DOI: https://doi.org/10.15588/1607-3274-2019-1-22

ROBUST CONTROL OF LASER ACTUATOR FOR TECHNICAL VISION SYSTEM

A. G. Gurko

Abstract


Context. The SLAM problem solving for an autonomous mobile robot requires efficient technical means for surrounding terrain scanning with the purpose of its mapping and obstacles detecting. As such means, laser scanning systems are widely used both independently and in combination with other tools as a part of a uniform technical vision system of a mobile robot. One of the problems
with a technical vision systems operation is the ability to detect relatively small obstacles, which requires scanning of a limited sector within the field of view or even focusing on a specific point of space. This study is devoted to the issue of improving the reliability of obstacles detecting within the robot field of view by improving the laser actuator of the technical vision system.
Objective. The objective of the work is to the reliability increasing of obstacles detection within the robot technical vision system field of view due to the robust control of the actuators of the positioning system of the laser.
Method. The classical PD-controller for the laser positioning actuator, which meets the requirements for the quality of the transient process, has been synthesized. The evaluation of robust properties of the obtained control system showed both a significant dependence of the actuator dynamic properties on the variation of the values of the actuator model parameters and the potential possibility
of its time response increasing. With the help of the MATLAB Robust Control Toolbox, the controller gains have been redefined to ensure the robust properties
of the control system. The analysis of the influence of parametric uncertainties of the actuator model on the system dynamic properties is conducted.
Results. A robust PD-controller for the laser beam positioning system actuator for the technical vision system has been synthesized. It combines the simplicity of the implementation of a classic controller with a weak sensitivity to the uncertainties presence.
Conclusions. The using of the controller at the mobile robot laser technical vision system will increase the reliability of obstacle detection and, as a result, the accuracy of mapping of a limited sector within the robot field of view under the conditions of the parametric uncertainty of the actuator model.


Keywords


technical vision system; laser; dc motor; robust controller.

References


Bresson G., Alsayed Z., Yu Li, Glaser S. Simultaneous

Localization and Mapping: A Survey of Current Trends in

Autonomous Driving, IEEE Transactions on Intelligent

Vehicles, 2017, Vol. 20, pp. 194–220. DOI:

1109/TIV.2017.2749181

Li Z. Yang C., Su C.Y., Deng J., Zhang W. Vision-based

model predictive control for steering of a nonholonomic

mobile robot, IEEE Transactions on Control Systems Technology,

, Vol. 24, No. 2, pp. 553–564. DOI:

1109/TCST.2015.2454484

Shalal N., Low T., McCarthy C., Hancock N. Orchard mapping

and mobile robot localisation using on-board camera

and laser scanner data fusion – Part A: Tree detection, Computers

and Electronics in Agriculture, 2015, Vol. 119,

pp. 254–266. DOI: 10.1016/j.compag.2015.09.025

Su Z., Zhou X., Cheng T., Zhang H., Xu B., Chen W.

Global localization of a mobile robot using lidar and visual

features, Robotics and Biomimetics, IEEE International

Conference. Macao, China, 5–8 December 2017, proceedings,

IEEE, 2017, pp. 2377–2383. DOI:

1109/ROBIO.2017.8324775

Kumar G. A., Patil A. K., Patil R., Park S. S., Chai Y. H. A

LiDAR and IMU integrated indoor navigation system for

UAVs and its application in real-time pipeline classification,

Sensors, 2017, Vol. 17, No. 6, P. 1268. DOI:

3390/s17061268

Kumar P., Lewis P., McElhinney C. P., Rahman A. A. An

Algorithm for Automated Estimation of Road Roughness

from Mobile Laser Scanning Data, The Photogrammetric

Record, 2015, Vol. 30, No. 149, pp. 30–45. DOI:

1111/phor.12090

Ivanov M., Lindner L., Sergiyenko O., Rodríguez-

Quiñonez J. C., Flores-Fuentes W., Rivas-Lopez M. Mobile

Robot Path Planning Using Continuous Laser Scanning / M.

Ivanov, // Optoelectronics in Machine Vision-Based Theories

and Applications, IGI Global, 2019, pp. 338-372. DOI:

4018/978-1-5225-5751-7.ch012

Abramov A. I. Abramov I. V., Mazitov T. A., Pal’mov A. M.

Primenenie pchelinogo algoritma dlya obrabotki dannyx lazernoj

skaniruyushhej sistemy pri navigacii mobil’nyx robotov,

Vestnik IzhGTU im. M. T. Kalashnikova, 2016, No. 2, pp.

–104.

Vazaev A. V., Noskov V. P., Rubcov I. V., Carichenko S. G.

Kompleksirovannaya STZ v sisteme uprav-leniya pozharnogo

robota, Izvestiya Yuzhnogo fede-ral’nogo universiteta.

Texnicheskie nauki, 2017, No. 1 (186). pp. 121–132. DOI:

18522/2311-3103-2017-1-121132

Basaca-Preciado L. C., Sergiyenko O. Y., Rodríguez-

Quinonez J. C. et al Optical 3D laser measurement system

for navigation of autonomous mobile robot, Optics and Lasers

in Engineering, 2014, Vol. 54, pp. 159–169. DOI:

1016/j.optlaseng.2013.08.005

Lindner L., Sergiyenko O., Rodríguez-Quiñonez J. C. et al

Mobile robot vision system using continuous laser scanning

for industrial application, Industrial Robot: An International

Journal, 2016, Vol. 43, No. 4, pp. 360–369. DOI:

1108/IR-01-2016-0048

Lindner L., Sergiyenko O., Rivas-López M. et al Machine

vision system errors for unmanned aerial vehicle navigation,

th International Symposium on Industrial Electronics

(ISIE), Edinburgh, 19–21 June 2017 : proceedings, IEEE,

, pp. 1615–1620. DOI: 10.1109/ISIE.2017.8001488

Reyes-García M. Lindner L., Rivas-López M. et al Reduction

of Angular Position Error of a Machine Vision System

using the Digital Controller LM629, 44nd Annual Conference

of the IEEE (IECON 2018), Washington, D.C., USA,

–23 Oct. 2018, proceedings, IEEE, 2018, pp. 3200–3205.

Lindner L., Sergiyenko O., Rivas-López M. et al UAV remote

laser scanner improvement by continuous scanning using

DC motors, 42nd Annual Conference of the IEEE

(IECON 2016), Florence, 23–26 Oct. 2016 : proceedings,

IEEE, 2016. – P. 371–376. DOI:

1109/IECON.2016.7793316

Metody robastnogo, nejro-nechetkogo i adaptivnogo upravleniya.

Pod. red. N. D. Egupova. Moscow, Izd-vo MGTU

im. N. E. Baumana, 2001, 744 p.

Tamaki K., Ohishi K., Ohnishi K., Miyachi K. Microprocessor-

Based Robust Control of a DC Servo Motor, IEEE Control

Systems Magazine, 1986, Vol. 6, No. 5, pp. 30–36. DOI:

1109/MCS.1986.1105133

Umeno T. Y., Hori Y. Robust speed control of DC servomotors

using modern two degrees-of-freedom controller design

/ T. Umeno, // IEEE Transactions on Industrial Electronics,

, Vol. 38, No. 5, pp. 363–368. DOI: 10.1109/41.97556

Fallahi M., Azadi S. Robust control of DC motor using

fuzzy sliding mode control with PID compensator, International

MultiConference of Engineers and Computer Scientists

: Hong Kong, 18–20 March 2009, proceedings. Hong

Kong, 2009, Vol. 2, 5 p.

Eker I. Sliding mode control with PID sliding surface and

experimental application to an electromechanical plant //

ISA transactions, 2006, Vol. 45, No. 1, pp. 109–118. DOI:

1016/S0019-0578(07)60070-6

Březina L., Březina T. H-infinity controller design for a DC

motor model with uncertain parameters, Engineering mechanics,

, Vol. 18, No. 5–6, pp. 271–279.

Polilov E. V., Zelenov A. B., Rudnev E. S. Cintez robastnogo

H∞-suboptimal’nogo regulyatora polozheniya

pozicionnogo e’lektroprivoda, Visnyk KDPU im. M. Ostrograds’kogo,

, Vyp. 3, Ch. 1, pp. 64–71.

Rudnev E. S. Praktycheskaja realyzacyja y yssledovanye

robastnyyh algorytmov upravlenyja synhronnyym эlektropryvodom

/ E. S. Rudnev // Elektromehanichni i energozberigajuchi

systemy, 2012, Vol. 3, No. 19, pp. 102–107.

Dey N., Mondal U., Mondal D. Design of a H-infinity robust

controller for a DC servo motor system / N. Dey, // Intelligent

Control Power and Instrumentation (ICICPI): International

Conference, Kolkata, India, 21–23 October

: proceedings, IEEE, 2016, pp. 27–31. DOI:

1109/ICICPI.2016.7859667

Nguyen Ba-Hai, Ngo Hai-Bac, Ryu Jee-Hwan Novel Robust

Control Algorithm of DC Motors, 6th International Conference

on Ubiquitous Robots and Ambient Intelligence,

Gwangju, Korea, 29–31 October 2009 : proceedings,

pp. 119–122.

Shamseldin M. A., Eissa M. A., EL-Samahy A. A. Practical

Implementation of GA-Based PID Controller for Brushless

DC Motor / M. A. Shamseldin, // 17th International Middle

East Power System Conference, Mansoura University,

Egypt, 15–17 December 2015 : proceedings. Mansoura,

, 5 p.

Veselý V., Ilka A. Generalized robust gain-scheduled PID

controller design for affine LPV systems with polytopic uncertainty,

Systems & Control Letters, 2017, Vol. 105, pp. 6–

DOI: 10.1016/j.sysconle.2017.04.005

Khubalkar S., Chopade A., Junghare A. et al. Design and

realization of stand-alone digital fractional order PID controller

for Buck converter fed DC, Circuits, Systems, and

Signal Processing, 2016, Vol. 35, No. 6, pp. 2189–2211.

DOI: 10.1007/s00034-016-0262-2

Dorf R., Bishop R. Sovremennye sistemy upravlenija

[Translation from English]. Moscow, Laboratorija Bazovyh

Znanij, 2002, 832 p.


GOST Style Citations


1. Simultaneous Localization and Mapping: A Survey of Current
Trends in Autonomous Driving // [G. Bresson,
Z. Alsayed, Li Yu, S. Glaser] // IEEE Transactions on Intelligent
Vehicles. – 2017. – Vol. 20. – P. 194–220. DOI:
10.1109/TIV.2017.2749181
2. Vision-based model predictive control for steering of a nonholonomic
mobile robot / [Z. Li, C. Yang, C. Y. Su et al] //
IEEE Transactions on Control Systems Technology. – 2016.
– Vol. 24, No. 2. – P. 553–564. DOI:
10.1109/TCST.2015.2454484
3. Orchard mapping and mobile robot localisation using onboard
camera and laser scanner data fusion – Part A: Tree
detection / [N. Shalal, T. Low, C. McCarthy, N. Hancock] //
Computers and Electronics in Agriculture. – 2015. –
Vol. 119. – P. 254–266. DOI:
10.1016/j.compag.2015.09.025
4. Global localization of a mobile robot using lidar and visual
features / [Z. Su, X. Zhou, T. Cheng, H. Zhang et al] // Robotics
and Biomimetics : IEEE International Conference,
Macao, China, 5–8 December 2017 : proceedings. – IEEE,
2017. – P. 2377–2383. DOI: 10.1109/ROBIO.2017.8324775
5. A LiDAR and IMU integrated indoor navigation system for
UAVs and its application in real-time pipeline classification
/ [G. A. Kumar, A. K. Patil, R. Patil et al] // Sensors. –
2017. – Vol. 17, No. 6. – P. 1268. DOI: 10.3390/s17061268
6. An Algorithm for Automated Estimation of Road Roughness
from Mobile Laser Scanning Data / [P. Kumar,
P. Lewis, C. P. McElhinney, A. A. Rahman] // The Photogrammetric
Record. – 2015. – Vol. 30, No. 149. – P. 30–45.
DOI: 10.1111/phor.12090
7. Mobile Robot Path Planning Using Continuous Laser Scanning
/ [M. Ivanov, L. Lindner, O. Sergiyenko et al] // Optoelectronics
in Machine Vision-Based Theories and Applications.
– IGI Global, 2019. – P. 338–372. DOI: 10.4018/978-
1-5225-5751-7.ch012
8. Применение пчелиного алгоритма для обработки данных
лазерной сканирующей системы при навигации мобиль-
ных роботов / [А. И. Абрамов, И. В. Абрамов, Т. А. Мази-
тов, А. М. Пальмов] // Вестник ИжГТУ им. М. Т. Калаш-
никова. – 2016. – № 2. – С. 101–104.
9. Комплексированная СТЗ в системе управления пожар-
ного робота / [А. В. Вазаев, В. П. Носков, И. В. Рубцов,
С. Г. Цариченко] // Известия Южного федерального
университета. Технические науки. – 2017. – № 1 (186). –
С. 121–132. DOI: 10.18522/2311-3103-2017-1-121132
10. Optical 3D laser measurement system for navigation of
autonomous mobile robot / [L. C. Basaca-Preciado,
O. Y. Sergiyenko, J. C. Rodríguez-Quinonez et al] // Optics
and Lasers in Engineering. – 2014. – Vol. 54. – P. 159–169.
DOI: 10.1016/j.optlaseng.2013.08.005
11. Mobile robot vision system using continuous laser scanning
for industrial application / [L. Lindner, O. Sergiyenko,
J. C. Rodríguez-Quiñonez et al.] // Industrial Robot: An International
Journal. – 2016. – Vol. 43, No. 4. – P. 360–369.
DOI: 10.1108/IR-01-2016-0048
12. Machine vision system errors for unmanned aerial vehicle
navigation / [L. Lindner, O. Sergiyenko, M. Rivas-López et
al] // 26th International Symposium on Industrial Electronics
(ISIE), Edinburgh, 19–21 June 2017 : proceedings. – IEEE,
2017. – P. 1615–1620. DOI: 10.1109/ISIE.2017.8001488
13. Reduction of Angular Position Error of a Machine Vision
System using the Digital Controller LM629 / [M. Reyes-
García, L. Lindner, M. Rivas-López et al] // 44nd Annual
Conference of the IEEE (IECON 2018), Washington, D. C.,
USA, 21–23 Oct. 2018 : proceedings. – IEEE, 2018. –
P. 3200–3205.
14. UAV remote laser scanner improvement by continuous
scanning using DC motors / [L. Lindner, O. Sergiyenko, M.
Rivas-López et al] // 42nd Annual Conference of the IEEE
(IECON 2016), Florence, 23–26 Oct. 2016 : proceedings. –
IEEE, 2016. – P. 371–376. DOI:
10.1109/IECON.2016.7793316

15. Методы робастного, нейро-нечеткого и адаптивного
управления / Под. ред. Н. Д. Егупова. – М. : Изд-во
МГТУ им. Н. Э. Баумана, 2001. – 744 с.
16. Microprocessor-Based Robust Control of a DC Servo Motor
/ [K. Tamaki, K. Ohishi, K. Ohnishi, K. Miyachi] // IEEE
Control Systems Magazine. – 1986. – Vol. 6, No 5. – P. 30–
36. DOI: 10.1109/MCS.1986.1105133
17. Umeno T. Y. Robust speed control of DC servomotors using
modern two degrees-of-freedom controller design / T. Umeno,
Y. Hori // IEEE Transactions on Industrial Electronics. –
1991. – Vol. 38, No 5. – P. 363–368. DOI:
10.1109/41.97556
18. Fallahi M. Robust control of DC motor using fuzzy sliding
mode control with PID compensator / M. Fallahi, S. Azadi //
International MultiConference of Engineers and Computer
Scientists : Hong Kong, 18–20 March 2009 : proceedings. –
Hong Kong, 2009. – Vol. 2. – 5 p.
19. Eker I. Sliding mode control with PID sliding surface and
experimental application to an electromechanical plant //
ISA transactions. – 2006. – Vol. 45, No. 1. – P. 109–118.
DOI: 10.1016/S0019-0578(07)60070-6
20. Březina L. H-infinity controller design for a DC motor model
with uncertain parameters / L. Březina, T. Březina // Engineering
mechanics. – 2011. – Vol. 18, No. 5–6. – P. 271–279.
21. Полилов Е. В. Cинтез робастного H∞-субоптимального
регулятора положения позиционного электропривода /
Е. В. Полилов, А. Б. Зеленов, Е. С. Руднев // Вісник
КДПУ ім. М. Остроградського. – 2008. – Вип. 3, Ч. 1. –
С. 64–71.
22. Руднев Е. С. Практическая реализация и исследование
робастных алгоритмов управления синхронным элек-
троприводом / Е. С. Руднев // Електромеханічні і енерго-
зберігаючі системи. – 2012. – Т. 3, № 19. – С. 102–107.
23. Dey N. Design of a H-infinity robust controller for a DC
servo motor system / N. Dey, U. Mondal, D. Mondal // Intelligent
Control Power and Instrumentation (ICICPI): International
Conference, Kolkata, India, 21–23 October 2016 :
proceedings. – IEEE, 2016. – P. 27–31. DOI:
10.1109/ICICPI.2016.7859667
24. Nguyen Ba-Hai. Novel Robust Control Algorithm of DC
Motors / Ba-Hai Nguyen, Hai-Bac Ngo, Jee-Hwan Ryu //
6th International Conference on Ubiquitous Robots and
Ambient Intelligence, Gwangju, Korea, 29–31 October
2009 : proceedings. – P. 119–122.
25. Shamseldin M. A. Practical Implementation of GA-Based
PID Controller for Brushless DC Motor / M. A. Shamseldin,
M. A. Eissa, A. A. EL-Samahy // 17th International Middle
East Power System Conference, Mansoura University,
Egypt, 15–17 December 2015 : proceedings. – Mansoura,
2015. – 5 p.
26. Veselý V. Generalized robust gain-scheduled PID controller
design for affine LPV systems with polytopic uncertainty /
V. Veselý, A. Ilka // Systems & Control Letters. – 2017. –
Vol. 105. – P. 6–13. DOI: 10.1016/j.sysconle.2017.04.005
27. Design and realization of stand-alone digital fractional order
PID controller for Buck converter fed DC motor / [S. Khubalkar,
A. Chopade, A. Junghare, et al] // Circuits, Systems,
and Signal Processing. – 2016. – Vol. 35, No. 6. – P. 2189–
2211. DOI: 10.1007/s00034-016-0262-2
28. Дорф Р. Современные системы управления / Р. Дорф,
Р. Бишоп. - М. : Лаборатория Базовых Знаний, 2002. –
832 с.







Copyright (c) 2019 A. G. Gurko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.