DOI: https://doi.org/10.15588/1607-3274-2018-4-17

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS IN THE INVESTIGATION OF A WEIGHMEASURING SYSTEM AND THERMOREGULATOR

N. D. Koshevoy, E. M. Kostenko, A. A. Beliaieva

Abstract


Context. For the first time, the use of taboo-search methods, random search, a swarm of particles for the construction of costeffective
experiment plans for the study of a weighing system and a temperature regulator was proposed.
Objective – to carry out a comparative analysis of the developed optimization methods, such as taboo search, random search,
particle swarm when searching for the optimal plans for the experiment during the study of the weighing system and thermostat.
Method. Methods for constructing the experimentally optimal implementation matrix for the experiment using algorithms of a
swarm of particles, taboo search and random search are proposed. In the beginning, the number of factors and cost of transitions for
each level of factors is introduced. Then, taking into account the input data, the initial experimental design matrix is formed. When
using the taboo search algorithm at each iteration step, the best solution in the neighborhood of the current solution is chosen as the
new current solution and the check is made whether it is in the taboo list. Thus, calculations occur until the algorithm reaches the
specified number of iterations. The list of taboos is formed from decisions that have a minimum cost. The random search method is
based on permuting the columns of the planning matrix. The number of iterations of the algorithm is specified by the user. The
method of the particle swarm is based on modeling the behavior of the particle population. At each point where the particle visited,
the value of the experiment is calculated. In this case, each particle remembers which (and where) the best value of the cost of the
experiment, she personally found and where the point is located, which is the best among all the points that explored the particles. At
each iteration, the particles correct their velocity (modulus and direction). After a certain number of iterations, the particles are collected
near the best point. Then, among all the new points, we check whether we have found a new globally better point, and if
found, remember its coordinates and the value of the cost of conducting the experiment in it. Then the gain is calculated in comparison
with the initial cost of the experiment.
Results. The software that implements the proposed methods was developed, which was used to conduct computational experiments
to study the properties of these methods in the study of a weighing system and a temperature regulator. Optimized for the cost
of implementation of the experiment plans were synthesized, as well as the gains in optimization results as compared to the initial
and maximum costs of the experiment.
Conclusions. The conducted experiments confirmed the efficiency of the proposed methods and the software that implements
them, and also allow them to be recommended for application in practice when constructing optimal experimental design matrices.

Keywords


метод; оптимизация; рой частиц; планирование экспериментов; табу-поиск; оптимальный план; случайный поиск; стоимость.

References


Hoskins D. S. Combinatorics and Statistical Inferecing.

Applied Optimal Designs, 2007, Vol. 4, pp. 147–179.

Morgan J. P. Association Schemes: Designed Experiments, Algebra and Combinatorics, Journal of the American Statistical Association, 2005, Vol. 100, No. 471, pp. 1092–1093.

Bailey R. A., Cameron P. G., Combinatorics of optimal

designs, Surveys in Combinatorics, 2009, Vol. 365, pp. 19–73.

Koshevoy N. D., Kostenko E. M., Gordienko V. A., Syroklyn V. P. Optimum planning of experiment in manufacturing the electronic equipment, Telecommunications and Radio

Engineering, 2011, Vol. 170, No. 8, pp. 731–734.

Koshevoy N. D., Gordienko V. A., Sukhobrus Ye. A., Optimization for the design matrix realization value with the aim to investigate technological processes, Telecommunications and Radio Engineering, 2014, Vol. 73, No. 15, pp. 1383–1386.

Koshevoj N. D., Kostenko E. M., Optimal’noe po stoimostnym i vremennym zatratam planirovanie jeksperimenta. Poltava, izdatel’ Shevchenko R. V., 2013, 317 p.

Poli, R. An analysis of publications on particle swarm optimisation applications. Technical Report CSM-469 (Department of Computer Science, University of Essex, UK). may 2007.

Poli R. Analysis of the publications on the applications of particle swarm optimisation, Journal of Artificial Evolution and Applications, 2008, pp. 1–10.

DOI:10.1155/2008/685175.

Gal’chenko V. Ja., Jakimov A. N., 2015. Populjacionnye metajevresticheskie algoritmy optimizacii roem chastic: Uchebnoe posobie. Cherkassy, FLP Tretjakov A. N., 160 р.

Shi X. H., Liang Y. C., Lee H. P., Particle swarm optimization based algorithms for TPS and generalized TPS, Information Processing Letters, 2007, Vol. 103, pp. 169–176.

Koshevoj N. D., Kostenko E. M., Weighing system. Patent 58098 UA, MPK: G01F 11/00, 2010.

Barabashhuk V. Y’, Kredencer B. P., Plany’rovany`e

ekspery’menta v texny’ke. Kiev, Tehnika, 1984, 200 p.


GOST Style Citations


1. Hoskins D. S. Combinatorics and Statistical Inferecing /
D. S. Hoskins // Applied Optimal Designs. – 2007. –
Vol. 4. – P. 147–179.
2. Morgan J. P. Association Schemes: Designed Experiments,
Algebra and Combinatorics. // Journal of the American Statistical
Association. – 2005. – Vol. 100, No. 471. – P. 1092–
1093.
3. Bailey R. A. Combinatorics of optimal designs / R. A. Bailey,
P. G. Cameron // Surveys in Combinatorics. – 2009. –
Vol. 365. – P. 19–73.
4. Optimum planning of experiment in manufacturing the electronic
equipment. / [N. D. Koshevoy, E. M. Kostenko,
V. A. Gordienko, V. P. Syroklyn] // Telecommunications
and Radio Engineering. – 2011. – Vol. 170, No. 8. – P. 731–
734.
5. Koshevoy N. D. Optimization for the design matrix realization
value with the aim to investigate technological processes
/ N. D. Koshevoy, V. A. Gordienko, Ye. A. Sukhobrus
// Telecommunications and Radio Engineering. – 2014. –
Vol. 73, No. 15. – P. 1383–1386.
6. Кошевой Н. Д. Оптимальное по стоимостным и времен-
ным затратам планирование эксперимента / Н. Д. Коше-
вой., Е. М. Костенко. – Полтава : издатель Р.В. Шевчен-
ко, 2013. – 317 с.
7. Poli R. An analysis of publications on particle swarm optimisation
applications. Technical Report CSM-469 (Department
of Computer Science, University of Essex, UK). – may
2007.
8. Poli, R. Analysis of the publications on the applications of
particle swarm optimisation / R. Poli //Journal of Artificial
Evolution and Applications. – 2008. – P. 1–10. DOI:
10.1155/2008/685175.
9. Гальченко В. Я. Популяционные метаэвристические
алгоритмы оптимизации роем частиц : учебное пособие
/ В. Я. Гальченко, А. Н. Якимов. – Черкассы : ФЛП Тре-
тяков А. Н., 2015. –160 с.
10. Shi X. H. Particle swarm optimization based algorithms for
TPS and generalized TPS / X. H. Shi, Y. C. Liang, H. P. Lee
// Information Processing Letters. – 2007. – Vol. 103. –
P. 169–176.
11. Пат. №58098, Украина, МПК G01F 11/00.
Ваговимірювальна система / М. Д. Кошовий, О. М. Кос-
тенко ; Заявник і патентоволодар Нац. аерокосм. ун-т ім.
М.Є. Жуковського «ХАІ». – №U201013004; заявл.
01.11.2010; опубл. 25.03.2011, Бюл. № 6. – 4 с.
12. Барабащук В. И. Планирование эксперимента в технике
/ В. И. Барабащук, Б. П. Креденцер, В. И. Мирошничен-
ко. – К. : Техника, 1984. – 200 с.






Copyright (c) 2019 N. D. Koshevoy, E. M. Kostenko, A. A. Beliaieva

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.