TRANSIENT PROCESS AT LOW-ORDER FREQUENCY DEPENDENT DIGITAL COMPONENTS
DOI:
https://doi.org/10.15588/1607-3274-2018-3-5Keywords:
filtering, intelligent sensors, transient process duration analysis, filter parameters rearrangement.Abstract
Context. When constructing specialized and programmable mobile systems, there arises the problem of system restructuring, undersystem functioning conditions breach because of changes in the noise-signaling environment or the system operating conditions.
Any rearrangement of the system’s digital frequency-dependent components leads to the occurrence of transient process, which duration
is determined by the components characteristics. The traditional approach to the transient process analysis refers to the zero initial
conditions, however, the intelligent sensors and specialized computer systems operation as well as parameters adjustment as well
as other system components can be performed under non-zero initial conditions. This implies the need for a large number of computations,
not feasible sometimes in real time. Here essential is to assess the duration of process’ transition to readjustment process to
provide the system operability under new conditions.
Objective. To estimate the transient process’ maximum duration when rearrangement, to determine the possible rearrangements
range and width, taking into account the system stability.
Method. This research carrying out improved is the indirect method of transient process duration estimating by the transfer function
poles simplifying the irrational function expansion.
Results. The effected analysis with relevant modeling and theoretical verification allowed obtaining relations to estimate the
transient process maximum duration and to determine possible modifications range and width taking into account the system stability.
Upon research results we built the dependencies of transient process duration onto the cutoff respective frequency. Simplified is
the representation of relation used to determine the transient process length at the expense of decomposing into order series.
Conclusions. The results obtained allow us to estimate the transient process duration upper limit by improving the indirect
method of estimating the transient process duration along the transfer function poles, while simplifying the irrational function expansion,
that making possible, before the rearrangement beginning, considering the given new relative cutoff frequency and the component
order, to predict the component stability afterwards. From a practical point of view, this reduces the calculations amount and due
to the predicted result, increases the specialized computer system overall and by-components efficiency for specified performance
criteria. The results obtained are applicable to the design of computer systems’ microprocessor components.
References
Borisova L. F. Metody analiza i rascheta perehodnykh protsessov v elektricheskikh tsepyakh, Mezhdunarodnyi zhurnal prikladnykh i fhundamentalnykh issledovanii, 2014, No. 6, pp. 113–116.
Borodianskii I. M., Turulin I. I. Primenenie rekursivnykh
KIKh-filtrov dlya podavleniya pomekh pri avtomaticheskom
kontrole soprotivleniya izolyatsii, Izvestiya YuFU.
Tekhnicheskie nauki, 2016, No. 10(183), pp. 99–110.
Voitovich I.D, Korsunskii, V.M. Intellektualnye sensory.
Moscow, Internet-Universitet Informatsionnykh
Tekhnologii; BINOM. Laboratoriia znanii, 2011, 624 p.
Tuzlukov V. Signal Processing in Radar Systems. CRC
Press, 2013, 596 p.
Kocon S., Piskorowski J. Digital finite impulse response
notch filter with non-zero initial conditions, based on an infinite
impulse response prototype filter, ASC Publications
Anal. Chem, 2014, 86, pp. 3508−3516. dx.doi.org/10.1021/ac404150d.
Ukhina A.V, Bilenko A.A, Sitnikov V.S. Povyshenie effektivnosti programmno-tekhnicheskikh komplekcov v ASU
TP AES. Yadernaya i radiotsionnaya bezopasnost, 2016,
No. 3, pp. 70–76.
Popov D. I. Analiz tsifrovykh sisitem obrabotki signalov.
Izvestiya vysshikh uchebnykh zavedenii. Tekhnicheskie
nauki, 2016, No. 2(18), pp. 83–92
Sytnikov V. S, Stupen P. V., Piven B. O. Vplyv osoblyvostei
kaskadiv tsyfrovogo filtru vysokogo poryadku na
vykhidnyi shum kvantovannya, Elektrotekhnicheskie i kompiuternye sistemy, 2013, No. 9(85), pp. 97–101.
Dzhigan, V. Adaptivnye filtry i ikh prilozheniya v radiotekhnike i svyazi, Sovremennaya elektronika, 2013, No. 9, pp. 56–63.
Dorf R. C, Bishop R. H. Modern Control Systems. Prentice
Hall, NJ 07458, 2001, 832 p.
Besekerskii V. A, Popov E. P. Teoriya sistem avtomaticheskogo regulirovaniya. Moscow, Nauka, 1975,
p.
Kuznetsov B.I, Sergeev V.E, Chernyshev V.M. Mikroprotsessornoe upravlenie mnogokanalnymi sistemami vysokoi tochnosti. Kiev, Technika, 1990, 208 p.
Ivanov B. A, Yushchenko A. S. Teoriya diskretnykh system
avtomaticheskogo upravleniya. Moscow, Nauka, 1983,
p.
Kuo B. C. Digital Control Systems. Holt, Rinehart and
Winston, Inc., 1980, 448 p.
Iserman R. Digital Control Systems. Springer-Verlag, Berlin, Heidelberg, N. York, 1981, 541p.
Anderson B.D.O, Bitmead R. R., Johnson C. R. Stability of
Adaptive Systems: passivity and averaging analysis. The
MIT Press Cambridge, Massachusetts, London, England,
, 263 p.
Schulze K-P, Rehberg K-J. Entwurf von adaptiven Systemen
Eine Darstellung fur Ingenieure. Veb Verlag Technik,
Berlin, 1990, 448 p.
Prikladnye matematicheskie metody analiza v radiotekhnike Ed. by G. V. Obrezkova. Moscow, Vyssh. Shk., 1985, 343 p.
Ed. by K. P. Pupkova, N. D. Egupova Metody klassicheskoi
i sovremennoi teorii avtomaticheskogo upravleniya. Matematicheskie modeli, dinamicheskie kharakteristiki i analiz
system avtomaticheskogo upravleniya. Moscow, Izd-vo
MGTUim. N.E. Baumana, 2004, 654 p.
Zhuravlev A. Yu, Pavlov A. V, Zhurba V. O. Metodika
povysheniya obshchei ustoichivosti i korrektsii pryamykh
pokazatelei kachestva perekhodnykh protsessov v tsifrovykh
sistemakh upravleniya, Kompressionnoe i energeticheskoe
mashinostroenie, 2012, No. 1, pp. 36–40.
Kisel A. G, Sitnikov V. S, Ukhina A. V. Analiz dlitelnosti
perekhodnogo protsessa pri nenulevykh nachalnykh
usloviyakh. Problemy informatyky ta kompiuternoi
tekhniky, 2017, pp. 100–102.
Ukhina A. V, Sitnikov V. S, Sitnikova V. A. Primenenie
komponentov spetsializirovannykh sistem pri
provedenii eksperimentalnykh medikobiologicheskikh
issledovanii. «Datchyky, prylady ta systemy-2017», 2017, pp. 39–41.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2018 А. V. Ukhina, V. S. Sitnikov
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.