COMPUTER SIMULATION OF ELECTROMAGNETIC FIELD WITH APPLICATION THE FREQUENCY ADAPTATION METHOD

Authors

  • D. S. Yarymbash Zaporozhye National Technical University, Ukraine, Ukraine
  • S. T. Yarymbash Zaporozhye National Technical University, Ukraine, Ukraine
  • M. I. Kotsur Zaporozhye National Technical University, Ukraine, Ukraine
  • D. O. Litvinov Zaporozhye National Technical University, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2018-1-8

Keywords:

radio-electronic systems, electrotechnical systems, electromagnetic field, finite element method, frequency adaptation, field simulation, DC, AC, Helmholtz and Maxwell’s equations

Abstract

Context. A modern stage of powerful radio-electronic and electrotechnical systems development, with a power more than 1 MW, imposes increased requirements to their energy equipment, uninterrupted operation and power supply reliability in various operational modes. Field simulation of such systems class is based on modern numerical realization methods of boundary value problems for Helmholtz and Maxwell equations, both in single-connected and multi-connected domains. It imposes increased requirements to resources, computer hardware speed and software computing efficiency, defining the relevance of a new mathematical apparatus development or its elaboration, including combinations of analytical and approximate numerical methods.
Objective. The purpose of work is the elaboration a new numerical realization methods of field models taking into account AC
electrophysical processes with high frequency on the basis of Helmholtz equations in frequency formulations, adapted to software packages
use with a free license.
Method. A new method of frequency adaptation is elaborated, which provides systems of Helmholtz equations reduction in vector
magnetic potential formulations to the recurrent modified Maxwell’s equations, in analogies of DC formulation, and also provides high
precision and field simulation efficiency.
Results. The generalized spatial mathematical model of interrelated electromagnetic and electrothermal processes AC energy conversion
in current-conducting wires of powerful radio-electronic and electrotechnical systems is offered. This model considers operational modes, nonlinear dependences of electrophysical properties in electrotechnical materials, replacement effects and outer superficial effects, self- and mutual induction. A new method of frequency adaptation is elaborated, based on Helmholtz system of equations reduction in the vector magnetic potential formulations, in frequency domain, to the recurrent modified Maxwell’s equations, in analogies of DC formulation, and also provides high precision and field simulation efficiency. At numerical realization of frequency adaptation methods and finite elements, the number of freedom degrees decreases twice. It is caused by step-by-step solution the recurrent modified Maxwell’s equations, in analogies of DC formulations, for real and imaginary components of electric and vector magnetic potentials.
Conclusions. The elaborated new frequency adaptation method significantly expands possibilities of production design preparation for
powerful radio engineering systems. It allows using the software packages with a free license, reduces requirements to computing resources, reduces time costs and provides high precision in electromagnetic fields simulation.

References

Skolnik M. Radar Handbook. New York, The McGraw-Hill, 2008,

p.

Dudnik P. I., Il’chuk A. R., Tatarskij B. G. Mnogofunkcional’nye

radiolokacionnye sistemy : ucheb. posobie dlja vuzov. Moscow,

Drofa, 2007, 283 p.

Pupkov K. A., Egupov N. D., Kolesnikov L. V. et al. Vysokotochnye

sistemy samonavedenija: raschet i proektirovanie. Vychislitel’nyj

jeksperiment. Moscow, Fizmatlit, 2011, 512 p.

Dancis Ja. B., Zhilov G. M. Korotkie seti i jelektricheskie parametry

dugovyh jelektropechej. Moscow, Metallurgija, 1987, 320 p.

Bida V. V., Vaseckij Ju. M., Zaharchenko S. V. K raschetu

tokovedushhih sistem, obrazovannyh konturami slozhnoj

geometrii, Izvestija VUZov. Jelektromehanika, 1990, No. 6,

pp. 19–27.

Rozenberg V. L., Sychev V. A., Metelica Ja. V. Metod rascheta

induktivnostej tokoprovodjashhej sistemy “kern grafitirovochnoj

pechi – bokovye shinopakety”, Avtomatizacija

jenergosistem i jenergoustanovok promyshlennyh predprijatij :

Sb. nauchn. tr, Cheljabinsk, ChPI, 1985, pp. 15–18.

Yarymbash, D. S. The research of electromagnetic and

thermoelectric processes in the AC and DC graphitization furnaces,

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2015,

No. 3, pp. 95–102.

Yarymbash D. S., Oleinikov A. M. On specific features of modeling

electromagnetic field in the connection area of side busbar packages

to graphitization furnace current leads, Russian Electrical

Engineering, 2015, Vol. 86, Issue 2, pp. 86–92. DOI: http://

dx.doi.org/10.3103/S1068371215020121.

Yarymbash D. S., Yarymbash, S. T. and Kylymnyk I. M.

Identification of electrical parameters of powerful short-circuit

laminated packs, Electrical Engineering and Power Engineering,

, No. 2, pp. 55–61. doi: http://dx.doi.org/10.15588/1607-

-2012-2-10

Yarymbash D. S. Identification of furnace loop electrical

parameters of power graphitization furnaces, Electrical

engineering & Electromechanics, 2012, No. 1, pp. 49–54.

Yarymbash D., Kotsur M., Subbotin S., Oliinyk A. A new simulation

approach of the electromagnetic fields in electrical machines,

IEEE: The International Conference on Information and Digital

Technologies, 2017. Slovakia, Zilina, pp. 452–457. DOI: 10.1109/

DT.2017.8024332.

Aliferov A. I., Bikeev R. A., Goreva L. P. et al. Experience and

modern technology of the ore-thermal furnace short network

designing, 11 International forum on strategic technology (IFOST

: proc., Novosibirsk, 1–3 June 2016. Novosibirsk, NSTU,

, Pt. 2, pp. 124–126. ISBN 978-1-5090-0853-7. DOI:

1109/IFOST.2016.7884207

Serikov V., Vlasov D., Goreva L. et al. Active power losses in

pressure rings for contact shoes of ore-thermal furnace, Applied

Mechanics and Materials, 2015, Vol. 698 : Electrical Engineering,

Energy, Mechanical Engineering, EEM 2014, pp. 57–60. DOI:

4028/www.scientific.net/AMM.698.57

Goreva L., Vlasov D., Shvetsova M. S. Investigation of electrical

parameters of interleaved conductors’ packages in high power

electrotechnological installations, Applied Mechanics and

Materials, 2015, Vol. 792 : Electrical Engineering,

Electrotechnology, Energy, EEE 2015, pp. 495–498. DOI:

4028/www.scientific.net/AMM.792.495

Aliferov A. I., Goreva L. P., Bikeev R. A. et al. Ore-thermal

furnaces secondary circuit parameters optimization, The 8 international forum on strategic technologies (IFOST 2013) :

proc., Mongolia, Ulaanbaatar, 28 June–1 July 2013,

Ulaanbaatar, 2013, Vol. 1, pp. 283–285. DOI: 10.4028/

www.scientific.net/AMM.698.35.

Aliferov A. I., Bikeev R. A., Vlasov D. S. et al. Ferromagnetic

conductors electric resistances investigation under electrocontact

heating, International conference on heating by electromagnetic

sources, HES-2013: induction, dielectric and microwaves,

conduction & electromagnetic processing : [proc.], Italy, Padua,

–24 May, 2013, Padua, 2013, pp. 457–461.

Montanari G.G., Loggini M., Cavallini A. et al. Arc-Furnace

model for the study of Flicker Compensation in Electrical

Networks, IEEE Transactions on Power Delivery, 1994, Vol. 9,

No. 4, pp. 2026–2036. DOI: 10.1109/61.329535.

Jang G., Wang W., Heydt G.I. et al. Development of Enhanced

Electric Arc Furnace Models for Transient Analysis, Electric Power

Components and Systems, 2001, Vol. 29, No. 11, pp. 1060 –

DOI: 10.1080/153250001753239257.

Panoiu M., Panoiu C., Sora I. Experimental Research Concerning

the Electromagnetic Pollution Generated by the 3-Phase Electric

Power Supply Networks, Acta Electrotehnica, 2006, Vol. 47,

No. 2, pp. 102–112.

Zaprjagaev S. A. Jelektrodinamika. Voronezh, Izd-vo Voronezh.

gos. un-ta, 2005, 536 p.

Il’inskij A. S., Kravcov V. V., Sveshnikov A. G. Matematicheskie

modeli jelektrodinamiki. Moscow, Vysshaja shkola, 1991, 222 p.

Taflove A., Hagness S. C. Computational Electrodynamics: The

Finite-difference Time-domain Method, Artech House, 2005,

p. ISBN 978-1-58053-832-9.

Amosov A. A. Vychislitel’nye metody dlja inzhenerov. Moscow,

Jenergija, 1994, 284 p.

Rojak M. Je., Solovejchik Ju. G., Shurina Je. P. Setochnye metody

reshenija kraevyh zadach matematicheskoj fiziki. Novosibirsk,

Izd-vo NGTU, 1998, 120 p.

Koshljakov N. S., Gliner Je. B., Smirnov M. M. Uravnenija v

chastnyh proizvodnyh matematicheskoj fiziki. Moscow, Vysshaja

shkola, 1970, 710 p.

Samarskij A. A., Gulin V. A. Chislennye metody. Moscow, Nauka,

, 430 p.

Abaffi J., Spedikato Je. Matematicheskie metody dlja reshenija

linejnyh i nelinejnyh uravnenij. Moscow, Jenergija, 1996, 287 p.

Yee K. S. Numerical solution of initial boundary value problems

involving Maxwell’s equations in isotropic media, IEEE Trans.

Antennas Propagat, 1996, Vol. 14, pp. 302–307. DOI: 10.1109/

tap.1966.1138693.

Glazunov Ju. T. Variacionnye metody. Moscow, Reguljarnaja i

haoticheskaja dinamika, Institut komp’juternyh issledovanij,

, 472 p.

Nikol’skij V. V. Variacionnye metody dlja vnutrennih zadach

jelektrodinamiki. Moscow, Nauka, 1967, 460 p.

Rektoris K. Variacionnye metody v matematicheskoj fizike i

tehnike. Moscow, Mir, 1985, 589 p.

Brebbija K., Telles Zh., Vroubel L. Metody granichnyh jelementov.

Moscow, Mir, 1987, 524 p.

Laevskij Ju. M. Metod konechnyh jelementov (osnovy teorii,

zadachi). Novosibirsk, Novosib. gos. un-t, 1999, 166 p.

Streng G., Fiks Dzh. Teorija metoda konechnyh jelementov.

Moscow, Mir, 1977, 350 p.

Astahov V. I. Matematicheskoe modelirovanie inzhenernyh

zadach v jelektrotehnike. Novocherkassk, NGTU, 1994, 192 p.

Samarskij A. A. Vvedenie v chislennye metody. Sank Peterbug,

Izdatel’stvo “Lan”, 2005, 288 p.

Babenko K. I. Osnovy chislennogo analiza. Moscow, Nauka,

, 374 p

How to Cite

Yarymbash, D. S., Yarymbash, S. T., Kotsur, M. I., & Litvinov, D. O. (2018). COMPUTER SIMULATION OF ELECTROMAGNETIC FIELD WITH APPLICATION THE FREQUENCY ADAPTATION METHOD. Radio Electronics, Computer Science, Control, (1), 65–74. https://doi.org/10.15588/1607-3274-2018-1-8

Issue

Section

Mathematical and computer modelling