APPLICATION OF THERMOMIGRATION FOR TECHNOLOGY OF POWERFUL SEMICONDUCTORS APPLIANCES

V. V. Kravchina, O. S. Polukhin

Abstract


Contex. The conducted researches allow to improve technological processes of manufacture of semiconductor devices and
control of their quality.
Objective is to investigate the relief of silicon etching in the area of p + -Si isolation and using of Al-thermigration processes for
further develop and improve technology of the power devises. The task of the work is to optimize these technology.Method. The object of the study was the technological features of the processes of forming structures on different routes,
differing in the manner of carrying out processes of annealing structures and processes of thermomigration Al. The influence of the
annealing time on the features of the microrelief of etching grooves in the region of thermomigration has been studied.
Results. The causes of change of breakdown voltage of vertical p-n- junctions formed by thermomigration vs post-migration annealing
time and thermomigration process optimization are discussed. On these samples is observed minimal microrelief of the groove etching
of various types of conductivity silicon in the area under the insulation of the crystals. Such a minimal microrelief determines the
minimum of residual mechanical stresses. The control of changes in the kinetics of etching layers of monocrystalline silicon in the field
of thermal migration of aluminum impurities helps in determining the modes of technology for the formation of semiconductor structures
with high breakdown electrical voltages. At the same time, two conditions are fulfilled: the first one is the excess of the lateral length of
aluminum diffusion over the lateral length of the region of mechanical stresses along the perimeter of the thermo-migration region; and
the second, it is a reduction and stabilization of changes in the rate of etching of the thermo-migration layers by minimizing the elasticmechanical,
deformation component of the activation energy of the etching process of p+-Si.
It is shown that in the manufacture of chips of larger power devices with a larger area and a reverse voltage of up to 2000 V, the
optimal variant is the route variant, when the processes of impounding impurities of deep active layers are first carried out, then the
processes of thermomigration during the formation of insulation layers. Then there are annealing of isolation and active layers. This
combination of annealing processes improves the characteristics of structures.
Conclusions. The optimum route, the annealing mode of the structures are determined in the work, and it is shown that monitoring
the changes in the etching kinetics of silicon layers in the region of thermal immigration of aluminum impurities helps in determining
optimal regimes.

Keywords


annealing; insulation; microrelief of the grooves; linear zones; thermomigration; power silicon devices.

References


Blunt P. Reliable thyristors and triacs in TO220 plastic

packages, Electronic Components and Applications,

, Vol. 2, No. 1. pp. 53–58

Lozovskiy V. N., Lunin L. S., Popov V. P. Zonnaia perekristalizatsiia gradientom temperatury′ poluprovodnikovy′

x materialov. Moscow, «Меtallurgiia», 1987. 223 p.

Anthony T. R., Boah J. K., Chang M. F. et al. Thermomigration processing of isolation grids in power structures, IEEE Transactions on Electron Devices, 1976, Vol. 23, No. 8, pp. 818–823.

Chang M. Kennedy R., Chang M., Kennedy R. The application of temperature gradient zone melting to silicon

wafer processing, J. Electrochem. Soc., 1981, Vol. 128,

No. 10, pp. 2193–2198.

Lischner D. J., Basseches H., D’Altroy F. A. Observations

of the Temperature gradient zone melting process

for isolating small devices, J. Electrochem. Soc.,

Vol. 132, No. 12, pp. 2997–3001.

Morillon B. et al. Realization of a SCR on an epitaxial

substrate using Al thermomigration, ESSDERC, 2002, pp.

–330.

Polukhin A. S., Zueva Т., Sоlоdоvnik А. I. Ispolzovanie

termomigratsii v tekhnologii struktur silovy′kh poluprovodnikovy′ x priborov, Silovaia elektronika, 2006, No. 3, pp. 110–112.

Lozovskiy V. N., Lunin L. S., Seredin B. М. Osobennosti

legirovaniia kremniya metodom termomigratsii, Izvestiya

vy′sshikh uchebny′kh zavedeniy. Materialy′ elektronnoy

tekhniki, 2015, Vol. 18, No. 3, pp. 179–188.

Polukhin A. S. Тermomigratsiya neorentirovanny′kh lineyny′kh zon v kremnievy′kh plastinakh (100) dlya proizvodstva chipov silovy′kh poluprovodnikovy′x priborov, Kомpontnty′ i

tekhnologii, 2008, No. 11, pp. 97–100.

Deep trench etching combining aluminum thermomigration and electrochemical silicon dissolution.

https://www.researchgate.net/publication/224403308_

Polukhin A. S. Issledovanie tekhnologicheskikh faktorov protsessa termomigratsii, Silovaia elektronika, 2009, No. 2, pp. 90–92.

МОP-SBIS. Моdelirovanie elementov i tekhnologicheskikh

protsessov. Pod red. P. Аntonneti, D. Аntoniadisa, R. Dattona,

U. Оuldkhema : Per. s аngl Мoscow, Radio i svyaz, 1988.

Morillon B. Etude de la thermomigration de l’aluminium dans le silicium pour la réalisation industrielle de murs d’isolation dans les composants de puissance bidirectional, Rapport LAAS №02460, 2002. 223 p.

Buchin E. J., Denisenko J. I., Simakin S. G. Structura

tekhnologicheskikh kanalov v kremnii, Pisma v GTF, 2004,

Vol. 30, Vy′p. 5, pp. 70–75.

Gorban А. N., Кravchinа V. V. Selekty′vne travlennya monokristalichnogo kremniyu maskovannogo plivkamy′ nitridu, polikremniyu, oky′su kremniyu tа ikh kompozy′tsiyamy′, Novi tekhnologii, 2010, No. 1 (27), pp. 41–46.

Lozovskiy V. N., Lomov A. A., Seredin B. М., Simakin S. G.,

Zinchenko А. N., Seredina М. B. Termomigratsionny′e pkanaly′: realnaya struktura i elektricheskie svoiystva, Elektronnaya

tekhnika.Seriya 2. Poluprovodnikovy′e pribory′, 2017,

Vy ′ p. 2 (245), pp. 29–38.


GOST Style Citations


1. Blunt P. Reliable thyristors and triacs in TO220 plastic
packages / P. Blunt // Electronic Components and Applications.
– 1979. – Vol. 2, № 1.– P. 53–58.
2. Лозовский В. Н. Зонная перекристаллизация градиентом
температуры полупроводниковых материалов /
В. Н. Лозовский, Л. С. Лунин, В. П. Попов. – М. «Мета-
ллургия», 1987. – 223 с.
3. Thermomigration processing of isolation grids in power
structures / T. R. Anthony, J. K. Boah, M. F.Chang et al. //
IEEE Transactions on Electron Devices. – 1976. – Vol. 23,
№ 8. – P. 818–823.
4. Chang M. The application of temperature gradient zone
melting to silicon wafer processing / M. Chang, R. Kennedy
Chang M., Kennedy R. // J. Electrochem. Soc. – 1981. –
Vol.128, № 10. – P. 2193–2198.
5. Lischner D. J. Observations of the Temperature gradient
zone melting process for isolating small devices / D. J. Lischner,
H. Basseches, F. A. D’Altroy // J. Electrochem.
Soc. – Vol.132, № 12. – P. 2997–3001.
6. Morillon B. Realization of a SCR on an epitaxial substrate
using Al thermomigration / B. Morillon et al. //
ESSDERC. – 2002. – P. 327–330.
7. Полухин А. С. Использование термомиграции в техно-
логии структур силовых полупроводниковых приборов /
А. С. Полухин, Т. П. Зуева, А. И. Солодовник // Силовая
электроника. – 2006. – № 3. – С. 110–112.
8. Лозовский В. Н. Особенности легирования кремния
методом термомиграции / В. Н. Лозовский, Л. С. Лунин, Б. М. Середин // Известия высших учебных заведений.
Материалы электронной техники. – 2015. – Т. 18, № 3. –
C. 179–188.
9. Полухин А. С. Термомиграция неориентированных ли-
нейных зон в кремниевых пластинах (100) для произ-
водства чипов силовых полупроводниковых приборов /
А. С. Полухин // Компоненты и технологии. – 2008. –
№ 11. – С. 97–100.
10. Deep trench etching combining aluminum thermomigration
and electrochemical silicon dissolution.
https://www.researchgate.net/publication/224403308_
11. Полухин А. С. Исследование технологических факторов
процесса термомиграции / А. С. Полухин // Силовая
электроника. – 2009.– № 2. – С. 90–92.
12. МОП-СБИС. Моделирование элементов и
технологических процессов / Под ред. П. Антонетти,
Д. Антониадиса, Р. Даттона, У. Оулдхема : пер. с англ. –
М. : Радио и связь, 1988.
13. Morillon B. Etude de la thermomigration de l’aluminium
dans le silicium pour la réalisation industrielle de murs
d’isolation dans les composants de puissance bidirectional /
B. Morillon // Rapport LAAS №02460, 2002. – 222 р.
14. Бучин Э. Ю. Структура термомиграционных каналов в
кремнии / Э. Ю. Бучин, Ю. И. Денисенко, С. Г. Симакин
// Письма в ЖТФ. – 2004. – Т. 30, Вып. 5. – С. 70–75.
15. Горбань А. Н. Селективне травлення монокристалічного
кремнію маскованого плівками нітриду, полікремнію,
окису кремнію та їх композиціями / А. Н. Горбань,
В. В. Кравчина // Нові технології. – 2010. – №1 (27). –
С. 41–46.
16. Термомиграционные р-каналы: реальная структура и
электрические свойства / [В. Н. Лозовский, А. А. Ломов,
Б. М. Середин и др.] // Электронная техника. – Се-
рия 2. – Полупроводниковые приборы. – 2017. – Вып. 2
(245). – C. 29–38.






Copyright (c) 2018 V. V. Kravchina, O. S. Polukhin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.