DOI: https://doi.org/10.15588/1607-3274-2019-1-21

MODERNIZATION OF LUENBERGER OBSERVER FOR CONTROL SYSTEM OF HERMETIC COMPRESSOR ELECTRIC DRIVE

A. Y. Bukaros, O. A. Onyshchenko, P. N. Montik, V. L. Malyshev, V. N. Bukaros

Abstract

Context. The analysis of existing systems of sensorless control of hermetic compressor electric drives is carried out. The main requirements for control systems of automated electric drives of small refrigerating units’ hermetic compressors
are determined. The topology of the adaptive Luenberger observer, which allows real-time estimation of the current value of the rotational speed and load torque on the shaft of the hermetic compressor electric motor, is proposed.
Objective. The object of the study is the coordinates observer as a part of control system of the hermetic compressor electric drive. The purpose of the work is to develop a mathematical model of the coordinates observer as a part of control
system of the hermetic compressor electric drive.
Method. Based on the linearized model of a three-phase induction motor, the Luenberger observer is synthesized by the modal method with the distribution of the roots of the characteristic polynomial according to the standard linear
Bessel form.
Results. The characteristic polynomial of the observer is obtained and the coefficients of the Luenberger matrix and the mean geometric root of the characteristic polynomial are calculated. To ensure the necessary accuracy the structure of the observer on the basis of the complete mathematical model of a three-phase induction motor executed in the fixed coordinate system is proposed. In the Matlab/Simulink simulation environment an imitation model of the Luenberger observer, which includes a complete mathematical model of the hermetic compressor electric motor in the fixed coordinate system, is constructed. By means of simulation modeling the work of the projected Luenberger observer is studied using the example of the modernized three-phase induction motor of the domestic refrigerator’s hermetic compressor.                                      Conclusions. The efficiency of the proposed method for identifying the rotational speed and the load torque of the compressor motor by the adaptive observer based on the calculation of the motor’s electromagnetic moment from the
measured data of the phase voltage and current sensors is confirmed. The error of the researching observer does not exceed 0.5% at the rotation speed and 10% at the load torque. The obtained structure of the adaptive Luenberger observer
makes it possible to build closed control systems for the electric drive of a small refrigerating unit’s hermetic compressor.

Keywords

Luenberger’s observer; electric drive; control system; hermetic compressor; refrigeration unit

PDF (Українська)

References

Onishhenko O. A. Nauchnoe obosnovanie i razrabotka avtomatizirovannyh

sistem upravlenija holodil’nokompressionnymi

ustanovkami maloj proizvoditel’nosti :

dis. … d-ra tehn. nauk : 05.13.07 / Onishhenko Oleg Anatol’evich.

Odessa, 2010, 345 p.

Saidur R., Mekhilef S., Ali M. B., Safari A., Mohammed H.

A. Applications of variable speed drive (VSD) in electrical

motors energy savings, Renewable and Sustainable Energy

Reviews, 2012, Vol. 16, Issue 1, pp. 543–550. DOI:

1016/j.rser.2011.08.020.

Li Yu., Chomat M. Variable Frequency Drive Applications

in HVAC Systems, New Applications of Electric Drives, IntechOpen,

DOI: 10.5772/61782.

Vojteh V. A. Chastotnoe regulirovanie skorosti vrashhenija

asinhronnih dvigatelej kompressorov bytovyh holodil'nikov,

Tehnіchna elektrodinamіka. Temat. vip. “Problemi

suchasnoї elektrotehnіki”, 2004, No. 3, pp. 61–63.

Ledesma S., Belman-Flores J. M., Barroso-Maldonado J. M.

Analysis and modeling of a variable speed reciprocating

compressor using ANN, International Journal of Refrigeration,

, Vol. 59, pp. 190–197. DOI:

1016/j.ijrefrig.2015.08.009.

Grech N., Farrugia M. Experimental Investigation of Variable

Speed Operation of Air Conditioning, In Proceedings

of the 9th International Conference on Heat Transfer, Fluid

Mechanics and Thermodynamics. Malta, 2012, pp. 1674–

Marshall R. C. Optimization of Single-unit Compressed Air

Systems, Energy Engineering, 2012, Vol. 109, pp. 10–35.

DOI: 10.1080/01998595.2012.1043657.

Naveenkumar M., Munjal A., Srinivasan S., Prasad D. Design

and implementation of a variable frequency drive for

single-phase induction motor, IEEE International WIE Conference

on Electrical and Computer Engineering (WIECONECE).

Dhaka, 2015, pp. 239–242. DOI: 10.1109/wieconece.

7443907

Bukaros A. Ju., Bukaros V. N., Onishhenko O. A. Modelirovanie

momenta soprotivlenija odnoporshnevogo kompressora

sudovoj holodil’noj ustanovki, Tehnologicheskij audit i

rezervy proizvodstva, 2015, No. 4 (1), pp. 46–51.

Boldea I., Nasar S. A. The Induction Machine Handbook.

Electric Power Engineering Series. CRC Press, 2010, 968 p.

Krause P. C., Wasynczuk O., Sudhoff S. D. Analysis of

electric machinery and drive systems, 3rd ed. New York,

Wiley-IEEE, 2013, 680 p.

Mustapha M., Sbita L., Mouna B. H., Habib K. MRAS and

Luenberger Observer Based Sensorless Indirect Vector Control

of Induction Motors, Asian Journal of Information

Technology, 2008, Vol. 7, pp. 232–239.

Khan M. R., Iqbal A. Model reference adaptive system with

simple sensorless flux observer for induction motor drive,

IEEE International Conference on Power Electronics,

Drives and Energy Systems (PEDES). Bengaluru, 2012,

pp. 1–6. DOI: 10.1109/PEDES.2012.6484442.

Kubota H., Matsuse K., Nakano T. DSP-based speed adaptive

flux observer of induction motor, IEEE transactions on

industry applications, 1993, Vol. 29, pp. 344–348.

Corriou J.-P. Process control: Theory and applications: Second

edition. Springer International Publishing, 2018, 860 p.

DOI: 10.1007/978-3-319-61143-3.

Galaguz T. A., Abramovych O. O., Komnac’ka M. M.

Porivnjannja rezul’tativ syntezu robastnyh system

upravlinnja z vykorystannjam sposterigacha Kalmana ta

sposterigacha Ljuenbergera, Systemy upravlinnja, navigacii’

ta zv’jazku, 2010, No. 2(14), pp. 75–82.

Ning C. Kalman filtering speed estimation of vector control

for induction motor drive, Conference: IEEE Powercon

Wollongong, Australia, 2016. DOI:

1109/powercon.2016.7753864.

Bukaros A. Ju., Onishhenko O. A. Modernizacija upravljaemyh

privodov germetichnyh kompressorov,

Elektrotehnіchnі ta komp’juternі sistemi, 2010, No. 01(77),

pp. 58–63.

GOST Style Citations

1. Онищенко О. А. Научное обоснование и разработка
автоматизированных систем управления холодильно-
компрессионными установками малой производитель-
ности : дис. … д-ра техн. наук : 05.13.07 / Онищенко
Олег Анатольевич. – Одесса, 2010. – 345 с.
2. Applications of variable speed drive (VSD) in electrical
motors energy savings / [R. Saidur, S. Mekhilef, M. B. Ali
et al.] // Renewable and Sustainable Energy Reviews. –
2012. – Vol. 16, № 1. – P. 543–550. DOI:
10.1016/j.rser.2011.08.020.
3. Li Yu. Variable Frequency Drive Applications in HVAC
Systems / Yu. Li, M. Chomat // New Applications of Electric
Drives. – London : IntechOpen, 2015. – Chapter 7. – P.
167–185. DOI: 10.5772/61782.
4. Войтех В. А. Частотное регулирование скорости
вращения асинхронних двигателей компрессоров
бытовых холодильников / В. А. Войтех // Технічна
електродинаміка. Темат. вип. “Проблеми сучасної
електротехніки”. – 2004. – № 3. – С. 61–63.
5. Ledesma S. Analysis and modeling of a variable speed reciprocating
compressor using ANN / S. Ledesma,
J. M. Belman-Flores, J. M. Barroso-Maldonado // International
Journal of Refrigeration. – 2015. – Vol. 59. – P. 190–
197. DOI: 10.1016/j.ijrefrig.2015.08.009.
6. Grech N. Experimental Investigation of Variable Speed
Operation of Air Conditioning / N. Grech, M. Farrugia //
Heat Transfer, Fluid Mechanics and Thermodynamics :
Ninth International Conference, Malta, 16–18 July 2012 :
proceedings. – Malta : 2012. – P. 1674–1682.
7. Marshall R. C. Optimization of Single-unit Compressed Air
Systems / R. C. Marshall // Energy Engineering. – 2012. –
Vol. 109. – P. 10–35. DOI:
10.1080/01998595.2012.1043657.
8. Design and implementation of a variable frequency drive for
single-phase induction motor / [M. Naveenkumar, A. Munjal,
S. Srinivasan et al.] // Electrical and Computer Engineering
: First International WIE Conference, Dhaka, 19–20 December
2015 : proceeding. – Los Alamitos : IEEE, 2015. –
P. 239–242. DOI: 10.1109/wiecon-ece.2015.7443907.
9. Букарос А. Ю. Моделирование момента сопротивления
однопоршневого компрессора судовой холодильной ус-
тановки / А. Ю. Букарос, В. Н. Букарос, О. А. Онищенко
// Технологический аудит и резервы производства. –
2015. – № 4(1). – С. 46–51.
10. Boldea I. The Induction Machine Handbook. Electric Power
Engineering Series / I. Boldea, S. A. Nasar. – Boca Raton :
CRC Press, 2010. – 968 p.
11. Krause P. C. Analysis of electric machinery and drive systems
/ P. C. Krause, O. Wasynczuk, S. D. Sudhoff. – New
York : Wiley-IEEE, 2013. – 680 p.
12. MRAS and Luenberger Observer Based Sensorless Indirect
Vector Control of Induction Motors / [M. Mustapha,
L. Sbita, B. H. Mouna et al.] // Asian Journal of Information
Technology. – 2008. – Vol. 7. – P. 232–239.
13. Khan M. R. Model reference adaptive system with simple
sensorless flux observer for induction motor drive /
M. R. Khan, A. Iqbal // Power Electronics, Drives and Energy
Systems : IEEE International Conference, Bengaluru,
16–19 December 2012 : proceeding. – Los Alamitos : IEEE,
2012. – P. 1–6. DOI: 10.1109/PEDES.2012.6484442.
14. Kubota H. DSP-based speed adaptive flux observer of induction
motor / H. Kubota, K. Matsuse, T. Nakano // IEEE
transactions on industry applications. – 1993. – Vol. 29. –
P. 344–348.
15. Corriou J.-P. Process control: Theory and applications: Second
edition / J.-P. Corriou. – New York : Springer, 2018. –
860 p. DOI: 10.1007/978-3-319-61143-3.
16. Галагуз Т. А. Порівняння результатів синтезу робастних
систем управління з використанням спостерігача Кал-
мана та спостерігача Люенбергера / Т. А. Галагуз,
О. О. Абрамович, М. М. Комнацька // Системи управ-
ління, навігації та зв’язку. – 2010. – № 2(14). – С. 75–82.
17. Ning C. Kalman filtering speed estimation of vector control
for induction motor drive / C. Ning // Power System Technology
: IEEE International Conference, Wollongong, 28
September– 1 October 2016 : proceeding. – Los Alamitos :
IEEE, 2016. – P. 107–111. DOI:
10.1109/powercon.2016.7753864.
18. Букарос А. Ю. Модернизация управляемых приводов
герметичных компрессоров / А. Ю. Букарос, О. А. Они-
щенко // Електротехнічні та комп’ютерні системи. –
2010. – № 01(77). – С. 58–63.
237

Copyright (c) 2019 A. Y. Bukaros, O. A. Onyshchenko, P. N. Montik, V. L. Malyshev, V. N. Bukaros