APPLICATION OF ACOUSTIC ANALYSIS IN CONTROL SYSTEMS OF ROBOTIC MACHINE TOOLS

Authors

  • О. S. Kovalevska Donbas State Engineering Academy, Kramatorsk, Ukraine, Ukraine
  • S. V. Kovalevskyy Donbas State Engineering Academy, Kramatorsk, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2018-2-6

Keywords:

acoustic diagnostics, robotic machine tool, neural networks, reference model.

Abstract

Relevance. The problem of controlling complex technological machines such as machines with mechanisms based on kinematics with
parallel structure is given consideration in the article in order to improve accuracy of positioning of actuators, to ensure their dynamic
adjustment and optimization of trajectories of displacement of operating elements of the equipment (cutting tools, assembling or controlling
instruments). The object of the study is the model of the operating area of a mobile robotic machine tool.
Objective. The goal of the work is to create a concept for controlling a mobile robotic machine tool applying acoustic control on the
basis of a reference model based on deep neural networks.
Method. A method of identification and control of a mobile robotic machine tool using spectral description of absorption of acoustic
wave with further processing of obtained information is offered. This method allows determining accuracy of positioning of actuators, as
well as conducting dynamic adjustment and optimization of trajectories of displacement of operating elements of the equipment. A method
of acoustic analysis for precision machining on machine tools with parallel kinematics has been developed.
Results. A neural network reference model has been constructed, which allows to diagnose current characteristics of the state of objects
in different conditions, namely mechanism’s configuration, mechanism’s geometric parameters while running motor-spindle, dynamics of
displacement of mechanism’s nodes of the experimental stand with variable velocities and load on the drive, as well as temperature changes of the object. The developed neural network models also were tested for adequacy.
Conclusions. The experiments on the study of the dependency between the parameters of the spectrum of the acoustic signal with a
given discreteness disturbed by excitatory effect in the form of “white noise” confirmed efficiency of this approach. Prospects for further
research may consist in creation of methods for optimal control of complex technological machines to improve accuracy of positioning
of actuators and to improve their dynamic settings.

References

Kovalevskyy S. V., Kovalevska O. S. Acoustic Monitoring with

Neural Network Analysis, American Journal of Neural Networks

and Applications, 2015, Vol. 1, No. 2, pp. 39–42. DOI: 10.11648/j.ajnna.20150102.12

Tyurin Yu. N., Pogrebnjak A. D. Electric heating using a liquid electrode, Surface and Coatings Technology, 2001, pp. 293–299.

Hohmann M., Brooks G., Spiegelhauer C. Production methods and applications for high-quaIity metaI powders and sprayformed products. Produktionsmethoden und Anwendungen fur qualitativ hochwertige Metallpulver und spruhkompaktierte Halbzeuge. Stahl

und Eisen, 2005, 258 р.

Yasa E., Kruth J. Application of laser re-melting on Selective laser melting parts. Catholic University of Leuven, Dept. of Mech. Eng, Heverlee, Belgium. Advances in Production Engineering, Management, 6, 2011, pp. 259–270.

David Bourella L., Joseph Beaman J., Jr. a, Ming C. Leub and W. David Rosenc. A Brief History of Additive. Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead. RapidTech, 2009, 328 p.

Dutta В. еt. al. Additive Manufacturing by Direct Metal Deposition, Advanced materials & processes, May, 2011, pp. 33–36.

Fngelo H. C. Subramanian R. Powder Metalurge: Science,

technology and application. New Dehli, 2009, 128 р.

Kruglov I. A., Mishulina O. A. Neural networks modeling of

multivariable vector functions in ill-posed approximation

problems, Journal of Computer and System Sciences

International, 2013, Vol. 52, No. 4, pp. 503–518.

Kovalevskiy S. V., Kovalevskaya E. S., Nagieva A. I. Akusticheskiy kontrol razmerov i pokazateley sherohovatosti poverhnostey detaley s primeneniem neyrosetevyih modeley, NeyrositovI tehnologiyi ta yih zastosuvannya : zbirnik prats mizhnarodnoyi naukovoyi konferentsiyi. Kramatorsk, DDMA, 2014, pp. 24–35.

Kovalevskiy S. V., Kovalevskaya E. S., Tulupov V. I. Razvitie metodov akusticheskoy diagnostiki v mashinostroenii:

monografIya. Kramatorsk, DGMA, 2014, 91 p.

Vadutov O. S. Matematicheskie osnovyi obrabotki signalov.

Praktikum: uchebnoe posobie; Tomskiy politehnicheskiy

universitet. 3-e izd., ispr. i dop. Tomsk, Izd-vo Tomskogo

politehnicheskogo universiteta, 2014, 102 p.

Eroshenko AndrIy Mihaylovich Akusticheskaya diagnostika

staticheskih i dinamicheskih svoystv mehanizmov s parallelnoy

kinematikoy, Kompleksne zabezpechennya yakostI

tehnologIchnih protsesIv ta sistem (KZYaTPS – 2017): materIali tez dopovIdey VII mizhnarodnoYi naukovo-praktichnoyi konferentsiyi (m. Chernigiv, 24–27 kvit. 2017 r.) : u 2-h t. ChernIgIvskiy natsIonalniy tehnologIchniy unIversitet [ta in.]; vidp. za vip.: [ta in.]. Chernigiv, ChNTU, 2017, Vol. 1, pp. 59–60.

Osipov L. A. Obrabotka signalov na tsifrovyih protsessorah.

Lineyno-approksimiruyuschiy metod. Moscow, Goryachaya

liniya-Telekom, 2001, 114 p.

Selivanov S. G., Guzairov M. B. Sistemotehnika innovatsionnoy podgotovki proizvodstva v mashinostroenii. Moscow, Mashinostroenie, 2012, 568 p.

Smirnov V. A. Kinetostaticheskoe modelirovanie

energoeffektivnogo upravleniya oborudovaniem s parallelnoy

kinematikoy, Vestnik YuUrGU. Seriya «Mashinostroenie», 2010,

Vyp. 16, No. 29, pp. 65–71

Hristoforov A. V. Metodyi analiza spektra signala. Uchebnometodicheskoe posobie k spetsialnomu laboratornomu praktikumu dlya studentov starshih kursov i magistrantov kafedr radiofizicheskogo napravleniya. Kazan 2004, 21 p.

Zhuk A. Ya., Malyishev G. P., Zhelyabina N. K., Klevtsov O. M. Tehnicheskaya diagnostika. Kontrol i prognozirovanie:

monografiya. Zaporozhye, Izdatelstvo Zaporozhskoy

gosudarstvennoy inzhenernoy akademii, 2008, 500 p.

Kovalevs’kyy S. V., Kovalevs’ka O. S., Korzhov Ye. O., Koshevoy A. O.; za zah. red. d.t.n., prof. S. V. Kovalevs’koho Diahnostyka tekhnolohichnykh system i vyrobiv mashynobuduvannya (z vykorystannyam neyromerezhevoho pidkhodu) : monohrafiya. Kramators’k, DDMA, 2016, 186 p.

How to Cite

Kovalevska О. S., & Kovalevskyy, S. V. (2018). APPLICATION OF ACOUSTIC ANALYSIS IN CONTROL SYSTEMS OF ROBOTIC MACHINE TOOLS. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2018-2-6

Issue

Section

Neuroinformatics and intelligent systems