MODELING OF CURRENT LIMITATIONS IN PHOTO-ELECTRICAL SYSTEMS OF SOLAR BATTERIES USING SELF-RESTORING FUSES POLYSWITCH

Authors

  • A. S. Tonkoshkur Oles Honchar Dnipro National University, Ukraine
  • L. V. Nakashidze Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2019-2-2

Keywords:

photoelectric converter, overcurrent, self-resetting fuses, current-voltage characteristics, voltage-watt characteristics, simulation

Abstract

Context. Solving the problem of increasing the reliability of solar cells, including the elimination of abnormal (fire hazardous)
situations based on the development of methods and means to prevent current overloads in their photovoltaic systems.
Objective. The study of the prospects of minimizing current overloads in photovoltaic systems of solar cells through the use of
low-cost elements of functional electronics in particular rather new and widely used self-healing fuses of the type “Polyswith”.
Method. A circuit design is proposed and the modeling method makes it possible to use Polyswitch-type fuses to prevent and
minimize current overloads in photovoltaic solar panels.
Results. The influence of the magnitude of the resistance in the conducting state and the current of operation of the fuses on the
current-voltage and voltage-watt characteristics of parallel connections of photoelectric converters and their modules is analyzed.
Conclusions. It is shown that an effective current limitation in the presence of short-circuits with such a connection of photovoltaic
components can be realized under the following conditions:
– the resistance of the fuse in the conducting state is much less than the consistent resistance of the photoelectric component;
– the current of the fuse should be greater current of short circuit of a separate photoelectric component and less current of their
parallel connection.

Author Biographies

A. S. Tonkoshkur, Oles Honchar Dnipro National University

Doctor of Phys. Mat. Sciences, Professor, Professor of the Department of Electronic Computers

L. V. Nakashidze, Oles Honchar Dnipro National University

Senior Scientific Reseacher, Director of Energy Research Institute

References

Köntges M., Kurtz S., Packard C., Jahn U., Berger K. A.,Kato K., Friesen T., Liu H., Van Iseghem M. Review of

failures of photovoltaic modules. IEA PVPS Task 13, 2014, 132 p.

United Solar Technologies – Solnechnye moduli i batarei [Electronic resource]. Available at:

http://ust.su/solar/media/section-inner17.

Tonkoshkur A. S., Nakashidze L. V., Lyagushyn S. F. Schemotechnical technologies for reliability of solar arrays,

Sistemnі texnologії. Regіonal'nij mіzhvuzіvs'kij zbіrnik naukovix prac', Vip. 4′(117). Dnіpro, 2018, pp. 95–107.

Kim K. A., Krein Р. T. Photovoltaic hot spot analysis for cells with various reverse-bias characteristics through electrical

and thermal simulation, Proc. IEEE Workshop Control Modeling Power Electron. Junе, 2013, pp. 1–8.

Kim K. A., Krein Р. T. Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode, IEEE J.

Photovoltaics, 5 (5), 2015, pp. 1435–1441.

Acciari G., Graci D. , Scala A. L. Higher PV module efficiency by a novel CBS bypass, IEEE Trans. Power Electron,

May 2011, Vol. 26, No. 5, pp. 1333–1336,.

d’Alessandro V., Guerriero P. , Daliento S. A simple bipolar transistor-based bypass approach for photovoltaic modules,

IEEE J. Photovoltaics, Jan. 2014, Vol. 4, No. 1, pp. 405–413.

Pacheco Sánchez F. J. Photovoltaic systems distributed monitoring for performance optimization. Doct. Thesis,

Universidad de Málaga (RIUMA: riuma.uma.es) / F. J. Sánchez Pacheco. Málaga, España, 2015.

Di Napoli F., Guerriero G. , d’Alessandro V. , Daliento S. Single panel voltage zeroing system for safe access on PV

plants, IEEE J. Photovoltaics, 2015, Vol. 5 (5), pp. 1428–1434.

Tonkoshkur A. S., Ivanchenko A. V., Nakashidze L. V., S. V. Mazurik Primenenie samovosstanavlivajushhihsja

jelementov dlja jelektricheskoj zashhity solnechnyh batarej, Tehnologija i konstruirovanie v jelektronnoj apparature,

, No. 1, pp. 43–49.

Gavrikov V. Samovosstanavlivajushhiesja PTCpredohraniteli dlja zashhity ot tokovyh peregruzok, Novosti

Jelektroniki, 2014, No. 12, pp. 11–15.

Kaminskaja T. P., K. I. Domkin Samovosstanavlivajushhiesja predohraniteli dlja avtomobil'noj jelektroniki, Jelektronnye

komponenty, 2008, No. 5, pp. 80–82.

Oglesbee J. W., Burns A. G. Pat. 6608470 USA. Overcharge protection device and methods for lithium based rechargeable

batteries. 19.08.03.

Protecting rechargeable Li-ion and Li-polymer batteries [Electronic resource]: Littelfuse, Inc, 2017, Available at:

http://www.littelfuse.com/~/media/ electronics/application_notes/littelfuse_protecting_rechargeable_

li_ion_and_li_polymer_batteries_in_consumer_portabl e_electronics_application_note.pdf.pdf

Levshov A. V., Fjodorov A. Ju. O matematicheskom modelirovanii

fotojelektricheskih modulej / A. V. Levshov, // Naukovi praci DonNTU. Serija: «Elektrotehnika i energetyka

», No. 1(14)’, 2013, pp. 153–158.

Raushenbah G. «Spravochnik po proektirovaniju solnechnyhbatarej». Moscow, Jenergoatomizdat, 1983, 360 p.

Lorenzo E. Solar Electricity Engineering of Photovoltaic Systems, Artes Graficas Gala, Spain, 1994.

Koval' O. S., Tivanov M. S. Opredelenie parametrov solnechnogo elementa iz ego svetovoj vol't-ampernoj harakteristiki,

Vestnik BGU, 2012, Ser. 1, No. 2, pp. 39–44.

Salem F. A. Modeling and Simulation issues on Photo-Voltaic systems, for Mechatronics design of solar electric

applications, International Journal of Mechanical Engineering (IIJME). August 2014, Vol. 2, Issue 8, pp. 24–7.

http://www.ipasj.org/IIJME/IIJME.htm

Alboteanu I. L., Ivanov S., Manolea G. Modelling and simulation of a stand-alone photovoltaic system, 8th WSEAS International

Conference on POWER SYSTEMS (PS 2008), Santander, Cantabria, Spain, 2008, September 23–25,

pp. 189–194.

Hansen A. D., Sоrensen P., Hansen L. H., Binder H. Models for a Stand-Alone PV System. Roskidle, 2000, 78 p.

Gaevskij A. Ju. Opredelenie parametrov fotojelektricheskih modulej na osnove tochnogo reshenija uravnenija dlja VAH,

Vіdnovljuval'na energetik, 2012, No. 4, pp. 32–39.

Honsberg C., Bowden S. Arisone State University. Solar Power Labs [Electr. Resource], Available at:

http://www.pveducation.org/pvcdrom

Mjeklin Je. D. Termorezistory. Moscow, Radio i svjaz',

, 208 p.

Tonkoshkur O. S., Trystan O. N. , S’janov O. M. Komponentna baza REA. Dniprodzerzhyns'k, DDTU, 2004, 240 p.

PolySwitch™ Resettable Device Short Form Catalog. May, 2005. Tuco Electronics. Raychem circuit protection.

[Electr. Resource]. Available at:https://datasheet.octopart.com/MICROSMD010F-2-Tyco-Electronics-datasheet-45906.pdf

Published

2019-05-28

How to Cite

Tonkoshkur, A. S., & Nakashidze, L. V. (2019). MODELING OF CURRENT LIMITATIONS IN PHOTO-ELECTRICAL SYSTEMS OF SOLAR BATTERIES USING SELF-RESTORING FUSES POLYSWITCH. Radio Electronics, Computer Science, Control, (2), 15–22. https://doi.org/10.15588/1607-3274-2019-2-2

Issue

Section

Radio electronics and telecommunications