values of Gaussian parameters and the rule to stop of computing are formulated.
Results. Simulations for the problems of the single Gaussian curve fitting to data and of the Gaussian decomposition for the sum of five
Gaussians in the case, when the data are distorted by Cauchy noise, confirmed the performance of the proposed method.
Conclusions. The proposed method is the efficient tool of Gaussian decomposition for the sum of Gaussians distorted by the impulsive
noise with Cauchy distribution. It can be expanded to the case when the functions have other shape and other unknown parameters.
References
Titchmarsh E. C. The theory of functions / E. C. Titchmarsh. – New York : Oxford University Press, 1939. – 454 p. 2. Borulko V. F. Minimum-duration filtering / V. F. Borulko, S. M. Vovk // Радіоелектроніка, інформатика, управління. – 2016. – № 1. – С. 7–14. DOI: 10.15588/1607-3274-2016-1-1. 3. Vovk S. M. Statement of a problem of definition of linear signals parameters in quasinormed space / S. M. Vovk, V. F. Borul’ko // Radioelectronics and Communications Systems. – 2010. – Vol. 53. – P. 367–375. 4. Goshtasby A. Curve fitting by a sum of Gaussians / A. Goshtasby, W. D. O’Neill // Graphical Models and Image Processing. – 1994. – Vol. 56, No. 4. – P. 281–288. 5. Lindner R. R. Autonomous Gaussian decomposition / [R. R. Lindner, C. Vera-Ciro, C. E. Murray, S. Stanimirovic, B. L. Babler, C. Heiles, P. Hennebelle, W. M. Goss, J. Dickey // The Astronomical Journal. – 2015. – Vol. 149, No. 4. – P. 138–149. DOI: 10.1088/0004-6256/149/4/138. 6. Little M. A. Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory / M. A. Little, N. S. Jones // Proceedings of the Royal Society A. – 2011. – Vol. 467. – P. 3088–3114. DOI: 10.1098/rspa.2010.0671. 7. Гилат А. MATLAB. Теория и практика / А. Гилат. – М.: ДМК ПРЕСС, 2016. – 416 с. 8. Speyer J. Stochastic Estimation and Control for Linear Systems with Cauchy Noise / J. Speyer, M. Idan, J. Fern ndez // Advances in Estimation, Navigation, and Spacecraft Control. – 2015. – Chapter 6. – P. 95–118. DOI: 10.1007/978-3-662-44785-7_6. 9. Gonzalez J. G. Optimality of the myriad filter in practical impulsive-noise environments / J. G. Gonzalez, G. R. Arce // IEEE Trans. on Signal Processing. – 2001. – Vol. 49, No. 2. – P. 438–441. DOI: 10.1109/78.902126. 10. Aysal T. C. Meridian filtering for robust signal processing / T. C. Aysal, K. E. Barner // IEEE Trans. on Signal Processing. – 2007. – Vol. 55, No. 8. – P. 3949–3962. DOI: 10.1109/TSP.2007.894383.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 S. M. Vovk
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.