INTERVAL FUZZY CLUSTER ANALYSIS FOR ARTESIAN WEL L STATE MONITORING

Authors

  • N. R. Kondratenko Vinnytsia National Technical University, Ukraine
  • O. O. Snihur Vinnytsia National Technical University, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2017-4-9

Keywords:

Сluster analysis, interval membership grades, interval fuzzy sets, clustering validity indices, data visualization.

Abstract

Context. Monitoring natural systems of diverse nature is an essential condition of rational environmental management. Data Mining technologies, cluster analysis in particular, provide a wide range of capabilities for data sets visualization, which makes it possible for these technologies to be used by individuals with no specialized background in mathematics. The task of monitoring a system that changes its state in time requires extended interpretation of clustering result, which would allow accounting for historical data. Technical capabilities for revealing the nature of changes occurring in the object represented by a data set are of particular importance in water resources monitoring area, as they are strongly related to their environment, and the quantity of the available reserves depend on multiple factors, which are external to the water-bearing system. Upon commissioning, an artesian well requires constant monitoring in order to ensure proper management of groundwater processing, protection against pollution and exhaustion, and preventing negative effects of groundwater mining on the environment. In addition, high redundancy of the parameter space is typical for complex natural systems, as well as existence of both known and not yet discovered correlations between parameters. These factors necessitate the use of cluster analysis methods, which would be capable of operating within the conditions of uncertainty and parameter redundancy.

Objective. The goal of the research is extending the capabilities for analyzing changes in a system’s state in time by accounting for uncertainties present in observations data.

Method. An application of the interval fuzzy cluster analysis method for investigating changes in data set characteristics in time, and for revealing general trends, is proposed. Formalizing the technological problem faced by the research in terms of Data Mining provides for a possibility of simultaneously processing multiple input vectors. A step-by-step algorithm for interval evaluation of the state of a natural system based on historical observations data and current values is developed.

Results. The proposed model is adapted for solving the technological task of an artesian well monitoring, and its capabilities for revealing hidden patterns on early stages are demonstrated experimentally.

Conclusions. Interval fuzzy cluster analysis allows taking into account and modeling uncertainties of any given nature, which may occur in artesian well research data on different stages of monitoring. It is shown, that concurrent input of multiple wells data may allow to evaluate not only there position against the standard compact classes according to (potential) water quality, but also their position against each other, and eventually indicate a previously unknown pattern.

Author Biographies

N. R. Kondratenko, Vinnytsia National Technical University

PhD, Associate professor, Professor of department of information security

O. O. Snihur, Vinnytsia National Technical University

Postgraduate student of department of information security

References

Dyuk V. A., Samoylenko A. P. Data Mining: uchebnyiy kurs. Sankt-Peterburg, Izd. Piter, 2001, 368 p.

Petrovska M. A. Okhorona vod (sanitarni normy i pravyla): Navch. Posibnyk. Lviv, Vydavnychyi tsentr Lvivskoho natsionalnoho universytetu imeni Ivana Franka, 2005, 205 p.

Subbotin S. A., Oleynik A. A. Vyidelenie nabora informativnyih priznakov na osnove evolyutsionnogo poiska s klasterizatsiey, Shtuchniy Intelekt, 2008, No. 4, pp. 704–711.

Caі W., Chen S., Zhang D. Fast and robust fuzzy c-means clusterіng algorіthms іncorporatіng local іnformatіon for іmage segmentatіon, Pattern Recognіtіon, 2007, Vol. 40, No. 3, pp. 825–838.

Olіveіra J. V., Pedrycz W. Advances іn Fuzzy Clusterіng and Іts

Applіcatіons. Sidney, John Wіley & Sons, 2007, 435 p.

Kondratenko N. R., Snihur O. O. Intervalna nechitka klasteryzatsiia na osnovi alternatyvnykh kryteriiv yakosti, Naukovi visti NTUU «KPI», 2012, No. 2, pp. 59–66.

Martynіuk T. B., Kozhemіako A. V., Kupershteіn L. M. Formalization of the Object Classification Algorithm, Cybernetіcs and Systems Analysіs, 2015, Vol. 51, No. 5, pp. 751–756.

Andres J. De, Lorca P., Juez F. J. D. C. et al. Bankruptcy forecastіng: a hybrіd approach usіng fuzzy c- means clusterіng and multіvarіate adaptіve regressіon splіnes (MARS), Expert Systems wіth Applіcatіons, 2011, No. 38, pp. 1866–1875.

Wang J., Kong J., Lu Y. et al. A modіfіed FCM algorіthm for MRІ braіn іmage segmentatіon usіng both local and non-local spatіal constraіnts, Computerіzed Medіcal Іmagіng and Graphіcs, 2008, Vol. 32, No. 8, pp. 685–698.

Zaychenko Yu. P. Nechetkie modeli i metodyi v intellektualnyih sistemah. Kiev, «Izdatelskiy dom «Slovo», 2008, 344 p.

Zakharchenko S. M., Kondratenko N. R., Manaieva O. O. Vykorystannia henetychnoho alhorytmu v zadachi klasteryzatsii abonentiv internet-provaidera, Informatsiini tekhnolohii ta kompiuterna inzheneriia : I Mizhnarodna naukovo-praktychna konferentsiia, Vinnytsia, 19–21 travnia 2010 r. : tezy dopovidei. Vinnytsia, VNTU, 2010, pp. 120–121.

Zakharchenko S. M., Kondratenko N. R., Manaieva O. O. Doslidzhennia mozhlyvostei henetychnoho alhorytmuv zadachi klasteryzatsii korystuvachiv merezhi Internet, Informatsiini tekhnolohii ta kompiuterna inzheneriia. Vinnytsia, VNTU, 2010, No. 2 (18), pp. 68–72.

Manaieva O. O. Pobudova klasteriv z vykorystanniam henetychnoho alhorytmu, KHIKh naukovo-tekhnichna konferentsiia profesorsko-vykladatskoho skladu, spivrobitnykiv ta studentiv universytetu z uchastiu pratsivnykiv naukovo-doslidnykh orhanizatsii ta inzhenerno-tekhnichnykh pratsivnykiv pidpryiemstv m. Vinnytsi ta oblasti, Vinnytsia, 10–12 bereznia 2010 r. : tezy dopovidei. Vinnytsia: VNTU, 2010.

Kondratenko N. R., Manaieva O. O. Nechitka klasteryzatsiia abonentiv internet-provaidera, Naukovi pratsi Vinnytskoho natsionalnoho tekhnichnoho universytetu, 2011, No. 2.

Kondratenko N. R., Manaieva O. O. Nechitka klasteryzatsiia z urakhuvanniam indeksu virohidnosti v zadachakh sotsialnoho spriamuvannia, Systemnyi analiz ta informatsiini tekhnolohii: materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii SAIT 2011, Kiev, NNK «IPSA» NTUU «KPI», 2011, P. 265.

Krishnapuram R., Keller J. M. A Possibilistic Approach to Clustering, IEEE Transactions on Fuzzy Systems, 1993, No. 1 (2), pp. 98–110.

Іlіev B., Lіndquіst M., Robertsson L. et al.A fuzzy technіque for food- and water qualіty assessment wіth an electronіc tongue, Fuzzy Sets and Systems, 2006, Vol. 157, No. 9, pp. 1155–1168.

Sіmeonov V., Stratіs J. A., Samara C. et al. Assessment of the surface water qualіty іn Northern Greece, Water Research, 2003, Vol. 37, No. 17, pp. 4119–4124.

Borevskiy B. V., Drobnohod N. I., Yazvin L. S. Otsenka zapasov podzemnyih vod, 2-e izd., pererab. i dop. Kiev, Vyischa shk. Golovnoe izd-vo, 1989, 407 p.

Dahіya S., Sіngh B., Gaur S. et al. Analysіs of groundwater qualіty usіng fuzzy synthetіc evaluatіon, Journal of Hazardous Materіals, 2007, Vol. 147, No. 3, pp. 938–946.

Sіngh B., Dahіya S., Jaіn S., et al. Use of fuzzy synthetіc evaluatіon for assessment of groundwater qualіty for drіnkіng usage: a case study of Southern Haryana, Іndіa, Envіronmental Geology, 2008, Vol. 54, No. 2, pp. 249–255.

Dou C., Woldt W., Dahab M. et al.Transіent Ground-Water Flow Sіmulatіon Usіng a Fuzzy Set Approach, Groundwater, 2005, Vol. 35, No. 2, pp. 205–215.

Lі J., Huang G. H., Zeng G. et al. An іntegrated fuzzy-stochastіc modelіng approach for rіsk assessment of groundwater contamіnatіon, Journal of Envіronmental Management, 2007, Vol. 82, No. 2, pp. 173–188.

Nobre R. C. M., Rotunno Fіlho O. C., Mansur W. J. et al.Groundwater vulnerabіlіty and rіsk mappіng usіng GІS, modelіng and a fuzzy logіc tool, Journal of Contamіnant Hydrology, 2007. Vol. 97, No. 3, pp. 277–292.

Dіxon В. Applіcabіlіty of neuro-fuzzy technіques іn predіctіng ground-water vulnerabіlіty: a GІS-based sensіtіvіty analysіs, Journal of Hydrology, 2005, Vol. 309, No. 1, pp. 17–38.

Dіxon В. Groundwater vulnerabіlіty mappіng: A GІS and fuzzy rule based іntegrated tool, Applіed Geography, 2005, Vol. 25, No. 4, pp. 327–347.

Kondratenko N., Snihur O. Interval Fuzzy Modeling of Complex Systems under Conditions of Input Data Uncertainty, Eastern-European Journal of Enterprise Technologies, 2016, Vol. 4/4 (82), pp. 20–28.

How to Cite

Kondratenko, N. R., & Snihur, O. O. (2018). INTERVAL FUZZY CLUSTER ANALYSIS FOR ARTESIAN WEL L STATE MONITORING. Radio Electronics, Computer Science, Control, (4), 77–84. https://doi.org/10.15588/1607-3274-2017-4-9

Issue

Section

Neuroinformatics and intelligent systems