### MATHEMATICAL MODELS AND METHODS OF SOLVING SPATIAL GENERALIZED BOUNDARY VALUE PROBLEM HEAT ROTATING HOLLOW PIECEWISE HOMOGENEOUS CYLINDER

M. G. Berdnyk

#### Abstract

Context. The phenomenological theory of heat conduction speed of heat propagation is assumed infinitely large. However, the high intensity of the observed transient processes such as explosions, supersonic flow, high speeds of rotation of the use of this assumption leads to errors, so it is necessary to take into account that the distribution of heat takes place at a finite rate.

Objective. Development of a new generalized mathematical model of the temperature distribution in the hollow piecewise uniform cylinder in the form of a boundary value problem of mathematical physics for the heat equation and the solution of the resulting boundary value problem.

Method. The use of known integral Laplace transforms, Fourier series, and developed a new integral transformation for piecewise homogeneous space.

Results. Found Polga transient temperature field of a circular cylinder in a cylindrical coordinate system, a piecewise homogeneous polar radius direction, which rotates at a constant angular velocity about the axis OZ, with the ultimate heat propagation speed. Thermal properties of each layer does not depend on the temperature at an ideal thermal contact between the layers, and there are no internal sources of heat.

Conclusions. For the first time developed a mathematical model of the temperature distribution in the empty piecewise uniform cylinder, which rotates at a constant angular velocity about the axis OZ, taking into account the finite speed of propagation of heat in the form of mathematical physics boundary value problem for hyperbolic partial differential equations of heat conduction with boundary conditions of the first kind. Thermal properties are in each layer does not depend on the temperature at an ideal thermal contact between the layers, and there are no internal sources of heat.Created a new integral transform of a piecewise-homogeneous space, with which found the temperature field of the hollow piecewise homogeneous circular cylinder in the form of convergent orthogonal series of Bessel functions and of Fourier. The obtained analytical solution of a generalized boundary value problem of heat transfer cylinder, which rotates, given a finite amount of heat propagation velocity can be used for modeling of temperature fields, which occur in many technical systems (satellites, forming rolls, turbines, etc.).

#### Keywords

Boundary value problem; generalized equation of energy transfer; integrated Laplace; Fourier; relaxation time

PDF (Українська)

#### References

Berdnyk M. G. Matematychne modeljuvannja tryvymirnoi’ uzagal’nenoi’ zadachi teploobminu sucil’nogo cylindra, jakyj obertajet’sja, Pytannja prykladnoi’ matematyky i matematychnogo modeljuvannja, D, DNU, 2014, pp. 26–35.

Jachmen’ov V. O., Nikolenko V. V. Rozrahunok temperaturnyh poliv v skladenomu napivneskinchennomu tili z urahuvannjam uzagal’nenogo zakonu Fur’je, Visnyk NTU «HPI». Serija: Energetychni ta teplotehnichni procesy j ustatkuvannja. Harkiv, NTU «HPI», 2016, No. 10(1182), pp. 61–65.

Mainardi F. The fundamental solutions for the fractional diffusion wave equation [Text], Appl. Math. Lett, 1996, No. 9, pp. 23–28.

Povstenko Y. Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition, Fract. Calc. Appl. Anal., 2013, No. 16, pp. 356–369.

Povstenko Y. Fractional heat conduction in an infinite medium with a spherical inclusion. Entropy, Fract. Calc. Appl. Anal, 2013, No. 15, pp. 4122–4133.

Konet I. M., Lenjuk M. P. Giperbolichni krajovi zadachi v neobmezhenyh trysharovyh oblastjah. L’viv, 2011, 48 p. (Prepr./ NAN Ukrai’ny In-t prykladnyh problem mehaniky i matematyky im. Ja. S. Pidstrygacha; 01.11).

Gromyk A. P., Konet I. M. Nestacionarni zadachi teploprovidnosti v kuskovo-odnoridnyh prostorovyh seredovyshhah. Kam’janec’- Podil’s’kyj, Abetka-Svit, 2009, 120 p.

Kuwashimo Kensuke, Tominori Yamada Temperature distribution within a rotatinq cylindrieal body, Bull. JSME, 1978, Vol. 21, No. 152, pp. 266–272.

Markovych B. M. Rivnjannja matematychnoi’ fizyky. L’viv, Vydavnyctvo L’vivs’koi’ politehniky, 2010, 384 p.

Lopushans’ka G. P., Lopushans’kyj A. O., M’jaus O. M. Peretvorennja Fur’je, Laplasa: uzagal’nennja ta zastosuvannja. L’viv, LNU im. Ivana Franka, 2014, 152 p.

Kalinichenko V., Gopkalo N. Vplyv ekspluatacijnyh faktoriv na napruzheno-deformovanyj ta granychnyj stan rolykiv mashyn bezperervnogo lyttja zagotovok, Visnyk TDTU, 2010, Tom 15, No. 1, pp. 41–51.

#### GOST Style Citations

1. Бердник М. Г. Математичне моделювання тривимірної узагальненої задачі теплообміну суцільного циліндра, який обертається / М. Г. Бердник // Питання прикладної математики і математичного моделювання. – Д. : ДНУ, 2014. – С. 26–35.

2. Конет І. М. Гіперболічні крайові задачі в необмежених тришарових областях / І. М. Конет, М. П. Ленюк. – Львів, 2011. – 48 с. – (Препр./ НАН України Ін-т прикладних проблем механіки і математики ім. Я. С. Підстригача; 01.11).

3. Ячменьов В. О. Розрахунок температурних полів в складеному напівнескінченному тілі з урахуванням узагальненого закону Фур’є / В. О. Ячменьов, В. В. Ніколенко // Вісник НТУ «ХПІ». Серія : Енергетичні та теплотехнічні процеси й устаткування. – Харків : НТУ «ХПІ», 2016. – № 10 (1182). – С. 61–65.

4. Mainardi F. The fundamental solutions for the fractional diffusion wave equation [Text] / F. Mainardi // Appl. Math. Lett. – 1996. – № 9. – P. 23–28.

5. Povstenko Y. Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition / Y. Povstenko // Fract. Calc. Appl. Anal. – 2013. – № 16. – P. 356–369.

6. Povstenko Y. Fractional heat conduction in an infinite medium with a spherical inclusion. Entropy / Y. Povstenko // Fract. Calc. Appl. Anal. – 2013. – № 15. – P. 4122–4133.

7. Громик А. П. Нестаціонарні задачі теплопровідності в кусково-однорідних просторових середовищах / А. П. Громик, І. М. Конет. – Кам’янець-Подільський : Абетка-Світ, 2009. – 120 с.

8. Kuwashimo Kensuke. Temperature distribution within a rotatinq cylindrieal body/ Kuwashimo Kensuke, Yamada Tominori // Bull. JSME. – 1978. – Vol. 21, № 152. – P. 266–272.

9. Маркович Б. М. Рівняння математичної фізики / Б. М. Маркович – Львів : Видавництво Львівської політехніки, 2010. – 384 c.

10. Лопушанська Г. П. Перетворення Фур’є, Лапласа: узагальнення та застосування /Г. П. Лопушанська, А. О. Лопушанський, О. М. М’яус. – Львів : ЛНУ ім. Івана Франка, 2014. – 152 с.

11. Калініченко В. Вплив експлуатаційних факторів на напружено-деформований та граничний стан роликів машин безперервного лиття заготовок / В. Калініченко, Н. Гопкало // ВісникТДТУ. – 2010. – Том 15, № 1. – С. 41–51.

DOI: https://doi.org/10.15588/1607-3274-2017-2-3