METHOD OF NUMERICAL ANALYSIS OF THE PROBLEM OF MASS TRANSFER OF A CYLINDRICAL BODY WITH THE UNIFORM TRANSLATIONAL FLOW

Authors

  • S. N. Lamtyugova National University of Urban Economy in Kharkiv, Kharkiv, Ukraine, Ukraine
  • M. V. Sidorov National University of Radio Electronics, Kharkiv, Ukraine, Ukraine
  • I. V. Sytnykova National University of Urban Economy in Kharkiv, Kharkiv, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2018-2-3

Keywords:

flow task, stationary flow, viscous fluid, stream function, mass transfer, concentration function, R-functions method, Galerkin method.

Abstract

Context. The problem of mass transfer of a cylindrical body with a uniform translational flow of a viscous incompressible fluid is
examined in the paper.
Objective. The purpose of this work is to develop a new method for numerical analysis of the problem of mass transfer of a cylindrical
body with a uniform translational flow, which based on the joint application of the R-functions structural method and the Galerkin
projection method.
Method. In general case, the problem of stationary mass transfer of a cylindrical body with a viscous incompressible fluid flow is reduced
to the solution of the equation of hydrodynamic flow passing a surface and an equation for concentration with corresponding boundary
conditions on the surface of the body and far away from it. The geometry of the area, and also the boundary conditions (including the
condition at infinity) may be taken into account precisely by using the constructive apparatus of the R-functions theory by V. L. Rvachev,
the Academician of Ukrainian National Academy of Sciences. In this study, a complete structure of the solution of a linear boundary value
problem for the concentration that exactly satisfies the boundary conditions on the boundary and condition at infinity is constructed on the basis of the R-functions theory methods, and this made it possible to lead the tasks in the infinite domain to tasks in the finite domain. To
solve the linear problem for concentration the numerical algorithm on the basis of Galerkin method is developed.
Results. The computational experiment for the problem of the flow past circular and elliptical cylinders at various Reynolds and Peclet
numbers was carried out.
Conclusions. The conducted experiments have confirmed the efficiency of the proposed method of numerical analysis of the problem
of mass transfer of a cylindrical body with a uniform translational flow, based on the joint application of the R-functions structural method
and Galerkin projection method. The prospects for the further research may be to use the developed method for the implementation of
iterative methods for solving the task of nonlinear mass transfer, semi-discrete and projection methods for solving the non-stationary
tasks, as well as in solving the tasks of optimal management of relevant technological processes.

References

Polyanin A. D., Kutepov A. M., Kazenin D. A., Vyazmin A. V.

Hydrodynamics, Mass and Heat Transfer in Chemical Engineering. CRC Press, 2002, 408 p.

Gupalo Ju. P, Poljanin A. D., Rjazancev Ju. S. Massoteploobmen reagirujushhih chastic s potokom. Moscow, Nauka, 1985, 336 p.

Loitsyansky L. G. Mechanics of liquids and gases. New York,

Begell House, 1995, 803 p.

Shkadov V. Ja, Zaprjanov Z. D. Techenija vjazkoj zhidkosti.

Moscow, Izd-vo Mosk. u-ta, 1984, 200 p.

Happel J., Brenner H. Low Reynolds number hydrodynamics.

Netherlands: Martinus Nijhoff, The Hague, 1973, 559 p.

Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial

Differential Equations. Second Edition. CRC Press, 2011, 1912 p.

Rvachev V. L. Teorija R-funkcij i nekotorye ee prilozhenija. Kiev, Nauk. dumka, 1982, 552 p.

Shapiro V. Semi-analytic geometry with R-functions, Acta

Numerica, 2007, V. 16, pp. 239–303. DOI: 10.1017/

S096249290631001X 9. Kolosova S. V. Primenenie proekcionnyh metodov i metoda

R-funkcij k resheniju kraevyh zadach v beskonechnyh oblastjah:diss. … k. f.-m. n.: 01.01.07. Vychislitel’naja matematika. Har’kov, HIRJe, 1972, 85 p.

Kolosova S. V., Sidorov M. V. Primenenie metoda R-funkcij k raschetu ploskih techenij vjazkoj zhidkosti, Visnyk Harkivs’kogo nacional’nogo universytetu. Ser. Prykl. matem. i meh., 2003, No. 602, pp. 61–67.

Suvorova I. G. Komp’juternoe modelirovanie osesimmetrichnyh techenij zhidkosti v kanalah slozhnoj formy, Vestnik nacional’nogo tehnicheskogo universiteta «HPI», 2004, No. 31, pp. 141–148.

Tevjashev A. D., Gibkina N. V., Sidorov M. V. Ob odnom podhode k matematicheskomu modelirovaniju ploskih stacionarnyh techenij vjazkoj neszhimaemoj zhidkosti v konechnyh odnosvjaznyh oblastjah, Radiojelektronika i informatika, 2007, No. 2 (37), pp. 50–57.

Maksimenko-Shejko K. V. Matematicheskoe modelirovanie

teploobmena pri dvizhenii zhidkosti po kanalam s vintovym

tipom simmetrii metodom R-funkcij, Dopovidi Nacional’noi’

akademii’ nauk Ukrai’ny, 2005, № 9, pp. 41–46.

Artyukh A., Sidorov M. Mathematical modeling and numerical analysis of nonstationary plane-parallel flows of viscous incompressible fluid by R-functions and Galerkin method, Econtechmod, 2014, Vol. 3, No 3, pp. 3–11.

Kolosova S. V., Lamtyugova S. N., Sidorov M. V. Ob odnom

metode chislennogo analiza vjazkih techenij, uslozhnennyh

massoobmenom (zadacha obtekanija), Radiojelektronika i

informatika, 2014, No. 1 (64), pp. 25–30.

Lamtyugova S. N. The R-functions method application to solving mass transfer problems, Theoretical and applied aspects of cybernetics. Proceedings of the 2nd international scientific conference of students and young scientists. Kyiv, Bukrek, 2012, pp. 108–111.

Lamtyugova S. N., Sidorov M. V. Matematicheskoe modelirovanie zadach obtekanija v cilindricheskoj sisteme koordinat, Visnyk HNU im. V. N. Karazina. Ser. Matematychne modeljuvannja. Informacijni tehnologii’. Avtomatyzovani systemy upravlinnja, 2014, №1105, vyp. 24, pp. 111–121.

Lamtyugova S. N., Sidorov M. V. Numerical analysis of the

problem of flow past a cylindrical body applying the R-functions

method and the Galerkin method, Econtechmod, 2014, Vol. 3,

No. 3, pp. 43–50.

Strel’chenko A. J., Kolosova S. V., Rvachov V. L. Pro odyn

metod rozv’jazuvannja krajovyh zadach, Dop. AN URSR, ser. A,

, No. 9, pp. 837–839.

Polyanin A. D., Nazaikinskii V. E. Handbook of Linear Partial Differential Equations for Engineers and Scientists. Second Edition. CRC Press, 2016, 1632 p.

How to Cite

Lamtyugova, S. N., Sidorov, M. V., & Sytnykova, I. V. (2018). METHOD OF NUMERICAL ANALYSIS OF THE PROBLEM OF MASS TRANSFER OF A CYLINDRICAL BODY WITH THE UNIFORM TRANSLATIONAL FLOW. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2018-2-3

Issue

Section

Mathematical and computer modelling