MODELING OF CURRENT LIMITATIONS IN PHOTO-ELECTRICAL SYSTEMS OF SOLAR BATTERIES USING SELF-RESTORING FUSES POLYSWITCH
DOI:
https://doi.org/10.15588/1607-3274-2019-2-2Keywords:
photoelectric converter, overcurrent, self-resetting fuses, current-voltage characteristics, voltage-watt characteristics, simulationAbstract
Context. Solving the problem of increasing the reliability of solar cells, including the elimination of abnormal (fire hazardous)situations based on the development of methods and means to prevent current overloads in their photovoltaic systems.
Objective. The study of the prospects of minimizing current overloads in photovoltaic systems of solar cells through the use of
low-cost elements of functional electronics in particular rather new and widely used self-healing fuses of the type “Polyswith”.
Method. A circuit design is proposed and the modeling method makes it possible to use Polyswitch-type fuses to prevent and
minimize current overloads in photovoltaic solar panels.
Results. The influence of the magnitude of the resistance in the conducting state and the current of operation of the fuses on the
current-voltage and voltage-watt characteristics of parallel connections of photoelectric converters and their modules is analyzed.
Conclusions. It is shown that an effective current limitation in the presence of short-circuits with such a connection of photovoltaic
components can be realized under the following conditions:
– the resistance of the fuse in the conducting state is much less than the consistent resistance of the photoelectric component;
– the current of the fuse should be greater current of short circuit of a separate photoelectric component and less current of their
parallel connection.
References
Köntges M., Kurtz S., Packard C., Jahn U., Berger K. A.,Kato K., Friesen T., Liu H., Van Iseghem M. Review of
failures of photovoltaic modules. IEA PVPS Task 13, 2014, 132 p.
United Solar Technologies – Solnechnye moduli i batarei [Electronic resource]. Available at:
http://ust.su/solar/media/section-inner17.
Tonkoshkur A. S., Nakashidze L. V., Lyagushyn S. F. Schemotechnical technologies for reliability of solar arrays,
Sistemnі texnologії. Regіonal'nij mіzhvuzіvs'kij zbіrnik naukovix prac', Vip. 4′(117). Dnіpro, 2018, pp. 95–107.
Kim K. A., Krein Р. T. Photovoltaic hot spot analysis for cells with various reverse-bias characteristics through electrical
and thermal simulation, Proc. IEEE Workshop Control Modeling Power Electron. Junе, 2013, pp. 1–8.
Kim K. A., Krein Р. T. Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode, IEEE J.
Photovoltaics, 5 (5), 2015, pp. 1435–1441.
Acciari G., Graci D. , Scala A. L. Higher PV module efficiency by a novel CBS bypass, IEEE Trans. Power Electron,
May 2011, Vol. 26, No. 5, pp. 1333–1336,.
d’Alessandro V., Guerriero P. , Daliento S. A simple bipolar transistor-based bypass approach for photovoltaic modules,
IEEE J. Photovoltaics, Jan. 2014, Vol. 4, No. 1, pp. 405–413.
Pacheco Sánchez F. J. Photovoltaic systems distributed monitoring for performance optimization. Doct. Thesis,
Universidad de Málaga (RIUMA: riuma.uma.es) / F. J. Sánchez Pacheco. Málaga, España, 2015.
Di Napoli F., Guerriero G. , d’Alessandro V. , Daliento S. Single panel voltage zeroing system for safe access on PV
plants, IEEE J. Photovoltaics, 2015, Vol. 5 (5), pp. 1428–1434.
Tonkoshkur A. S., Ivanchenko A. V., Nakashidze L. V., S. V. Mazurik Primenenie samovosstanavlivajushhihsja
jelementov dlja jelektricheskoj zashhity solnechnyh batarej, Tehnologija i konstruirovanie v jelektronnoj apparature,
, No. 1, pp. 43–49.
Gavrikov V. Samovosstanavlivajushhiesja PTCpredohraniteli dlja zashhity ot tokovyh peregruzok, Novosti
Jelektroniki, 2014, No. 12, pp. 11–15.
Kaminskaja T. P., K. I. Domkin Samovosstanavlivajushhiesja predohraniteli dlja avtomobil'noj jelektroniki, Jelektronnye
komponenty, 2008, No. 5, pp. 80–82.
Oglesbee J. W., Burns A. G. Pat. 6608470 USA. Overcharge protection device and methods for lithium based rechargeable
batteries. 19.08.03.
Protecting rechargeable Li-ion and Li-polymer batteries [Electronic resource]: Littelfuse, Inc, 2017, Available at:
http://www.littelfuse.com/~/media/ electronics/application_notes/littelfuse_protecting_rechargeable_
li_ion_and_li_polymer_batteries_in_consumer_portabl e_electronics_application_note.pdf.pdf
Levshov A. V., Fjodorov A. Ju. O matematicheskom modelirovanii
fotojelektricheskih modulej / A. V. Levshov, // Naukovi praci DonNTU. Serija: «Elektrotehnika i energetyka
», No. 1(14)’, 2013, pp. 153–158.
Raushenbah G. «Spravochnik po proektirovaniju solnechnyhbatarej». Moscow, Jenergoatomizdat, 1983, 360 p.
Lorenzo E. Solar Electricity Engineering of Photovoltaic Systems, Artes Graficas Gala, Spain, 1994.
Koval' O. S., Tivanov M. S. Opredelenie parametrov solnechnogo elementa iz ego svetovoj vol't-ampernoj harakteristiki,
Vestnik BGU, 2012, Ser. 1, No. 2, pp. 39–44.
Salem F. A. Modeling and Simulation issues on Photo-Voltaic systems, for Mechatronics design of solar electric
applications, International Journal of Mechanical Engineering (IIJME). August 2014, Vol. 2, Issue 8, pp. 24–7.
http://www.ipasj.org/IIJME/IIJME.htm
Alboteanu I. L., Ivanov S., Manolea G. Modelling and simulation of a stand-alone photovoltaic system, 8th WSEAS International
Conference on POWER SYSTEMS (PS 2008), Santander, Cantabria, Spain, 2008, September 23–25,
pp. 189–194.
Hansen A. D., Sоrensen P., Hansen L. H., Binder H. Models for a Stand-Alone PV System. Roskidle, 2000, 78 p.
Gaevskij A. Ju. Opredelenie parametrov fotojelektricheskih modulej na osnove tochnogo reshenija uravnenija dlja VAH,
Vіdnovljuval'na energetik, 2012, No. 4, pp. 32–39.
Honsberg C., Bowden S. Arisone State University. Solar Power Labs [Electr. Resource], Available at:
http://www.pveducation.org/pvcdrom
Mjeklin Je. D. Termorezistory. Moscow, Radio i svjaz',
, 208 p.
Tonkoshkur O. S., Trystan O. N. , S’janov O. M. Komponentna baza REA. Dniprodzerzhyns'k, DDTU, 2004, 240 p.
PolySwitch™ Resettable Device Short Form Catalog. May, 2005. Tuco Electronics. Raychem circuit protection.
[Electr. Resource]. Available at:https://datasheet.octopart.com/MICROSMD010F-2-Tyco-Electronics-datasheet-45906.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 A. S. Tonkoshkur, L. V. Nakashidze
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.