ALGORITHMIC PROCEDURES OF SYNTHESIS OF VARIABLE STRUCTURE SYSTEMS FOR MARINE VEHICLES CONTROL

V. L. Timchenko, D. O. Lebedev

Abstract


Context. Algorithmic procedures for synthesizing optimal speed systems with variable feedback structure and a given dimension of the vehicle model, required type of stabilization trajectories and constraints on control actions are proposed for solving the tasks of increasing level of automatization control processes of marine vehicles at maneuvering and dynamic positioning. The study object are dynamic processes which stabilize marine mobile objects in conditions of incomplete informative nature of their models and the environment. The subject of the research is automated algorithmic procedures for synthesis of optimal control systems with variable feedback structure.

Objective – to increase the level of automation and quality indicators for the control processes of marine mobile objects on the basis of creating automated procedures for the synthesis of robust-optimal systems.

Method. To optimize control processes, optimal stabilization trajectories are formed, also the necessary switching moments and the type of control functions are determined for the feed-backs of optimizing control processes. Nonlinear models of marine vehicles with incomplete informativeness of model parameters and external disturbances are considered. The robust correcting control circuit providing compensation of the errors of the actual trajectory of physical object from the optimal trajectories, which arise from a mismatch between the parameters of the model and the physical object and from the effect of uncontrolled disturbances, is proposed. Thus, the control system is invariant for incomplete informativeness of models and minimal values errors of control can be achieved.

Results. The algorithmic procedures for synthesizing robust optimal systems of variable structure have been implemented and studied in the simulation of the stabilizing process of a mobile marine object on a given trajectory, the results of which confirmed the correctness and effectiveness of the proposed approach.

Conclusions. On the basis of systems with variable feedback structure for the criterion of optimality for the maximum operating speed, algorithmic procedures for the automated synthesis of control functions for multidimensional nonlinear systems describing the dynamics of mobile marine objects have been developed. The software tools for automating the synthesis process and schematic solutions of control systems are practically applicable for a wide class of mobile objects of various technical purposes.

Keywords


Robust-optimal control; systems with the variable structure of feed-backs; marine vehicles.

References


Kuncevich V. M. Sintez robastno-optimal’nyh sistem upravlenija nestacionarnymi ob’’ektami pri ogranichennyh vozmushhenijah, Problemy upravlenija i informatiki, 2004, No. 2, pp. 19–31.

Lukomskij Ju. A., Chugunov V. S. Sistemy upravlenija morskimi podvizhnymi ob’’ektami. Leningrad, Sudostroenie, 1988, 272 p.

Fossen T. I., Perez T. Kinematic models for maneuvering and seakeeping of marine vessels, Journal of modeling, identification and control, 2007, Vol. 28, Issue 1, pp. 19–30.

Balashevich N. V., Gabasov R., Kalinin A. I., Kirillova F. M. Optimal Control of Nonlinear Systems, Computational Mathematics and Mathematical Physics, 2002, Vol. 42, No. 7, pp. 931–956.

Fossen T. I., Grovlen A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping, IEEE Transactions on Control Systems Technology, 1998, Vol. 6, Issue 1, pp. 121–129.

Emel’janov S. V., Korovin S. K. Novye tipy obratnoj svjazi. Moscow, Nauka, Fizmatlit., 1997, 352 p.

Emel’janov S. V. Sistemy avtomaticheskogo upravlenija peremennoj struktury: sintez skaljarnyh i vektornyh sistem po sostojaniju i po vyhodu, Nelinejnaja dinamika i upravlenija, 2007, Vyp. 5, pp. 5–24.

Banos A., Horowitz I. M. Nonlinear quantitative stability / A.Banos, Int. Journal of Robust and Non-Linear Control, 2004, Vol. 14, pp. 289–306.

Krut’ko P. D. Obratnye zadachi dinamiki v teorii avtomaticheskogo upravlenija. Moscow, Mashinostroenie, 2004, 576 p.

Comasтlivas R., Escobet T., Quevedo J. Automatic design of robust PID controllers based on QFT specifications, Proceeding of IFAC Conference on Advances in PID Control, 2012, pp. 715–720.

Timchenko V. L., Kondratenko Ju. P. Robastnaja stabilizacija morskih podvizhnyh ob’’ektov na osnove sistem s peremennoj strukturoj obratnyh svjazej, Problemy upravlenija i informatiki, 2011, No. 3, pp. 79–92.

Timchenko V. L., Kondratenko Ju. P. Sintez strukturno perekljuchaemyh sistem dlja upravlenija mnogomernymi podvizhnymi ob#ektami, Radio Electronics, Computer Science, Control, 2011, No. 1(24), pp. 158–163.

Timchenko V. L., Uhin O. A. Optimizacija processov stabilizacii morskogo podvizhnogo ob’’ekta v rezhime dinamicheskogo pozicionirovanija, Problemy upravlenija i informatik, 2014, No. 4, pp. 77–88.


GOST Style Citations


1. Кунцевич В. М. Синтез робастно-оптимальных систем управления нестационарными объектами при ограниченных возмущения / В. М. Кунцевич // Проблемы управления и информатики. – 2004. – № 2. – С.19–31.

2. Лукомский Ю. А. Системы управления морскими подвижными объектами / Ю. А. Лукомский, В. С. Чугунов. – Л. : Судостроение, 1988. – 272 с.

3. Fossen, T.I. Kinematic models for maneuvering and seakeeping of marine vessels / T.I. Fossen, T. Perez // Journal of modeling, identification and control. – 2007. – Vol. 28, Issue 1. – P. 19–30.

4. Optimal Control of Nonlinear Systems / [N. V. Balashevich, R. Gabasov, A. I. Kalinin, F. M. Kirillova] // Computational Mathematics and Mathematical Physics. – 2002. – Vol. 42, № 7. – P. 931–956.

5. Fossen T. I. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping / T. I. Fossen, A. Grovlen // IEEE Transactions on Control Systems Technology. – 1998. – Vol. 6, Issue 1. – P. 121–129.

6. Емельянов С. В. Новые типы обратной связи / С. В. Емельянов, С. К. Коровин. – М. : Наука, Физматлит., 1997. – 352 с.

7. Емельянов С. В. Системы автоматического управления переменной структуры: синтез скалярных и векторных систем по состоянию и по выходу / С. В. Емельянов // Нелинейная динамика и управления. – 2007. – Вып. 5. – С. 5–24.

8. Banos A. Nonlinear quantitative stability / A. Banos, I. M. Horowitz // Int. Journal of Robust and Non-Linear Control. – 2004. – Vol. 14. – P. 289–306.

9. Крутько П. Д. Обратные задачи динамики в теории автоматического управления / П. Д. Крутько. – М. : Машиностроение, 2004. – 576 с.

10. Comasтlivas, R. Automatic design of robust PID controllers based on QFT specifications / R. Comasтlivas, T.Escobet, J. Quevedo // Proceeding of IFAC Conference on Advances in PID Control. – 2012. – P. 715–720.

11. Тимченко В. Л. Робастная стабилизация морских подвижных объектов на основе систем с переменной структурой обратных связей / В. Л. Тимченко, Ю. П. Кондратенко // Проблемы управления и информатики. –2011. – № 3. – С. 79–92.

12. Тимченко В. Л. Синтез структурно переключаемых систем для управления многомерными подвижными объектами / В. Л. Тимченко, Ю. П. Кондратенко // Радиоэлектроника, информатика, управление. – 2011. – № 1(24). – С. 158–163.

13. Тимченко В. Л. Оптимизация процессов стабилизации морского подвижного объекта в режиме динамического позиционирования / В. Л. Тимченко, О. А. Ухин // Проблемы управления и информатики. – 2014. – № 4. – С. 77–88.




DOI: https://doi.org/10.15588/1607-3274-2017-4-23



Copyright (c) 2017 V. L. Timchenko, D. O. Lebedev

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.