PRINCIPLES OF ELECTRICAL IMPEDANCE CALCULATING OF OSCILLATING PIEZOCERAMIC DISK IN THE AREA OF MEDIUM FREQUENCIES
DOI:
https://doi.org/10.15588/1607-3274-2017-4-2Keywords:
Тhin disk, piezoelectric ceramics, electrical impedance, piezoelectric ceramics material particles displacement vector.Abstract
Context. The relevance of the use of various functional elements of piezoelectronics in power and informational systems is due, above all, to their high reliability. The final goal of mathematical modeling of the vibrating piezoelectric elements physical condition is a qualitative and quantitative description of characteristics and parameters of existing electrical and elastic fields.
Objective. The aim of this work is to calculate the electrical impedance of oscillating piezoelectric disk in the mid-frequency range.
Method. At sufficiently general initial assumptions a mathematical description of the electrical impedance of the oscillating thin piezoceramic disk with end surfaces continuous covering by electrodes in vacuum is obtained. It is shown that electric impedance is determined by the averaged values of the components of piezoceramics material particles displacement vector.
Results. Expression for electrical impedance calculating of the oscillating piezoceramic disk at middle frequencies is built, where the disk’s material particles displacement vector is almost completely determined by the radial component.
Conclusions. As a result of research of real device’s mathematical model a set of geometrical, physical and mechanical and electrical parameters of a real object can be determined which provides realization of technical parameters of piezoelectric functional element specified in technical specifications. This significantly reduces the time and cost of new functional elements of piezoelectronics development. Prospects for further research can be defined as the construction of technology for calculating of transformation coefficients in piezoelectric transformer with several secondary electrical circuits.References
Bogdan A. V., Petrishhev O. N., Yakimenko Yu. I., Yanovskaya Yu. Yu. Issledovanie xarakteristik p’ezoe’lektricheskogo transformatora na osnove radial’nyx kolebanij v tonkix p’ezokeramicheskix diskax, E’lektronika i svyaz’, Tematicheskij vypusk «E’lektronika i nanotexnologii», 2009, Part 1, pp. 269–274.
Bogdan A. V., Petrishhev O. N., Yakimenko Yu. I., Yanovskaya Yu. Yu. Matematicheskoe modelirovanie kolebanij tonkix p’ezokeramicheskix diskov dlya sozdaniya funkcional’nyx e’lementov p’ezoe’lektroniki, E’lektronika i svyaz’, Tematicheskij vypusk «E’lektronika i nanotexnologii», 2009, Part 2, pp. 35–42.
Yu-Hsiang Hsu, Chih-Kung Lee, Wen-Hsin Hsiao Electrical and Mechanical Fully Coupled Theory and Experimental Veriыcation of Rosen-Type Piezoelectric Transformers, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, Vol. 52, No. 10, pp. 1829–1839.
Flynn Anita M., Sanders Seth R. Fundamental Limits on Energy Transfer and Circuit Considerations for Piezoelectric Transformers, IEEE Transactions on Power Electronics, 2002, Vol. 17, No. 1, pp. 8–14.
Pae’rand Yu. E’., Oxrimenko P. V., Filonenko K. Yu. Vliyanie mesta zakrepleniya p’ezotransformatora na e’ffektivnost’ ego raboty, MNPK «Sovremennye informacionnye i e’lektronnye texnologii», 2014, pp. 69–70.
Klimashin V. M., Nikiforov V. G., Safronov A. Ya., Kazakov V. K. Novye oblasti primeneniya p’ezotransformatorov, Komponenty i texnologii, 2004, No. 1, pp. 56–60.
Day Michael, Lee Bang S. Understanding piezoelectric transformers in CCFL backlight applications, Analog Applications Journal, 2002, 4Q, pp. 18–24.
Wells Eddy Comparing magnetic and piezoelectric transformer approaches in CCFL applications, Analog Applications Journal, 2002, 1Q, pp. 12–18.
Shkodzinskyi O., Bieliakova I., Pistsio V., Medvid V. Eksperymentalni chastotni kharakterystyky piezotransformatora poperechno-poperechnoho typu dlia stabilizatsii strumu liuminestsentnoi lampy, Visnyk TNTU, 2011, Vol. 16, No. 3, pp. 142–148.
Lyamov V. E. Polyarizacionnye e’ffekty i anizotropiya vzaimodejstviya akusticheskix voln v kristallax. Moscow, Izd-vo Mosk. un-ta, 1983, 223 p.
Bogdanov S. V. Opredelenie uprugix i p’ezokeramicheskix postoyannyx rombicheskix kristallov akusticheskim metodom, Akust. zhurn., 1997, Vol. 43, No. 3, P. 304.
Bogdanov S. V. Akusticheskij metod opredeleniya uprugix i p’ezoe’lektricheskix postoyannyx kristallov 6 mm- i 4 mm- klassov, Akust. zhurn., 2000, Vol. 46, No. 5, pp. 609.
Shul’ga N. A., Bolkisev A. M. Kolebaniya p’ezoe’lektricheskix tel, Kiev, Naukova dumka, 1990, 228 p.
Ke’di U. P’ezoe’lektrichestvo i ego prakticheskie primeneniya. Moscow, IL, 1949, 718 p.
Didkovskij V. S., Petrishhev O. N., Shablatovich A. N. K voprosu ob opredelenii fiziko-mexanicheskij konstant p’ezokeramicheskix materialov, E’lektronika i svyaz’, 2004, No. 22, pp. 76–87.
Grinchenko V. T., Ulitko A. F., Shul’ga N. A. Mexanika svyazannyx polej v e’lementax konstrukcij, Vol. 5, E’lektrouprugost’. Kiev, Naukova dumka, 1989, 280 p.
Parton V. Z., Kudryavtsev B. A. E’lektromagnitouprugost’ p’ezoe’lektricheskix i e’lektroprovodnyx tel. Moscow, Nauka, 1988, 472 p.
Petrishhev O. N. Garmonicheskie kolebaniya p’ezokeramicheskix e’lementov. Chast’ 1. Garmonicheskie kolebaniya p’ezokeramicheskix e’lementov v vakuume i metod rezonansa – antirezonansa. Kiev, Avers, 2012, 300 p.
Novackij V. Teoriya uprugosti. Moscow, Mir, 1975, 873 p.
Ulitko A. F. Amplitudy i fazy prodol’nyx kolebanij p’ezokeramicheskix sterzhnej s uchetom peremennoj mexanicheskoj dobrotnosti, Kyiv, Vydavnycho-polihrafichnyi tsentr «Kyivskyi universytet», 2004, pp. 204–208.
Papadakis E’. Zatuxanie ul’trazvuka, obuslovlennoe rasseyaniem v polikristallicheskix sredax, V kn. Fizicheskaya akustika, Vol. IV, P. B, Prilozheniya fizicheskoj akustiki v kvantovoj fizike i fizike tverdogo tela. Moscow, Mir, 1970, pp. 317–381.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 C. V. Bazilo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.