DOI: https://doi.org/10.15588/1607-3274-2019-1-4

METHOD OF REDUCTION MODEL FOR CALCULATION OF ELECTROSTATIC FIELDS OF ELECTRONIC OPTICS SYSTEMS

L. I. Mochurad

Abstract


Context. The rapid development of nanotechnology puts forward new requirements for electronic optics systems. In modern electron-optical systems, a significant amount of complex electrodes with a geometric symmetry is observed. When calculating the electrostatic fields of the corresponding systems require high accuracy of calculations. This can be achieved by developing new and
improving existing algorithms for calculating potential fields.
Objective. The goal of the work is to develop the method for reducing the model for calculating the electrostatic fields of modern systems of electronic optics.
Method. In order to confirm the efficiency of the proposed method, the finding of the parameters of the electrostatic field of a particular model system is considered. It is shown that the configuration of surfaces of electrodes has an Abelian cyclic group of symmetry of the fourth order. Fourier transform matrix for this group is found. It was succeeded, using the method of reduction of
the model, to base the apparatus of group theory on the basis of the system of four integral equations to a sequence of four independent integral equations, where integration is carried out on ¼ of the aggregate boundary surface. The maximum (repeated) consideration of the existing symmetry of the boundary surface in the mathematical modeling of the electrostatic field allows, in turn,
to significantly reduce the order of the model – to go to the integration, for example, 1/16, 1/64 of the boundary surface.
Results. In work, without decreasing the universality, on the example of a particular model system, the calculation of parameters of the electrostatic field was carried out. For the visual representation of which surfaces of equal potential are used. The results of numerical simulation are given at a different variation of the known potential values on the boundary surfaces of the electrodes. The obtained results can be used for the design of modern electronic optics systems.
Conclusions. The method of reduction of the model for calculating the electrostatic fields of electron-optical systems is based on the boundary integral equations of the theory of potentials in combination with the apparatus of group theory, which, unlike existing methods, allows to simplify the procedure of numerical analysis of electrostatic field parameters maximally taking into account the available symmetry in geometry boundary surfaces, avoid numerical instability of calculations and get higher accuracy of calculations. The class of electronic optics systems that allow mathematical modeling based on the method of integral equations is expanded.

 


Keywords


model system; method of integral equations; abelian group of symmetry; circular matrix; Fourier transform; equipotential surface.

References


Antonyuk V. С., Timchik G. С., Vertsanov O. V. and others

Microscopy in nanotechnology, monograph. Kiev, NTUU

«KPI», 2014 – 260 p.

Okayawa S. A new type of quadrupole lens for electronbeam

lithography. In: Nuclear instruments & methods in

physics research. North Holland, Elsevier Science Publishers

B. V., 1990, pp. 488–495.

Glumova M. V. Numerical simulation of physical processes

in axial-symmetric electron-beam devices, Abstract for obtaining

a scientific degree of the candidate phys.-mat. sciences.

Kharkiv, 2000, 17 p.

Mochurad L. I., Pukach P. Ya. An Effective Approach to

Calculation of the Electrostatic Field of a Quadrupole Lens,

Visn. of the Kherson National Technical University, 2017,

V. 3 (62), Vol. 1, pp. 155–165.

Hawkes Р., Kasper E., Kirkland A. Principles of Electron

Optics, Vol. 2: Applied Geometrical Optics 2nd Edition.

Academic Press, 2017, 766 p.

Sybil’ Yu. Three-dimensional elliptic boundary value problems

for an open Lipschitz surface, Matematichni Studii,

, No. 8, pp. 79–96.

Melnik I. V. Using the method of integral equations for

numerical modeling of the optical properties of diode systems

of a high-voltage glow discharge with an anode

plasma, Proceedings of the Institute of Applied Mathematics

and Mechanics of the National Academy of Sciences of

Ukraine, 2001, Vol. 6, pp. 80–85.

Mochurad L. I., Ostudin B. A. Flat variant of substantially

spatial problem of electrostatics and some aspects of its solution,

related to specifics of input information, Journal of

Numerical and Applied Mathematics, 2011, No. 2(105),

pp. 98–110.

Chapko R., Tomas Johansson B., Savka Yu. On the use of

an integral approach for the numerical solution of a Cauchy

problem for Laplace equation in a doubly conneted planar

domain, Inverse Problems in Science and Engineering,

, Vol. 22, Issue 1, pp. 130–149.

Serre J.-P. Linear representations of finite groups. Moscow,

RHD, 2003, 132 p.

Bomba A. Ya., Gavrilyuk V. I. , Pogornitsky D. O. Numerical

solution of inverse nonlinear boundary value problems

on quasi-conformal mappings for bipartite regions with free

surfaces, Mathematical and computer modeling. Ser.: Physics

and Mathematics. Kamyanets-Podilsky, 2008, Vol. 1,

pp. 33–41.

Mochurad L. I., Harasym Y. S., Ostudin B. A. Maximal

using of specifics of some boundary problems in potential

theory after their numerical analysis, International Journal

of Computing, 2009, Vol. 8, No. 2, pp. 149–156.


GOST Style Citations


1. Мікроскопія в нанотехнологіях: монографія /
[В. С. Антонюк, Г. С. Тимчик, О. В. Верцанова та ін.]. –
К. : НТУУ «КПІ», 2014. – 260 с.
2. Okayawa S. A new type of quadrupole lens for electronbeam
lithography. In: Nuclear instruments & methods in
physics research / S. Okayawa. – North Holland : Elsevier
Science Publishers B. V., 1990. – Р. 488–495.
3. Глумова М. В. Чисельне моделювання фізичних
процесів у вісесиметричних електронно-променевих
приладах / М. В. Глумова // Автореферат на здобуття
наукового ступеня канд. фіз.-мат. наук. – Харків, 2000. –
17 с.
4. Мочурад Л. І. Ефективний підхід до розрахунку елек-
тростатичного поля квадрупольної лінзи / Л. І. Мочурад,
П. Я. Пукач // Вісник Херсонського національного
технічного університету. – 2017. – Вип. 3 (62), Т. 1. –
C. 155–165.
5. Hawkes Р. Principles of Electron Optics / Р. Hawkes,
E. Kasper, A. Kirkland. – Vol. 2: Applied Geometrical Optics
2nd Edition. – Academic Press, 2017.– 766 p.
6. Sybil’ Yu. Three-dimensional elliptic boundary value problems
for an open Lipschitz surface / Yu. Sybil’ // Matematichni
Studii. – 1997. – No. 8. – P. 79–96.
7. Мельник И. В. Использование метода интегральных
уравнений для численного моделирования оптических
свойств диодных систем высоковольтного тлеющего
разряда с анодной плазмой / И. В. Мельник // Труды ин-
ститута прикладной математики и механики НАН Ук-
раины. – 2001. – Т. 6. – С. 80–85.
8. Mochurad L. I. Flat variant of substantially spatial problem
of electrostatics and some aspects of its solution, related to
specifics of input information / L. I. Mochurad,
B. A. Ostudin // Journal of Numerical and Applied
Mathematics. – 2011. – № 2 (105). – P. 98–110.
9. On the use of an integral approach for the numerical solution
of a Cauchy problem for Laplace equation in a doubly conneted
planar domain / [R. Chapko, B. Tomas Johansson, Yu.
Savka] // Inverse Problems in Science and Engineering. –
2014. – Vol. 22, Issue 1. – P. 130–149.
10. Серр Ж.-П. Линейные представления конечних
групп / Ж.-П. Cерр. – М. : РХД, 2003. – 132 с.
11. Бомба А. Я. Чисельне розв’язання обернених нелінійних
крайових задач на квазіконформні відображення для
двозв’язних областей з вільними поверхнями / А. Я. Бо-
мба, В. І. Гаврилюк, Д. О. Пригорницький // Математич-
не та комп’ютерне моделювання. Серія: Фізико-
математичні науки: зб. наук. пр. – Кам’янець-
Подільський: Кам’янець-Подільськ. нац. ун-т. – 2008. –
Вип. 1. – С. 33–41.
12. Mochurad L.I. Maximal using of specifics of some boundary
problems in potential theory after their numerical analysis
/ L. I. Mochurad, Y. S. Harasym, B. A. Ostudin // International
Journal of Computing. – 2009. – Vol. 8, № 2. –
P. 149–156.







Copyright (c) 2019 L. I. Mochurad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.