ROBUST CONTROL OF LASER ACTUATOR FOR TECHNICAL VISION SYSTEM
DOI:
https://doi.org/10.15588/1607-3274-2019-1-22Keywords:
technical vision system, laser, dc motor, robust controller.Abstract
Context. The SLAM problem solving for an autonomous mobile robot requires efficient technical means for surrounding terrain scanning with the purpose of its mapping and obstacles detecting. As such means, laser scanning systems are widely used both independently and in combination with other tools as a part of a uniform technical vision system of a mobile robot. One of the problems
with a technical vision systems operation is the ability to detect relatively small obstacles, which requires scanning of a limited sector within the field of view or even focusing on a specific point of space. This study is devoted to the issue of improving the reliability of obstacles detecting within the robot field of view by improving the laser actuator of the technical vision system.
Objective. The objective of the work is to the reliability increasing of obstacles detection within the robot technical vision system field of view due to the robust control of the actuators of the positioning system of the laser.
Method. The classical PD-controller for the laser positioning actuator, which meets the requirements for the quality of the transient process, has been synthesized. The evaluation of robust properties of the obtained control system showed both a significant dependence of the actuator dynamic properties on the variation of the values of the actuator model parameters and the potential possibility
of its time response increasing. With the help of the MATLAB Robust Control Toolbox, the controller gains have been redefined to ensure the robust properties
of the control system. The analysis of the influence of parametric uncertainties of the actuator model on the system dynamic properties is conducted.
Results. A robust PD-controller for the laser beam positioning system actuator for the technical vision system has been synthesized. It combines the simplicity of the implementation of a classic controller with a weak sensitivity to the uncertainties presence.
Conclusions. The using of the controller at the mobile robot laser technical vision system will increase the reliability of obstacle detection and, as a result, the accuracy of mapping of a limited sector within the robot field of view under the conditions of the parametric uncertainty of the actuator model.
References
Bresson G., Alsayed Z., Yu Li, Glaser S. Simultaneous
Localization and Mapping: A Survey of Current Trends in
Autonomous Driving, IEEE Transactions on Intelligent
Vehicles, 2017, Vol. 20, pp. 194–220. DOI:
1109/TIV.2017.2749181
Li Z. Yang C., Su C.Y., Deng J., Zhang W. Vision-based
model predictive control for steering of a nonholonomic
mobile robot, IEEE Transactions on Control Systems Technology,
, Vol. 24, No. 2, pp. 553–564. DOI:
1109/TCST.2015.2454484
Shalal N., Low T., McCarthy C., Hancock N. Orchard mapping
and mobile robot localisation using on-board camera
and laser scanner data fusion – Part A: Tree detection, Computers
and Electronics in Agriculture, 2015, Vol. 119,
pp. 254–266. DOI: 10.1016/j.compag.2015.09.025
Su Z., Zhou X., Cheng T., Zhang H., Xu B., Chen W.
Global localization of a mobile robot using lidar and visual
features, Robotics and Biomimetics, IEEE International
Conference. Macao, China, 5–8 December 2017, proceedings,
IEEE, 2017, pp. 2377–2383. DOI:
1109/ROBIO.2017.8324775
Kumar G. A., Patil A. K., Patil R., Park S. S., Chai Y. H. A
LiDAR and IMU integrated indoor navigation system for
UAVs and its application in real-time pipeline classification,
Sensors, 2017, Vol. 17, No. 6, P. 1268. DOI:
3390/s17061268
Kumar P., Lewis P., McElhinney C. P., Rahman A. A. An
Algorithm for Automated Estimation of Road Roughness
from Mobile Laser Scanning Data, The Photogrammetric
Record, 2015, Vol. 30, No. 149, pp. 30–45. DOI:
1111/phor.12090
Ivanov M., Lindner L., Sergiyenko O., Rodríguez-
Quiñonez J. C., Flores-Fuentes W., Rivas-Lopez M. Mobile
Robot Path Planning Using Continuous Laser Scanning / M.
Ivanov, // Optoelectronics in Machine Vision-Based Theories
and Applications, IGI Global, 2019, pp. 338-372. DOI:
4018/978-1-5225-5751-7.ch012
Abramov A. I. Abramov I. V., Mazitov T. A., Pal’mov A. M.
Primenenie pchelinogo algoritma dlya obrabotki dannyx lazernoj
skaniruyushhej sistemy pri navigacii mobil’nyx robotov,
Vestnik IzhGTU im. M. T. Kalashnikova, 2016, No. 2, pp.
–104.
Vazaev A. V., Noskov V. P., Rubcov I. V., Carichenko S. G.
Kompleksirovannaya STZ v sisteme uprav-leniya pozharnogo
robota, Izvestiya Yuzhnogo fede-ral’nogo universiteta.
Texnicheskie nauki, 2017, No. 1 (186). pp. 121–132. DOI:
18522/2311-3103-2017-1-121132
Basaca-Preciado L. C., Sergiyenko O. Y., Rodríguez-
Quinonez J. C. et al Optical 3D laser measurement system
for navigation of autonomous mobile robot, Optics and Lasers
in Engineering, 2014, Vol. 54, pp. 159–169. DOI:
1016/j.optlaseng.2013.08.005
Lindner L., Sergiyenko O., Rodríguez-Quiñonez J. C. et al
Mobile robot vision system using continuous laser scanning
for industrial application, Industrial Robot: An International
Journal, 2016, Vol. 43, No. 4, pp. 360–369. DOI:
1108/IR-01-2016-0048
Lindner L., Sergiyenko O., Rivas-López M. et al Machine
vision system errors for unmanned aerial vehicle navigation,
th International Symposium on Industrial Electronics
(ISIE), Edinburgh, 19–21 June 2017 : proceedings, IEEE,
, pp. 1615–1620. DOI: 10.1109/ISIE.2017.8001488
Reyes-García M. Lindner L., Rivas-López M. et al Reduction
of Angular Position Error of a Machine Vision System
using the Digital Controller LM629, 44nd Annual Conference
of the IEEE (IECON 2018), Washington, D.C., USA,
–23 Oct. 2018, proceedings, IEEE, 2018, pp. 3200–3205.
Lindner L., Sergiyenko O., Rivas-López M. et al UAV remote
laser scanner improvement by continuous scanning using
DC motors, 42nd Annual Conference of the IEEE
(IECON 2016), Florence, 23–26 Oct. 2016 : proceedings,
IEEE, 2016. – P. 371–376. DOI:
1109/IECON.2016.7793316
Metody robastnogo, nejro-nechetkogo i adaptivnogo upravleniya.
Pod. red. N. D. Egupova. Moscow, Izd-vo MGTU
im. N. E. Baumana, 2001, 744 p.
Tamaki K., Ohishi K., Ohnishi K., Miyachi K. Microprocessor-
Based Robust Control of a DC Servo Motor, IEEE Control
Systems Magazine, 1986, Vol. 6, No. 5, pp. 30–36. DOI:
1109/MCS.1986.1105133
Umeno T. Y., Hori Y. Robust speed control of DC servomotors
using modern two degrees-of-freedom controller design
/ T. Umeno, // IEEE Transactions on Industrial Electronics,
, Vol. 38, No. 5, pp. 363–368. DOI: 10.1109/41.97556
Fallahi M., Azadi S. Robust control of DC motor using
fuzzy sliding mode control with PID compensator, International
MultiConference of Engineers and Computer Scientists
: Hong Kong, 18–20 March 2009, proceedings. Hong
Kong, 2009, Vol. 2, 5 p.
Eker I. Sliding mode control with PID sliding surface and
experimental application to an electromechanical plant //
ISA transactions, 2006, Vol. 45, No. 1, pp. 109–118. DOI:
1016/S0019-0578(07)60070-6
Březina L., Březina T. H-infinity controller design for a DC
motor model with uncertain parameters, Engineering mechanics,
, Vol. 18, No. 5–6, pp. 271–279.
Polilov E. V., Zelenov A. B., Rudnev E. S. Cintez robastnogo
H∞-suboptimal’nogo regulyatora polozheniya
pozicionnogo e’lektroprivoda, Visnyk KDPU im. M. Ostrograds’kogo,
, Vyp. 3, Ch. 1, pp. 64–71.
Rudnev E. S. Praktycheskaja realyzacyja y yssledovanye
robastnyyh algorytmov upravlenyja synhronnyym эlektropryvodom
/ E. S. Rudnev // Elektromehanichni i energozberigajuchi
systemy, 2012, Vol. 3, No. 19, pp. 102–107.
Dey N., Mondal U., Mondal D. Design of a H-infinity robust
controller for a DC servo motor system / N. Dey, // Intelligent
Control Power and Instrumentation (ICICPI): International
Conference, Kolkata, India, 21–23 October
: proceedings, IEEE, 2016, pp. 27–31. DOI:
1109/ICICPI.2016.7859667
Nguyen Ba-Hai, Ngo Hai-Bac, Ryu Jee-Hwan Novel Robust
Control Algorithm of DC Motors, 6th International Conference
on Ubiquitous Robots and Ambient Intelligence,
Gwangju, Korea, 29–31 October 2009 : proceedings,
pp. 119–122.
Shamseldin M. A., Eissa M. A., EL-Samahy A. A. Practical
Implementation of GA-Based PID Controller for Brushless
DC Motor / M. A. Shamseldin, // 17th International Middle
East Power System Conference, Mansoura University,
Egypt, 15–17 December 2015 : proceedings. Mansoura,
, 5 p.
Veselý V., Ilka A. Generalized robust gain-scheduled PID
controller design for affine LPV systems with polytopic uncertainty,
Systems & Control Letters, 2017, Vol. 105, pp. 6–
DOI: 10.1016/j.sysconle.2017.04.005
Khubalkar S., Chopade A., Junghare A. et al. Design and
realization of stand-alone digital fractional order PID controller
for Buck converter fed DC, Circuits, Systems, and
Signal Processing, 2016, Vol. 35, No. 6, pp. 2189–2211.
DOI: 10.1007/s00034-016-0262-2
Dorf R., Bishop R. Sovremennye sistemy upravlenija
[Translation from English]. Moscow, Laboratorija Bazovyh
Znanij, 2002, 832 p.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2019 A. G. Gurko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.