TRANSIENT PROCESS AT LOW-ORDER FREQUENCY DEPENDENT DIGITAL COMPONENTS

Authors

  • А. V. Ukhina Odessa National Polytechnic University Computing systems Department, Odessa, Ukraine., Ukraine
  • V. S. Sitnikov Odessa National Polytechnic University Computing systems Department, Odessa, Ukraine., Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2018-3-5

Keywords:

filtering, intelligent sensors, transient process duration analysis, filter parameters rearrangement.

Abstract

Context. When constructing specialized and programmable mobile systems, there arises the problem of system restructuring, under
system functioning conditions breach because of changes in the noise-signaling environment or the system operating conditions.
Any rearrangement of the system’s digital frequency-dependent components leads to the occurrence of transient process, which duration
is determined by the components characteristics. The traditional approach to the transient process analysis refers to the zero initial
conditions, however, the intelligent sensors and specialized computer systems operation as well as parameters adjustment as well
as other system components can be performed under non-zero initial conditions. This implies the need for a large number of computations,
not feasible sometimes in real time. Here essential is to assess the duration of process’ transition to readjustment process to
provide the system operability under new conditions.
Objective. To estimate the transient process’ maximum duration when rearrangement, to determine the possible rearrangements
range and width, taking into account the system stability.
Method. This research carrying out improved is the indirect method of transient process duration estimating by the transfer function
poles simplifying the irrational function expansion.
Results. The effected analysis with relevant modeling and theoretical verification allowed obtaining relations to estimate the
transient process maximum duration and to determine possible modifications range and width taking into account the system stability.
Upon research results we built the dependencies of transient process duration onto the cutoff respective frequency. Simplified is
the representation of relation used to determine the transient process length at the expense of decomposing into order series.
Conclusions. The results obtained allow us to estimate the transient process duration upper limit by improving the indirect
method of estimating the transient process duration along the transfer function poles, while simplifying the irrational function expansion,
that making possible, before the rearrangement beginning, considering the given new relative cutoff frequency and the component
order, to predict the component stability afterwards. From a practical point of view, this reduces the calculations amount and due
to the predicted result, increases the specialized computer system overall and by-components efficiency for specified performance
criteria. The results obtained are applicable to the design of computer systems’ microprocessor components.

References

Borisova L. F. Metody analiza i rascheta perehodnykh protsessov v elektricheskikh tsepyakh, Mezhdunarodnyi zhurnal prikladnykh i fhundamentalnykh issledovanii, 2014, No. 6, pp. 113–116.

Borodianskii I. M., Turulin I. I. Primenenie rekursivnykh

KIKh-filtrov dlya podavleniya pomekh pri avtomaticheskom

kontrole soprotivleniya izolyatsii, Izvestiya YuFU.

Tekhnicheskie nauki, 2016, No. 10(183), pp. 99–110.

Voitovich I.D, Korsunskii, V.M. Intellektualnye sensory.

Moscow, Internet-Universitet Informatsionnykh

Tekhnologii; BINOM. Laboratoriia znanii, 2011, 624 p.

Tuzlukov V. Signal Processing in Radar Systems. CRC

Press, 2013, 596 p.

Kocon S., Piskorowski J. Digital finite impulse response

notch filter with non-zero initial conditions, based on an infinite

impulse response prototype filter, ASC Publications

Anal. Chem, 2014, 86, pp. 3508−3516. dx.doi.org/10.1021/ac404150d.

Ukhina A.V, Bilenko A.A, Sitnikov V.S. Povyshenie effektivnosti programmno-tekhnicheskikh komplekcov v ASU

TP AES. Yadernaya i radiotsionnaya bezopasnost, 2016,

No. 3, pp. 70–76.

Popov D. I. Analiz tsifrovykh sisitem obrabotki signalov.

Izvestiya vysshikh uchebnykh zavedenii. Tekhnicheskie

nauki, 2016, No. 2(18), pp. 83–92

Sytnikov V. S, Stupen P. V., Piven B. O. Vplyv osoblyvostei

kaskadiv tsyfrovogo filtru vysokogo poryadku na

vykhidnyi shum kvantovannya, Elektrotekhnicheskie i kompiuternye sistemy, 2013, No. 9(85), pp. 97–101.

Dzhigan, V. Adaptivnye filtry i ikh prilozheniya v radiotekhnike i svyazi, Sovremennaya elektronika, 2013, No. 9, pp. 56–63.

Dorf R. C, Bishop R. H. Modern Control Systems. Prentice

Hall, NJ 07458, 2001, 832 p.

Besekerskii V. A, Popov E. P. Teoriya sistem avtomaticheskogo regulirovaniya. Moscow, Nauka, 1975,

p.

Kuznetsov B.I, Sergeev V.E, Chernyshev V.M. Mikroprotsessornoe upravlenie mnogokanalnymi sistemami vysokoi tochnosti. Kiev, Technika, 1990, 208 p.

Ivanov B. A, Yushchenko A. S. Teoriya diskretnykh system

avtomaticheskogo upravleniya. Moscow, Nauka, 1983,

p.

Kuo B. C. Digital Control Systems. Holt, Rinehart and

Winston, Inc., 1980, 448 p.

Iserman R. Digital Control Systems. Springer-Verlag, Berlin, Heidelberg, N. York, 1981, 541p.

Anderson B.D.O, Bitmead R. R., Johnson C. R. Stability of

Adaptive Systems: passivity and averaging analysis. The

MIT Press Cambridge, Massachusetts, London, England,

, 263 p.

Schulze K-P, Rehberg K-J. Entwurf von adaptiven Systemen

Eine Darstellung fur Ingenieure. Veb Verlag Technik,

Berlin, 1990, 448 p.

Prikladnye matematicheskie metody analiza v radiotekhnike Ed. by G. V. Obrezkova. Moscow, Vyssh. Shk., 1985, 343 p.

Ed. by K. P. Pupkova, N. D. Egupova Metody klassicheskoi

i sovremennoi teorii avtomaticheskogo upravleniya. Matematicheskie modeli, dinamicheskie kharakteristiki i analiz

system avtomaticheskogo upravleniya. Moscow, Izd-vo

MGTUim. N.E. Baumana, 2004, 654 p.

Zhuravlev A. Yu, Pavlov A. V, Zhurba V. O. Metodika

povysheniya obshchei ustoichivosti i korrektsii pryamykh

pokazatelei kachestva perekhodnykh protsessov v tsifrovykh

sistemakh upravleniya, Kompressionnoe i energeticheskoe

mashinostroenie, 2012, No. 1, pp. 36–40.

Kisel A. G, Sitnikov V. S, Ukhina A. V. Analiz dlitelnosti

perekhodnogo protsessa pri nenulevykh nachalnykh

usloviyakh. Problemy informatyky ta kompiuternoi

tekhniky, 2017, pp. 100–102.

Ukhina A. V, Sitnikov V. S, Sitnikova V. A. Primenenie

komponentov spetsializirovannykh sistem pri

provedenii eksperimentalnykh medikobiologicheskikh

issledovanii. «Datchyky, prylady ta systemy-2017», 2017, pp. 39–41.

How to Cite

Ukhina А. V., & Sitnikov, V. S. (2018). TRANSIENT PROCESS AT LOW-ORDER FREQUENCY DEPENDENT DIGITAL COMPONENTS. Radio Electronics, Computer Science, Control, (3). https://doi.org/10.15588/1607-3274-2018-3-5

Issue

Section

Radio electronics and telecommunications