USE OF INFORMATION ABOUT STATE VECTOR OF EXECUTIVE DEVICE IN STABILIZING SYSTEM OF A ROCKET ROTATION MOTION

V. V. Avdejev

Abstract


Context. A method for obtaining estimates of the dependence of stability factor and reduced work during the transient process
for compensation of a constant disturbing acceleration on the presence in law of control data about current kinematic parameters of
the executive device under condition of ensuring a prescribed static error is developed. It will give a possibility to take decision about
level of complexity for appropriate units in stabilizing system.
Objective. The purpose of the research is to estimate the influence of the law of control reduction by means of exclusion from
one the data about state vector of the executive device on requirements to its power and stability factor.
Method. A linear stationary in the vicinity of a certain point of the trajectory model of a plane rotational motion of a rocket for
space purposes has been adopted, with taking into account the inertia of the executive device. Estimation of the stability factor is
carried out on the plane of the roots of the characteristic polynomial and two coefficients of the law of control. Divided to the square
of constant perturbation acceleration, the work of the executive device is determined by analytical solution of the differential
equations of perturbed rotational motion in one of the stabilization planes. For statically stable and unstable rocket the dependence
examples of the named performances on coefficients of the law of control by coordinates of the state vector are made.
Results. For the application of the rocket for space purposes for the first time the dependence of the named indices of stabilizing
system on availability in the law of control data about angle of rotation of steering gear and its velocity is established.
Conclusions. It is proven the ability of improvement the stabilizing system by means of inclusion in law of control kinematic parameters
of the executive device from the point of view of such performances as a stability factor and energy costs during transient
processes.

Keywords


stabilization of motion; state vector; law of control

References


Igdalov I. M., Kuchma L. D., Poliakov N. V., Sheptun Ju.

D.; under the editorship by academician S. N. Konyukchov.

Dynamic designing of rockets. Dynamics problems of rockets

and space stages: monograph. Dnipro, ЛІРА, 2013,

p.

Avdejev V. V. Zapas ustojchivosti sistemy stabilizacii

vrashhatel'nogo dvizhenija rakety, Tehnicheskaja mehanika,

, No. 4, pp. 62–69.

Avdejev V. V. Kojefficienty oshibok stabilizacii vrashhatel'nogo dvizhenija rakety, Tehnicheskaja mehanika,

, No. 3, pp. 71–78.

Avdejev V. Law of control and characteristics of a stabilizing

system, 6th international conference “Space technologies:

present and future” 23–26 May 1917. Dnipro,

pp. 113–114.

Avdejev V. V. Kriterij jakosti perechidnogo processu i pokazniki totchnosti systemy stabilizazii obertalnogo ruchu

rakety, Aviazionno-kosmitcheskaja technika i technologia,

, No. 1 (136), pp. 4–10.

Rogers J., Castello M., Cooper G. Design consideration for

stability of liquid payload projectiles, Journal of spacecraft

and rockets, 2013, No. 1, Vol. 50, pp. 169–178. DOI:

2514/1.A32292.

Hrustaljov M. M., Halina A. S. Prostoj algoritm stabilizacii

orientacii sputnika s gibkim jelementom, Jelektronnyj zhurnal

«Trudy MAI», Vypusk No. 55, 2012. www.mai.ru/science/trudy.

Suhorebryj V. G., Cvetkova A. A., Shopina A. B. Optimizacija

parametrov sistemy stabilizacii raket-nositelej s pomoshh'ju

metoda variacij, Otkrytye informacionnye i komp'juternye

integrirovannye tehnologii, 2015, No. 68, pp. 5–

Rezhim dostupu: http://nbuv.gov.ua/UJRN/vikt_2015_68_3.

Chesi S., Gong O., Romano M. Aerodynamic three-axis

attitude stabilization of a spacecraft by center-of-mass

shifting, Journal of guidance, control, and dynamics, 2017,

No. 7, Vol. 40, pp. 1613–1626. DOI: 10.2514/1.G00246.

Celani F. Spacecraft attitude stabilization with piecewiseconstant magnetic dipole moment, Journal of guidance, control, and dynamics, 2016, No. 5, Vol. 39, pp. 1140–1146. DOI: 10.2514/1.G001388.

Chen C., Liang Y., Jhu W. Global stability of a system with

state-dependent Riccati equation controller, Journal of

guidance, control, and dynamics, 2015, No. 10, Vol. 38, pp.

–2054. DOI: 10.2514/1.G000989.

Avdejev V. V. Tochnіst' і zapas stіjkostі sistemi stabіlіzacії

obertal'nogo ruhu raketi, Radio Electronics, Computer Science,

Control, 2016, No. 3, pp. 93–98. DOI: 10.15588/1607-

-2016-3-12.


GOST Style Citations


1. Dynamic designing of rockets. Dynamics problems of rockets
and space stages: monograph / I. M. Igdalov, L. D. Kuchma,
N. V. Poliakov, Ju. D. Sheptun ; under the editorship
by academician S. N. Konyukchov. – Dnipro : ЛІРА,
2013. – 280 p.
2. Авдеев В. В. Запас устойчивости системы стабилизации
вращательного движения ракеты / В. В. Авдеев // Тех-
ническая механика. – 2016. – № 4. – С. 62–69.
3. Авдеев В. В. Коэффициенты ошибок стабилизации вра-
щательного движения ракеты / В. В. Авдеев // Техниче-
ская механика. – 2014. – № 3. – С. 71–78.
4. Avdejev V. Law of control and characteristics of a stabilizing
system / 6th international conference “Space technologies
: present and future” 23–26 May 1917, Dnipro. –
P. 113–114.
5. Авдєєв В. В. Критерій якості перехідного процесу і по-
казники точності системи стабілізації ракети /
В. В. Авдєєв // Авиационно-космическая техника и тех-
нология. – 2017. – № 1 (136) – С. 4–10.
6. Rogers J. Design consideration for stability of liquid payload
projectiles / J. Rogers, M. Castello, G. Cooper // Journal
of spacecraft and rockets. – 2013. – No 1, Vol. 50. –
P. 169–178. DOI: 10.2514/1.A32292.
7. Хрусталев М. М. Простой алгоритм стабилизации
ориентации спутника с гибким элементом / М. М.
Хрусталев, А. С. Халина // Электронный журнал «Труды
МАИ». – 2012. – Выпуск № 55.
www.mai.ru/science/trudy.
8. Сухоребрый В. Г. Оптимизация параметров системы
стабилизации ракет-носителей с помощью метода
вариаций / В. Г. Сухоребрый, А. А. Цветкова,
А. Б. Шопина // Открытые информационные и
компьютерные интегрированные технологии. – 2015. –
№ 68. – С. 5–12. Режим доступу:
http://nbuv.gov.ua/UJRN/vikt_2015_68_3.
9. Chesi S. Aerodynamic three-axis attitude stabilization of a
spacecraft by center-of-mass shifting / S. Chesi, O. Gong,
M. Romano // Journal of guidance, control, and dynamics. –
2017. – No. 7, Vol. 40. – P. 1613–1626. DOI:
10.2514/1.G002460.
10. Celani F. Spacecraft attitude stabilization with piecewiseconstant
magnetic dipole moment / F. Celani // Journal of
guidance, control, and dynamics. – 2016. – No 5, Vol. 39. –
P. 1140–1146. DOI: 10.2514/1.G001388.
11. Chen C., Liang Y., Jhu W. Global stability of a system with
state-dependent Riccati equation controller / C. Chen,
Y. Liang, W. Jhu // Journal of guidance, control, and dynamics.
– 2015. – No. 10, Vol. 38. – P. 2050–2054. DOI:
10.2514/1.G000989.
12. Авдєєв В. В. Точність і запас стійкості системи
стабілізації обертального руху ракети / В. В. Авдєєв //
Радіоелектроніка, інформатика, управління. – 2016. –
№ 3. – С. 93–98. DOI: 10.15588/1607-3274-2016-3-12.






Copyright (c) 2018 V. V. Avdejev

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.