DOI: https://doi.org/10.15588/1607-3274-2019-1-19

CONSTRUCTION OF A NEUROET NETWORK EXPERT SYSTEM FOR PROCESSING NAVIGATION DATA IN CONDITIONS RIVER е-NAVIGATION

V. V. Panin, V. V. Doronin, O. M. Spiian

Abstract


Context. The diagnostics automatisation problem of network anomalies during navigation data processing from gauging stations to electronic chart system under river e-navigation was studied. The object of the study is a process of diagnostic in the dynamic expert system. The purpose of the research is creating of automated troubleshooting system with a help of neural system.
Method. The diagnostic automatisation method of network anomalies with context-based intelligent navigation data processing usage was suggested. The main idea consists in modern data processing methods usage in the neural system. These methods are based on the fuzzy logic algorithm. Neural networks can be in operation during parameter fluctuations, that come from gauging stations. The cluster-rules set is displayed in the fuzzy neural system structure. There is no need to download all sample specifications in the electronic mapping system or to re-check the sample, it helps to speed up the process of network synthesis. In
the navigation data processing system were used different expert systems and neural networks. Data processing system should find network anomalies and propose the ways of their decision size, the method allows to get different levels of sample specification. The method allows to minimize network error in the synthesized model. In addition to fractal method, also had been proposed a method for unknown regularities between the input and output data coming from the gauging stations. That is, the neural network can determine which signals are non-informative. With a help of input data classification from the gauging stations based on Kokhonen`s system, the space of the data stream splits into clusters of the same size and shape. By changing the cluster size, the method allows to
get different levels of sample specification. The procedure of input signals classification helps to predict the increasing or decreasing of differential corrections towards depth, and recognize information from gauging stations. The method determines the encoding and decoding of navigation parameters by specifying the parametric function of the triangular shape. The rules formed by an expert
knowledge were established. In order to keep intellectual system under current conditions should be used neural dynamic expert system model including use case. The mechanism of automated solution based on the search use case algorithm is defined. If there are not any use cases, the task solves with a help of neural network rules. The network nodes are neurons – particular facts that are
consequences of use case. Links between nodes of the network implement the rules. That is, a multilayer neural network of facts and rules is built up.
Results. The experimental indexes of network anomalies during data processing from the gauging stations were followed up.
Conclusions. The automatisation problem of network diagnostic anomalies with a help of flexible fuzzy neural network was solved. The conducted experiments confirmed the efficiency of the proposed methods. Further research may consist in the creation of an instrumental navigation method (river e-navigation).


Keywords


sample; expert system; e-navigation; fuzzy-neural model; use case; Inland ECDIS

References


Doronin V. V., Aleinikov V. M., Alieinikov M. V. Metody

realizatsii obchysliuvalnoho intelektu pry vykorystanni

detalizovanoho masyvu hlybyn v richkovykh elektronnokartografichnykh

systemakh, Visnyk Odeskogo

natsionalnogo morskogo universytetu, 2018, No. 1 (54),

pp. 158–181.

Yasnitskii L. N. Yasnitskii Intellektualnye sistemy :

monohrafiia. Мoscow, Laboratoriya znanii, 2016, 221 p.

Yakhyaeva G. E. Nechetkiye mnozhestva і neironnyie seti :

monohrafiia. Moscow, Intuit, 2012, 316 p.

Dli M. I. Ntchetkaia logika i iskusstvennyie neironnyie seti :

monohrafiia. Moscow, Fizmatlit, 2013, 225 p.

Doronin V. Application of evaluation criteria of functional

sustainability instrumental method of navigation on

Ukraine’s Inland waterways. The XIII International

Scientific Conference. Zheleznii Port, Ukraine, 2017,

pp. 178–181.

Deriabin V. V. Obzor issledovanii, posviashchennykh

ispolzovaniiu neirosetevykh tekhnologii v sudovozhdenii,

Vestnik Gosudarstvennogo universiteta morskogo i

rechnogo flota imeni admirala S. O. Makarova, 2015,

No. 6(34), pp. 29–43. DOI: 10.21821/2309-5180-2015-7-6-

-43.

Chislov K. A. Neiropodobnyi algoritm korrektsii

bezhiroskopnoi inertsialnoi sputnikovoi hravimetricheskoi

sistemy, Vestnik Gosudarstvennogo universiteta morskogo i

rechnogo flota imeni admirala S. O. Makarova, 2013, No. 4

(38), pp. 93–99.

Jwo, D. (). Neural network aided adaptive Kalman filter for

GPS / INS navigation system design, Proceedings of 9th

IFAC Workshop «Adaptation and learning in control and

signal processing» (ALCOSP’07), 2007, P. 7.

Nguyen H. Improving GPS. INS Integration through Neural

Networks. Journal of Telecommunications, 2010, Vol. 2 (2),

pp. 1–6.

Kaygisiz B. GPS. INS Enhancement for Land Navigation

using Neural Network. Journal of Navigation, 2004,

Vol. 2(57), pp. 297–310. DOI: 10.1017/

S037346330400267X.

Sazonov A. E., Deriabin V. V. Prohnozirovanie traektorii

dvizheniia sudna pri pomoshchi neironnoi seti, Vestnik

Gosudarstvennogo universiteta morskogo i rechnogo flota

imeni admirala S. O. Makarova, 2013, No. 3 (22), pp. 6–13.

DOI: 10.21821/2309-5180-2013-5-3-6-13.

Lainiotis D. Neural network application to ship position

estimation, Proceedings of Conference «OCEANS’93.

Engineering in Harmonywith Ocean», 1993, pp. 1384–1389.

Xu T. Novel Approach for Ship Trajectory Online

Prediction Using BP Neural Network Algorithm, Advances

in information Sciences and Service Sciences (AISS), 2012,

Vol. 4(11), pp. 271–277. DOI:

4156/AISS.vol4.issue11.33.

Stepanov O. A. Neirosetevyie alhoritmy v zadache

nelineinoho otsenivaniia. Vzaimosviaz s baiiesovskim

podkhodom, Navigatsiia I upravleniie : мaterialy XI

konferentsii molodykh uchenykh, 21–22 aprelia 2009 g.

Sankt-Peterburg / Gosudarstvennyy universitet morskogo i

rechnogo flota imeni admirala S. O. Makarova. Sankt-

Peterburg, 2009, pp. 39–65.

Deieva, A. S. Metody kontrolia i diahnostiki

informatsionnykh narushenii inertsialnykh navihatsionnykh

sistem, Vestnik Yuzhno-Uralskogo hosudarstvennoho

universiteta : seriia: kompiuternyie tekhnolohii, upravleniie,

radioelektronika, 2010, No. 2 (178), pp. 21–25.

Zak B. Modelling of ship’s motion using artificial neural

networks. Advancesin Neural Networks and Applications,

World Scientific and Engineering Society Press, 2001,

pp. 298–303.

Kucher, A. V. Intellektualnaia sistema podderzhki priniatiia

resheniia na osnove nechetkoi lohiki dlia diahnostiki

sostoianiia seti peredachi dannykh : ucheb. posobie.

Krasnodar, GOU VPO «Kubanskii hosudarstvennyi

tekhnolohicheskii universitet», 2007, 221 p.

Panin V., Doronin V., Tykhonov I., Alieinikov M.

Application of Intelligent Processing of Data Flows Under

Conditions of River Navigation. Eastern European Journal

of Enterprise Technologies, 2018, Vol. 3/9 (93), pp. 6–18.

DOI: 10.15587/1729-4061.2018.131599.

Kashirina, I. L. Iskusstvennyie neironnyie seti : monohrafiia.

Moscow, Izdatelskii dom «Viliams», 2005, 51 p.

Kolesnikov, A. V. Metodolohiia i tekhnolohiia resheniia

slozhnykh zadach metodami funktsionalnykh hibridnykh

intellektualnykh sistem. Moscow, IPI RAN, 2007, 387 p.

Malykhina M. P. Neirosetevaia ekspertnaia sisntema na

osnove pretsedentov dlia resheniia problem abonentov

sotovoi seti : monohrafiia. Krasnodar, Yuh, 2011, 148 p.

Nauchnyi zhurnal KubGAU [Elektronnyi resurs.] :

Identifikatsiia mekhanizmov realizatsii operatorov

heneticheskoho alhoritma v ekspertnykh sistemakh

produktsionnoho tipa / uklad. V. A. Chastikova. Krasnodar,

KubGAU, 2012, No. 75(01), 13 p. Rezhim dostupa:

http://ej.kubagro.ru/2012/01/pdf/17.pdf.

Panin V., Doronin V., Aleynikov V. Application of the

System Analysis of Implementation of the Instrumental

Method of Navigation on Inland Waterways of Ukraine.

Radio Electronics, Computer Science, Control, 2018, No. 2

(45), pp. 125–134. DOI 10.15588/1607-3274-2018-2-14.


GOST Style Citations


1. Доронін В. В. Методи реалізації обчислювального
інтелекту при використанні деталізованого масиву
глибин в річкових електронно-картографічних системах
/ В. В. Доронін, В. М. Алейніков, М. В. Алєйніков //
Вісник Одеського національного морського
університету. – 2018. – № 1 (54). – С. 158–181.
2. Ясницкий Л. Н. Интеллектуальные системы :
монография / Л. Н. Ясницкий. – М. : Лаборатория
знаний, 2016. – 221 с.
3. Яхъяева Г. Э. Нечеткие множества и нейронные сети :
монография / Г. Э. Яхъяева. – М. : Интуит, 2012. – 316 с.
4. Дли М. И. Нечеткая логика и искусственные нейронные
сети : монография / М. И. Дли. – М. : Физматлит, 2013. –
225 с.
5. Doronin V. Application of evaluation criteria of functional
sustainability instrumental method of navigation on
Ukraine’s Inland waterways // The XIII International
Scientific Conference. – Zheleznii Port, Ukraine, 2017. –
P. 178–181.
6. Дерябин В. В. Обзор исследований, посвященных
использованию нейросетевых технологий в
судовождении / В. В. Дерябин // Вестник
Государственного университета морского и речного
флота имени адмирала С. О. Макарова. – 2015. –
№ 6(34). – C. 29–43. DOI: 10.21821/2309-5180-2015-7-6-
29-43.
7. Числов К. А. Нейроподобный алгоритм коррекции
безгироскопной инерциальной спутниковой
гравиметрической системы / К. А. Числов // Вестник
Государственного университета морского и речного
флота имени адмирала С. О. Макарова. – 2013. – № 4
(38). – С. 93–99.                                                                                                                    

8. Jwo D. Neural network aided adaptive Kalman filter for
GPS / INS navigation system design / D. Jwo // Proceedings
of 9th IFAC Workshop «Adaptation and learning in control
and signal processing» (ALCOSP’07). – 2007. – P. 7.
9. Nguyen H. Improving GPS. INS Integration through Neural
H. Networks // Journal of Telecommunications. – 2010. –
Vol. 2 (2). – P. 1–6.
10. Kaygisiz B. GPS. INS Enhancement for Land Navigation
using Neural Network / B. Kaygisiz // Journal of
Navigation. – 2004. – Vol. 2(57). – P. 297–310. DOI:
10.1017/ S037346330400267X.
11. Сазонов А. Е. Прогнозирование траектории движения
судна при помощи нейронной сети / А. Е. Сазонов,
В. В. Дерябин // Вестник Государственного
университета морского и речного флота имени адмирала
С. О. Макарова. – 2013. – № 3(22). – С. 6–13. DOI:
10.21821/2309-5180-2013-5-3-6-13.
12. Lainiotis D. Neural network application to ship position
estimation // Proceedings of Conference «OCEANS’93.
Engineering in Harmonywith Ocean». – 1993. – P. 1384–
1389.
13. Xu T. Novel Approach for Ship Trajectory Online
Prediction Using BP Neural Network Algorithm // Advances
in information Sciences and Service Sciences (AISS). –
2012 – Vol. 4(11). – P. 271–277. DOI:
10.4156/AISS.vol4.issue11.33.
14. Степанов О. А. Нейросетевые алгоритмы в задаче
нелинейного оценивания. Взаимосвязь с байесовским
подходом / О. А. Степанов // Навигация и управление
движением : материалы XI конференции молодых
учeных, 21–22 апреля 2009 г. Санкт-Петербург /
Государственный университет морского и речного
флота имени адмирала С. О. Макарова. – Санкт-
Петербург. – 2009. – С. 39–65.
15. Деева А. С. Методы контроля и диагностики
информационных нарушений инерциальных
навигационных систем / А. С. Деева // Вестник Южно-
Уральского государственного университета : серия:
компьютерные технологии, управление,
радиоэлектроника. – 2010. – № 2 (178). – С. 21–25.
16. Zak B. Modelling of ship’s motion using artificial neural
networks. – Advancesin Neural Networks and Applications,
World Scientific and Engineering Society Press, 2001. –
P. 298–303.
17. Кучер А. В. Интеллектуальная система поддержки
принятия решения на основе нечеткой логики для
диагностики состояния сети передачи данных : учеб.
пособие / А. В. Кучер. – Краснодар : ГОУ ВПО
«Кубанский государственный технологический
университет», 2007. – 221 с.
18. Application of Intelligent Processing of Data Flows Under
Conditions of River Navigation / [V. Panin, V. Doronin,
I. Tykhonov, M. Alieinikov] // Eastern European Journal of
Enterprise Technologies. – 2018. – Vol. 3/9 (93). – P. 6–18.
DOI: 10.15587/1729-4061.2018.131599.
19. Каширина И. Л. Искусственные нейронные сети :
монография / И. Л. Каширина. – М. : Издательский дом
«Вильямс», 2005. – 51 с.
20. Колесников А. В. Методология и технология решения
сложных задач методами функциональных гибридных
интеллектуальных систем / А. В. Колесников. – М. :
ИПИ РАН, 2007. – 387 с.
21. Малыхина М. П. Нейросетевая экспертная система на
основе прецедентов для решения проблем абонентов
сотовой сети : монография / М. П. Малыхина. –
Краснодар : Юг, 2011. – 148 с.
22. Научный журнал КубГАУ [Электронный ресурс] :
Идентификация механизмов реализации операторов
генетического алгоритма в экспертных системах
продукционного типа / уклад. В. А. Частикова. –
Краснодар : КубГАУ, 2012. – №75(01). – 13 с. Режим
доступа: http://ej.kubagro.ru/2012/01/pdf/17.pdf.
23. Panin V. Application of the System Analysis of
Implementation of the Instrumental Method of Navigation
on Inland Waterways of Ukraine / V. Panin, V. Doronin,
V. Aleynikov // Radio Electronics, Computer Science,
Control. – 2018. – No. 2 (45). – P. 125–134. DOI
10.15588/1607-3274-2018-2-14.







Copyright (c) 2019 V. V. Panin, V. V. Doronin, O. M. Spiian

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.