CLATHRATE SEMICONDUCTOR MULTIFERROICS, SYNTHESIZED IN SYSTEM GаSE-NаNO2-FеSO4 AND INFLUENCE OF COINTERCALATION
DOI:
https://doi.org/10.15588/1607-3274-2017-3-1Keywords:
Supramolecular ensembles, clathrates, nanohybrids, Galium Selenide, impedance spectroscopy, photodielectric effect, magnetocapacity, quantum accumulators, spin capacitorsAbstract
Context. The task for electric energy accumulation in non-electrochemical way but by means of electrons and spins was developed on the basis of quantum accumulators and spin capacitors. Synthesized clathrates of 4 folds expanded GaSe matrix with guest component sodium nitrite NaNO2, Iron II Sulfate FeSO4 and combination of them NaNO2⊕FeSO4 are the object of research.
Objective. Synthesis of heterostructured nanocomposite materials with large developed interface, anisotropic electric conductance and high values of dielectric permittivity in combination with loss tangent less than 1.
Method. The intercalation approach to heterostructured nanocomposite materials formation was proposed. It allows creating developed atomic-molecular complexes of host-guest type and hierarchical structures of subhost-host-guest type. The X-ray diffractometry data show the structural changes in macro composite NaNO2⊕FeSO4 at the transition to the guest nanoscale geometry. With the help of frequency dependence of specific complex impedance the main features of current flow and charge accumulation processes in synthesized nanohybrids and effect of cointercalation were determined. Impedance photo- and magneto- responses show a gigantic photodielectric, magnetoresistive and magnetocapacitive effects at room temperature. These effects open up a new possibilities of theirs application as highly sensitive sensors of constant magnetic and light wave field.
Results. Clathrates GaSe<NaNO2>, GaSe<FeSO4> та GaSe<NaNO2⊕FeSO4> were synthesized. Electric charge accumulation at the interface was determined. The effects of negative photoconductivity and giant magnetoresistance, drastic increase in photo-EMF, giant photodielectric and magnetocapacitive effects were registered at room temperature.
Conclusions. Cointercalation of NaNO2⊕FeSO4 modifies the energetic specter of GaSe more than individual intercalation. Synthesized clathrates are promising materials for novel approaches in thechnology of highly sensible sensors of capacitive type for magnetic and light wave field at room temperatures as well as for quantum accumulators and quantum capacitors as a new alternative of chemical power sources
References
Request PCT BY 99/00012 “Quantum-Size Electronic Devices and Operating Conditions Thereof” (International Publication Number: WO 00/41247, 13.07.2000)
Krohns S., Lunkenheimer P., Kant Ch., Pronin A. V., Brom H. B., Nugroho A. A., Diantoro M., and Loidl A. Colossal dielectric constant up to gigahertz at room temperature, Appl. Phys. Lett, 2009, Vol. 94, pp. 122903-1–122903-3. DOI: 10.1063/1.3105993
Hai P. N., Ohya S., Tanaka M., Barnes S. E., Maekawa S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions, Nature, 2009, Vol. 458, No. 7237, pp. 489–493. DOI:10.1038/nature07879
Fridkin V.M. Critical size in ferroelectric nanostructures, Physics Uspekhi, 2006, Vol. 49, pp. 193–202. DOI: 10.1070/PU2006v049n02ABEH005840
Fokin A. V., Kumzerov Yu. A., Okuneva N. M., Naberezhnov A. A., Vakhrushev S.B., Golosovsky I. V., Kurbakov A. I. Temperature Evolution of Sodium Nitrite Structure in a Restricted Geometry, Physical Review Letters, 2002, Vol. 89, No. 17, P. 175503. DOI: 10.1103/PhysRevLett.89.175503
Vakhrushev S. B., Kumzerov Yu. A., Fokin A. V., Naberezhnov A. A., Zalar B., Lebar A., Blinc R. 23Na spin-lattice relaxation of sodium nitrite in confined geometry, Physical Review B, 2004, Vol. 70, No. 13, pp. 132102. DOI: 10.1103/PhysRevB.70.132102
Baryshnikov S. V., Tien C., Charnaya E. V. , Lee M. K., Michel D. Bohlmann W. Dielectric properties of mesoporous sieves filled with NaNO2, Ferroelectrics, 2008, Vol. 363, No.1, pp. 177–186. DOI: 10.1080/00150190802026127
Tien C., Charnaya E. V., Lee M. K., Baryshnikov S. V., Sun S. Y., Michel D., Bohlmann W. Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves, Physical Review B, 2005, Vol. 72, No. 10, pp. 104–105. DOI: 10.1103/PhysRevB.72.104105
Murzina T. V., Sychev F. Y., Kolmychek I. A., Aktsiperov O. A. Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite, Applied Physics Letters, 2016, Vol. 90, pp. 161120–161122. DOI: 10.1063/1.2724928
Tien C., Charnaya E. V., Lee M. K., Baryshnikov S. V., Michel D., B hlmann W. NMR studies of structure and ferroelectricity for Rochelle salt nanoparticles embedded into mesoporous sieves, Journal of Physics: Condensed Matter, 2008, Vol. 20, pp. 215205. DOI: 10.1088/0953-8984/20/21/215205
Yadlovker D., Berger S. Uniform orientation and size of ferroelectric domains, Physical Review B, 2005, Vol. 71, No. 18, pp. 184112. DOI: 10.1103/PhysRevB.71.184112
Tien C., Charnaya E. V., Baryshnikov S. V., Lee M. K., Sun S. Y., Michel D., Bohlmann W. Evolution of NaNO2 in porous matrices, Physics of the Solid State, 2004, Vol. 46, No. 12, pp. 2301–2305. DOI:10.1134/1.1841397
Baryshnikov S. V., Charnaya E. V., Milinskii A. Yu., Goikhman A. Yu., Tien C., Lee M. K., Chang L. J. Dielectric properties of the nanoporous MCM-41 matrix filled with the (NH4)2SO4 ferroelectric, Physics of the Solid State, 2013, Vol. 55, No. 5, pp. 1070–1073. DOI: 10.1134/S1063783413050041
Baryshnikov S. V., Charnaya E. V., Milinskii A. Yu., Stukova E. V., Tien C., Bohlmann W., Michel D. Dielectric properties of mixed NaNO2-KNO3ferroelectrics in nanoporous silicate matrices, Physics of the Solid State, 2009, Vol. 51, No. 6, pp. 1243–1247. DOI: 10.1134/S1063783409060262
Beskrovny A. I. Vasilovski S. G., Vakhrushev S. B., Kurdyukov D. A., Zvorykina O. I., Naberezhnov A. A., Okuneva N. M., Tovar M., Rysiakiewicz-Pasek E., Jagu P. Temperature dependences of the order parameter for sodium nitrite embedded into porous glasses and opals, Physics of the Solid State, 2010, Vol. 52, No. 5, pp. 1092–1097. DOI:10.1134/S1063783410050410
Lee M. K., Charnaya E. V., Tien C., Samoilovich M. I., Chang L. J., Mikushev V. M. Magnetic properties of some opalbased nanocomposites, Physics of the Solid State, 2013, Vol. 55, No. 3, pp. 629–633. DOI: 10.1134/S1063783413030165
Kurmaev Z. Zatsepin D. A., Cholakh S. O., Schmidt B., Harada Y., Tokushima T., Osawa H., Shin S., Takeuchi T. Iron nanoparticles in amorphous SiO2: X-ray emission and absorption spectra, Physics of the Solid State, 2005, Vol. 47, No. 4, pp. 754–757. DOI: 10.1134/1.1913992
Ivicheva S. N., Kargin Yu. F., Ovchenkov E. A., Koksharov Yu. A., Yurkov G. Yu. Properties of three-dimensional composites based on opal matrices and magnetic nanoparticles, Physics of the Solid State, 2011, Vol. 53, No. 6, P. 1114. DOI: 10.1134/S1063783411060138
Bukhtiyarova G. A., Mart’yanov O. N., Yakushkin S. S., Shuvaeva M. A., Bayukov O. A. State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions, Physics of the Solid State, 2010, Vol. 52, No. 4, pp. 826–837. DOI: 10.1134/S1063783410040268
Grigorchak I. I., Netyaga V. V., Kovalyuk Z. D. On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics, Journal of Physics: Condensed Matter, 1997, Vol. 9, pp. L191–L195. DOI:10.1088/0953-8984/9/12/001
Pokladok N. T., Grigorchak I. I., Buzhuk Ya. M. Intercalated structures with a δ topological zone of alternating semiconductors and magnetoactive nanolayers and behavior of their impedance in magnetic and electric fields, Technical Physics, 2010, Vol. 80, No. 2, pp. 236–241. DOI: 10.1134/S106378421002012X
Zvezdin A. K., Pyatakov A. P. Phase transitions and the giant magnetoelectric effect in multiferroics, Physics Uspekhi, 2004, Vol. 47, pp. 416–421. DOI: 10.1070/PU2004v047n04ABEH001752
Lies R. M. A. III – VI Compounds, Preparation and cryst. growth material with layered structure. Dordrecht-Boston, 1977, pp. 225–254.
Friend R. H., Yoffe A. D. Electronic Properties of intercalation complexes of the transition metal dichalcogenides, Advances in Physics, 1987, Vol. 36, No. 1, pp. 1–94. DOI: 10.1080/00018738700101951
Grygorchak I., Ivashchyshyn F., Stakhira P., Reghu R. R., Cherpak V., and Grazulevicius J. V. Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar Semiconductor, Journal of Nanoelectronics and Optoelectronics, 2013, Vol. 8, No. 3, pp. 292–296. DOI: 10.1166/jno.2013.1464
Stoinov Z. B., Grafov B. M., Savova-Stoinova B. S., Elkin V. V. Electrochemical Impedance. Moscow, Nauka, 1991, 336 p.
Ed. Barsoukov E. and Macdonald J. R. Impedance spectroscopy. Theory, experiment and application. Wiley interscience, 2005, 585 p.
Bisquert J., Randriamahazaka H., Garcia-Belmonte G. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry, Electrochimica Acta, 2005, Vol. 51, pp. 627–640. DOI: 10.1016/j.electacta.2005.05.025
Mora-Sero I., Bisquert J., Fabregat-Santiago F., Garcia-Belmonte G., Zoppi G., Durose K., Proskuryakov Yu., Oja I., Belaidi A., Dittrich T., Tena-Zaera R., Katty A., Lévy-Clément C., Barrioz V., Irvine S. J. C. Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells, Nano Letters, 2006, Vol. 6, No. 4, pp. 640–650. DOI: 10.1021/nl052295q
Ivashchyshyn F., Grygorchak I., Stakhira P., Cherpak V., Micov M. Nonorganic semiconductor – Conductive polymer intercalate nanohybrids: Fabrication, properties, application, Current Applied Physics, 2012, Vol. 12, pp. 160–165. DOI:10.1016/j.cap.2011.05.032
Bishchaniuk T. M., Grygorchak I. I., Fechan A. V., Ivashchyshyn F. O. Semiconductor clathrates with a periodically modulated topology of a host ferroelectric liquid crystal in thermal, magnetic, and light-wave fields, Technical Physics, 2014, Vol. 84, No. 7, pp. 1085–1087. DOI: 10.1134/S1063784214070068
Tikhov S. V., Gorshkov O. N., Koryazhkina M. N., Antonov I. N., Kasatkin A. P. Specific features of nonequilibrium depletion accompanied by the trapping of minority carriers by surface states in metal-insulator-semiconductor structures, Technical Physics Letters, 2016, Vol. 42, No. 2, pp. 138–142. DOI: 10.1134/S1063785016020139
Demin R. V., Koroleva L. I., Muminov A. Z., Mukovski- Ya. M. Giant volume magnetostriction and colossal magnetoresistance in La0.7Ba0.3MnO3 at room temperature, Physics of the Solid State, 2006, Vol. 48, No. 2, pp. 322–325. DOI: 10.1134/S1063783406020211
Datta S. Proposal for a “spin capacitor”, Applied physics letters, 2005, Vol. 83, pp. 013115(1-3). DOI: 10.1063/1.1968417
Ћukowski P. V., Partyka J., Wagierek P., Shostak Yu., Sidorenko Yu., Rodzik A. Dielectric properties of Cd1"xFexSe compounds, Semiconductors, 2000, Vol. 34, No. 10, pp. 1124–1127. DOI: 10.1134/1.1317568
Nagaev E. L. Small metal particles, Physics Uspekhi, 1992, Vol. 35, No. 9, pp. 747–782. DOI: 10.1070/PU1992v035n09ABEH002261
Boltaev A. P., Pudonin F. A. Anomalously high low-frequency effective permittivity in a system of metal nanoislands, Journal of Experimental and Theoretical Physics, 2008, Vol. 107, No. 3, pp. 501–508. DOI: 10.1134/S1063776108090173
Belyaev B. A., Drokin N. A. Impedance spectra of thin permalloy films with a nanoisland structure, Physics of the Solid State, 2012, Vol. 54, No. 2, pp. 360–367. DOI: 10.1134/S1063783412020084
Anisimova N. I., Bordovskii V. A., Grabko G. I., Castro R. A. Specific features of the photodielectric effect in amorphous As2Se3 layers, Technical Physics Letters, 2013, Vol. 39, No. 1, pp. 98– 100. DOI: 10.1134/S1063785013010318
Smolenskii G. A., Chupis I. E. Ferroelectromagnets, Physics Uspekhi, 1982, Vol. 25, No. 7, pp. 475–493. DOI: 10.1070/ PU1982v025n07ABEH004570
Kimura T., Goto T., Shintani H., Ishizaka K., Arima T., Tokura Y. Magnetic control of ferroelectric polarization, Nature, 2003, Vol. 426, No. 6962, pp. 55–58. DOI:10.1038/nature02018
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 I. I. Grygorchak, F. O. Ivashchyshyn, A. K. Borysiuk, R. Ya. Shvets, Yu. O. Kulyk
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.