INVESTIGATION OF TEMPERATURE MODES IN THERMOSENSITIVE NON-UNIFORM ELEMENTS OF RADIOELECTRONIC DEVICES

Authors

  • V. I. Havrysh Lviv Polytechnic National University, Lviv, Ukraine, Ukraine
  • Ya. O. Baranetskij Lviv Polytechnic National University, Lviv, Ukraine., Ukraine
  • L. I. Kolyasa Lviv Polytechnic National University, Lviv, Ukraine., Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2018-3-1

Keywords:

temperature, heat conduction, nonlinear boundary-value problem, isotropic infinite thermosensitive plate with insulated faces, through inclusion, perfect thermal contact, heat flow.

Abstract

Context. The non-linear boundary value problem of heat conduction for a thermosensitive non-homogeneous strip-shaped element
of a radio-electronic system with a through inclusion has been solved whose analytical-numerical solution enables us to analyze
temperature regimes in the element.
Objective. Is to develop such a method of linearization of mathematical model of heat conduction which enables us to obtain analytical
numerical solution of the corresponding non-linear boundary value problem for determination of temperature field in elements
of radio electronic devices, which are geometrically represented by a thermosensitive plate with a through inclusion.
Method. A linearizing function which enables us to partially linearize the initial non-linear mathematical model of heat conduction
for a thermosensitive non-homogeneous element of a radio electronic system in the form of “plate-inclusion” structure has been suggested. The introduced piece-wise linear approximation of temperature on plate-inclusion interfaces has enabled us to completely linearize the corresponding partially linearized boundary value problem relative to the linearizing function. After this, it became possible to apply Fourier’s integral transformation to the obtained linear problem with respect to one of the spatial coordinates, as well as to determine the linearizing function. The linear dependence of the coefficient of heat conductivity on temperature for structure materials with the use of the linearizing function has been considered. By solving the boundary value problem, the formulae for determination of temperature field in the “plate-inclusion” thermosensetive structure have been obtained.
Results. The obtained formulae for determination of temperature field in a thermosensitive non-homogeneous element of radio
electronic system were used to create the software which enables us to obtain distribution of value of temperature and to analyze
temperature regimes.
Conclusions. A mathematical model for the calculation for the temperature field in a “plate-inclusion” thermosensitive structure
is adequate to the actual physical process, because no jump of temperature at “plate-inclusion” interfaces is observed. The numerical
results for the chosen materials under linear dependence of the coefficient of thermoconductivity on temperature differ by 7% from
the results which are obtained for constant coefficient of heat conductivity. Prospect of further investigation will consider more complicated geometric representation of elements of radio electronic systems.

References

Savatorova V. L. Reshenie uravnenija teploprovodnosti v

neodnorodnoj srede s uchetom temperaturnoj zavisimosti

kojefficienta teploprovodnosti, Obozrenie prikladnoj i

promyshlennoj matematiki, 2009, 17, No. 1, pp. 135–137.

Kudinov V. A. Analiz nelinejnoj teploprovodnosti na

osnove opredelenija fronta temperaturnogo vozmushhenija,

Teplofizika vysokih temperatur, 2006, 44, No. 3, pp. 577–

Kudrjashov N. A. Priblizhennye reshenija odnomernyh

zadach nelinejnoj teploprovodnosti pri zadannom potoke,

Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki,

, 47, No. 1, pp. 110–120.

Carpinteri A., Paggi M. Thermoelastic mismatch in

nonhomogeneous beams, J. Eng. Math, 2008, 61, No. 2–4.

pp. 371–384.

Noda N. Thermal stresses in materials with temperaturedependent

properties, Appl. Mech. Rev,, 1991, 44, pp. 383–

Noda N. Thermal stresses in materials with temperaturedependent properties, Appl. Mech. Rev., 1991, 44, pp. 383– 397.

Otao Y. Tanigawa O., Ishimaru O. Optimization of

material composition of functionality graded plate for

thermal stress relaxation using a genetic algorithm, J.

Therm. Stresses, 2000, 23, pp. 257–271.

Tanigawa Y., Akai T., Kawamura R. Transient heat

conduction and thermal stress problems of a

nonhomogeneous plate with temperature-dependent

material properties, J. Therm. Stresses, 1996, 19, No. 1, pp.

–102.

Tanigawa Y., Otao Y. Transient thermoelastic analysis of

functionally graded plate with temperature-dependent

material properties taking into account the thermal

radiation, Nihon Kikai Gakkai Nenji Taikai Koen

Ronbunshu, 2002, 2, pp. 133–134.

Yangian Xu., Daihui Tu. Analysis of steady thermal stress

in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with

temperature-dependent material properties by NFEM,

-WASE Int. Conf. on Informa. Eng., Vol. 2–2, pp.

–436.

Golicyna E. V., Osipov Ju. R. Kvazistacionarnaja

trehmernaja zadacha teploprovodnosti vo vrashhajushhemsja sploshnom cilindre iz kompozicionnogo materiala s nelinejnymi granichnymi uslovijami, Konstrukcii iz kompozicionnyh materialov, 2007, No. 4, pp.

–58.

Kudrjashov N. A., Chmyhov M. A. Priblizhennye reshenija

pervoj i vtoroj kraevyh zadach nelinejnoj teploprovodnosti

na polubeskonechnoj prjamoj, Inzhenernaja fizika, 2007,

No. 3, pp. 12–15.

Kudinov V. A., Averin B. V., Stefanyuk E. V.,

Nazarenko S. A. Analysis of nonlinear heat conduction

based on determining the front of temperature perturbation,

High Temperature, 2006, 44, № 4, pp. 574–583.

Popovich V. S., Іvankіv K. S. Nelіnіjna zadacha

teploprovіdnostі dlja kulі z teploobmіnom, Vіsnik L'vіv. untu.

Ser. Prikl. matematika ta іnformatika, 2002, No. 5,

pp. 136–144.

Savula Ja. G., Djakonjuk L. M. Doslіdzhennja varіacіjnoї

zadachі teploprovіdnostі u bagatosharovih seredovishhah z

tonkimi vkljuchennjami, Vіsnik LNU іm. І. Franka, Ser.

prikl. matem. ta іnformat, 2000, No. 3, pp. 125–130.

Gavrish V. І., Fedasjuk D. V. Modeljuvannja temperaturnih

rezhimіv u kuskovo-odnorіdnih strukturah. L'vіv: V-vo

Nac. un-tu «L'vіvs'ka polіtehnіka», 2012, 176 p.

Gavrysh V. I. Chislenno-analiticheskoe reshenie nelinejnoj

stacionarnoj zadachi teploprovodnosti dlja beskonechnoj

termochuvstvitel'noj mnogoslojnoj plastiny, Jelektronnoe

modelirovanie, 2014, 36, No. 3, pp. 59–70.

Gavrish V. І. Doslіdzhennja temperaturnih rezhimіv u

termochutlivіj plastinі z chuzhorіdnim naskrіznim

vkljuchennjam, Fіziko-matematichne modeljuvannja ta

іnformacіjnі tehnologії. Naukovij zbіrnik, 2013, Vipusk 18,

pp. 43–50.

Gavrish V. І. Nelіnіjna krajova zadacha teploprovіdnostі

dlja sharuvatoї plastinі z vkljuchennjam, Fіziko-hіmіchna

mehanіka, 2015, 51, No. 3, pp. 32–38.

Bayat A., Moosavi H., Bayat Y. Thermo-mechanical

analysis of functionally graded thick spheres with linearly

time-dependent temperature [Text], Scientia Iranica, 2015,

Vol. 22, Issue 5, pp. 1801–1812.

Mohazzab A. H., Jabbari M. Two-Dimensional Stresses in

a Hollow FG Sphere with Heat Source [Text], Advanced

Materials Research, 2011, Vol. 264–265, pp. 700–705.

DOI: 10.4028/www.scientific.net/amr.264-265.700

Ghannad M., Yaghoobi M. P. A thermoelasticity solution

for thick cylinders subjected to thermo-mechanical loads

under various boundary conditions, International Journal

of Advanced Design & Manufacturing Technology, 2015,

Vol. 8, No. 4, pp. 1–12.

Jabbari M., Karampour S., Eslami M. R. Radially

symmetric steady state thermal and mechanical stresses of

a poro FGM hollow sphere, International Scholarly

Research Network ISRN Mechanical Engineering, 2011,

Vol. 2011, pp. 1–7. Article ID 305402. DOI:

5402/2011/305402 24.

Podstrigach Ja. S., Lomakin V. A., Koljano Ju. M.

Termouprugost' tel neodnorodnoj struktury. Moscow,

Nauka, 1984, 368 p.

Koljano Ju. M. Metody teploprovodnosti i termouprugosti

neodnorodnogo tela. Kiev, Naukova dumka, 1992, 280 p.

Korn G., Korn T. Spravochnik po matematike dlja

nauchnyh rabotnikov i inzhenerov. Moscow, Nauka, 1977,

p.

Lomakin V. A. Teorija uprugosti neodnorodnyh tel.

Moscow, Izd-vo Mosk. un-ta, 1976, 376 p.

Berman R. Teploprovodnost' tverdyh tel. Moscow, Mir,

, 288 p.

How to Cite

Havrysh, V. I., Baranetskij, Y. O., & Kolyasa, L. I. (2018). INVESTIGATION OF TEMPERATURE MODES IN THERMOSENSITIVE NON-UNIFORM ELEMENTS OF RADIOELECTRONIC DEVICES. Radio Electronics, Computer Science, Control, (3). https://doi.org/10.15588/1607-3274-2018-3-1

Issue

Section

Radio electronics and telecommunications