HYBRID REPRESENTATION OF SOLIDS USING IMPLICIT AND PARAMETRIC FUNCTIONS

Authors

  • S. V. Choporov Zaporizhzhya National University, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2017-3-7

Keywords:

Solid, implicit function, R-function, parametric function, discrete model, distance function, parity test, computer-aided design.

Abstract

Context. The present article deals with the problem of representation of solids in computer-aided design. The object of the study is a process of representation of solids in computer-aided design.

Objective. The objective of the study is the development of a hybrid representation scheme which uses implicit functions, Roperations and parametric functions.

Method. In the article, a hybrid representation scheme has been suggested to model solids. An abstract notion “solid” denotes bounded and closed subsets of Euclidean space, which model physical bodies. A representation scheme is a syntactically and semantically correct relation between a set of formal models and a set of solids. It is supposed that boundary represented regions are defined by parametric functions. On the other hand, functionally represented regions are defined by implicit functions. The hybrid representation scheme is based on an idea of combining the boundary representation scheme with the functional representation scheme. The hybrid representation scheme uses a signed distance function to transform regions with parametric boundaries into implicitly defined regions. Adaptive discrete models are used to evaluate a signed distance from some point to a boundary of a region which boundaries are defined by parametric functions. A distance from a point to the closest discrete element approximates a distance from a point to a boundary of a region. The parity test has been used to define a sign of a distance.

Results. The developed hybrid representation scheme has been implemented in software and investigated for solving the problems of solid modeling.

Conclusions. Carried out numerical experiments have confirmed the proposed software operability. The prospects for further research may include the development of parallel methods for calculation of a signed distance function

Author Biography

S. V. Choporov, Zaporizhzhya National University

PhD, Associate Professor of Software Engineering Department

References

Requicha A. A. G. Representations for Rigid Solids: Theory, Methods, and Systems, Computing Surveys, 1980, Volume 12, No. 4, pp. 437–464. DOI: 10.1145/356827.356833

Requicha A. A. G., Voelcker H. B. Solid Modeling: A Historical Summary and Contemporary Assessment, IEEE Computer Graphics and Applications, 1982, Volume 2, Issue 2, pp. 9–24. DOI: 10.1109/MCG.1982.1674149

Requicha A. A. G., Voelcker H. Solid Modeling: Current Status and Research Directions, IEEE Computer Graphics and Applications, 1983, Volume 3, Issue 7, pp. 25–37. DOI: 10.1109/ MCG.1983.26327

Rvachev V. L. Teoriya R-funkcij i nekotorye ee prilozheniya. Kiev, Naukova Dumka, 1982, 552 p.

Rvachev V. L., Shapiro V., Shejko T. I. Primenenie metoda Rfunkcij k postroeniyu uravnenij lokusov, obladayushhix simmetriej, E’lektromagnitnye volny i e’lektronnye sistemy, 1999, 4, No. 4, pp. 4–20.

Rvachev V. L., Shejko T. I. Vvedenie v teoriyu R-funkcij, Problemy mashinostroeniya, 2001, Vol. 4, No. 1–2, pp. 46–58.

Maksimenko-Shejko K. V., Macevityj A. M., Shejko T. I. Avtomatizaciya postroeniya uravnenij geometricheskix ob”ektov v metode R-funkcij, Kibernetika i sistemnyj analiz, 2006, No. 2, pp. 148–157.

Maksimenko-Shejko K. V., Shejko T. I. R-funkcii v matematicheskom modelirovanii geometricheskix ob”ektov, obladayushhix simmetriej, Kibernetika i sistemnyj analiz, 2008, No. 6, pp. 75–83.

Maksimenko-Shejko K. V., Shejko T. I. R-funkcii v matematicheskom modelirovanii geometricheskix ob”ektov v 3D po informacii v 2D, Visnyk Zaporiz’kogo nacional’nogo universytetu: Zbirnyk naukovyh prac’. Fizyko-matematychni nauky, 2010, No. 1, pp. 98–104.

Maksimenko-Shejko K. V., Shejko T. I. Matematicheskoe modelirovanie geometricheskix fraktalov s pomoshh’yu Rfunkcij, Kibernetika i sistemnyj analiz, 2012, Vol. 48, No. 4, pp. 155–162.

Stroud I. Boundary Representation Modelling Techniques. London, Springer, 2006, 808 p. ISSN: 1846283124.

Van ek G. Brep-index: A Multidimensional Space Partitioning Tree, International Journal of Computational Geometry & Applications, 1991, Volume 1, Issue 3, pp. 243 261. DOI: 10.1142/ S0218195991000189

Quadros W. R., Owen S. J. Defeaturing CAD models using a geometry-based size field and facet-based reduction operators, Engineering with Computers, 2012, Volume 28, Issue 3, pp. 211–224. DOI: 10.1007/s00366-011-0252 8

Hable J., Rossignac J. Blister: GPU-based rendering of Boolean combinations of free-form triangulated shapes, ACM Transactions on Graphics, 2005, Volume 24, Issue 3, pp. 1024–1031. DOI: 10.1145/1073204.1073306

Hable J., Rossignac J. CST: constructive solid trimming for rendering BReps and CSG, IEEE Transactions on Visualization and Computer Graphics, 2007, Volume 13, Issue 5, pp. 1004–1014. DOI: 10.1109/TVCG.2007.70411

Rossignac J., Fudos I., Vasilakis A. Direct rendering of Boolean combinations of self-trimmed surfaces, Computer-Aided Design, 2013, Volume 45, Issue 2, pp. 288–300. DOI: 10.1016/ j.cad.2012.10.012

Ogayar-Anguita C. J., Garc a-Fern ndez A. L., Feito-Higueruela F. R., Segura-S nchez R. J. Deferred boundary evaluation of complex CSG models, Advances in Engineering Software, 2015, Volume 85, Issue C, pp. 51–60. DOI: 10.1016/ j.advengsoft.2015.03.003

Schneider Ph. Eberly David H. Geometric Tools for Computer Graphics (The Morgan Kaufmann Series in Computer Graphics). San Francisco, Morgan Kaufmann Publishers, Elsevier Science, 2003, 1056 p.

Shimrat M. Algorithm 112: Position of Point Relative to Polygon, Communications of the ACM, 1962, Volume 5, Issue 8, P. 434. DOI: 10.1145/368637.368653

Fazil J., Jayakumar V. Investigation of Airfoil Profile Design using Reverse Engineering Bezier Curve, ARPN Journal of Engineering and Applied Science, 2011, Volume 6, No. 7, pp. 43–52.

Parasaram R. K. N., Charyulu T. N. Airfoil Profile Design by Reverse Engineering Bezier Curve, International Journal of Mechanical Engineering and Robotics Research, 2012, Volume 1, No. 3, pp. 410–420.

How to Cite

Choporov, S. V. (2017). HYBRID REPRESENTATION OF SOLIDS USING IMPLICIT AND PARAMETRIC FUNCTIONS. Radio Electronics, Computer Science, Control, (3), 60–70. https://doi.org/10.15588/1607-3274-2017-3-7

Issue

Section

Mathematical and computer modelling