METHOD OF NUMERICAL ANALYSIS OF THE PROBLEM OF STATIONARY FLOW PAST BODIES OF REVOLUTION BY VISCOUS FLUID
DOI:
https://doi.org/10.15588/1607-3274-2018-1-6Keywords:
flow past bodies, stationary flow, viscous fluid, stream function, R-functions method, successive approximations method, Galerkin method.Abstract
Context. The nonlinear stationary problem of flow past a body of revolution by a viscous incompressible fluid is examined in this article.Objective. The purpose of this work is to develop a new method of numerical analysis of stationary problems of flow around bodies of
revolution by viscous incompressible fluid.
Method. The mathematical model of the process under consideration is a nonlinear boundary value problem for the stream function
obtained by the transition from the system of Navier-Stokes equations to one nonlinear equation of the fourth order. A special feature of the
formulation the task of the flow past body is that the boundary value problem is considered in an infinite region and both boundary conditions
on the boundary of the streamlined body and the condition at infinity are imposed for the stream function. Using the structural method (the
R-functions method), the task solution structure, that exactly satisfies all the boundary conditions of the task, and also guarantees the
necessary behavior of the stream function at infinity, is constructed. Two approaches are proposed to approximate the uncertain components
of the structure. The first approach is based on the use of the successive approximations method, which makes it possible to reduce the solution of the initial nonlinear task to the solution of a sequence of linear boundary value problems. These linear tasks are solved by the Bubnov-Galerkin method at each step of the iteration process. The second approach for approximating the uncertain components of the structure is based on the usage of the nonlinear Galerkin method and it is proposed to use it in the case of divergence of successive approximations. In this case, the solution of the initial nonlinear task reduces to solving a system of nonlinear algebraic equations.
Results. A computational experiment was carried out for the task of flow past a sphere, an ellipsoid of rotation and two articulated
ellipsoids for various Reynolds numbers.
Conclusions. The conducted experiments have confirmed the efficiency of the proposed method of numerical analysis of stationary
problems of flow around bodies of revolution by viscous incompressible fluid. The prospects for further research may consist in using the
method developed for the implementation of semi-discrete and projection methods for solving non-stationary problems.
References
Lojcjanskij L. G. Mehanika zhidkosti i gaza. Moscow, Drofa,
, 840 p.
Kutepov A. M., Poljanin A. D., Zaprjanov Z. D., Vjaz’min A. V.,
Kazenin D. A. Himicheskaja gidrodinamika: spravochnoe posobie.
Moscow, Kvantum, 1996, 336 p.
Rvachev V. L. Teorija R-funkcij i nekotorye ee prilozhenija. Kiev,
Nauk. dumka, 1982, 552 p.
Shapiro V. Semi-analytic geometry with R-functions, Acta
Numerica, 2007, V. 16, pp. 239–303.
Kolosova S. V. Primenenie proekcionnyh metodov i metoda Rfunkcij
k resheniju kraevyh zadach v beskonechnyh oblastjah:
diss. … k. f.-m. n.: 01.01.07. Vychislitel’naja matematika.
Har’kov, HIRJe, 1972, 85 p.
Kolosova S. V., Sidorov M. V. Primenenie metoda R-funkcij k
raschetu ploskih techenij vjazkoj zhidkosti, Visnyk Harkivs’kogo
nacional’nogo universytetu. Ser. Prykl. matem. i meh., 2003,
No. 602, pp. 61–67.
Suvorova I. G. Komp’juternoe modelirovanie osesimmetrichnyh
techenij zhidkosti v kanalah slozhnoj formy, Vestnik
nacional’nogo tehnicheskogo universiteta «HPI», 2004, No. 31,
pp. 141–148.
Tevjashev A. D., Gibkina N. V., Sidorov M. V. Ob odnom podhode
k matematicheskomu modelirovaniju ploskih stacionarnyh
techenij vjazkoj neszhimaemoj zhidkosti v konechnyh
odnosvjaznyh oblastjah, Radiojelektronika i informatika, 2007,
No. 2 (37), pp. 50–57.
Maksimenko-Shejko K. V. Matematicheskoe modelirovanie
teploobmena pri dvizhenii zhidkosti po kanalam s vintovym
tipom simmetrii metodom R-funkcij, Dopovidi Nacional’noi’
akademii’ nauk Ukrai’ny, 2005, No. 9, pp. 41–46.
Artyukh A., Sidorov M. Mathematical modeling and numerical
analysis of nonstationary plane-parallel flows of viscous
incompressible fluid by R-functions and Galerkin method,
Econtechmod, 2014, Vol. 3, No 3, pp. 3–11.
Lamtyugova S. N. Matematicheskoe modelirovanie
linearizovannyh zadach obtekanija v sfericheskoj i cilindricheskoj
sistemah koordinat, Visnyk Zaporiz’kogo nacional’nogo
universytetu. Ser. Fizyko-matematychni nauky, 2012, No. 1,
pp. 112–122.
Lamtjugova S. M., Sidorov M. V. Zastosuvannja metodu R-funkcіj
do rozrahunku zovnіshnіh povіl’nih techіj v’jazkoї rіdini, Vіdbіr
і obrobka іnformacії, 2012, No. 36 (112), pp. 56–62.
Lamtyugova S. N., Sidorov M. V. Numerical analysis of the
external slow flows of a viscous fluid using the R-function method,
Journal of Engineering Mathematics, 2015, Vol. 91, No. 1,
pp. 59–79. DOI: 10.1007/s10665-014-9746-x
Kolosova S. V., Lamtyugova S. N., Sidorov M. V. Primenenie
iteracionnyh metodov k resheniju vneshnih zadach gidrodinamiki,
Radiojelektronika i informatika, 2012, No. 3, pp. 13–17.
Lamtyugova S. N. Primenenie iteracionnyh metodov k raschetu
obtekanija tel stacionarnym potokom vjazkoj zhidkosti,
Radiojelektronika i informatika, 2015, No. 2, pp. 49–56.
Kolosova S. V., Lamtyugova S. N., Sidorov M. V. Ob odnom
metode chislennogo analiza vjazkih techenij, uslozhnennyh
massoobmenom (zadacha obtekanija), Radiojelektronika i
informatika, 2014, No. 1 (64), pp. 25–30.
Poljanin A. D. Spravochnik po linejnym uravnenijam
matematicheskoj fiziki. Moscow, Fizmatlit, 2001, 576 p.
Van-Dajk M. Al’bom techenij zhidkosti i gaza. Moscow, Mir,
, 184 p.
Batchelor G. K An introduction to fluid dynamics, Cambridge:
Cambridge University Press, 1967, 615 p.
Taamneh Y. CFD Simulations of Drag and Separation Flow Around
Ellipsoids, Jordan Journal of Mechanical and Industrial
Engineering, 2011, Vol. 5, No. 2, pp. 129–132.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2018 S. N. Lamtyugova, M. V. Sidorov, I. V. Sytnykova
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.