DOI: https://doi.org/10.15588/1607-3274-2019-2-6

RESEARCH OF MULTIPLE PLANS IN MULTI-FACTOR EXPERIMENTS WITH A MINIMUM NUMBER OF TRANSITIONS OF LEVELS OF FACTORS

N. D. Kоshevoy, E. M. Kostenko, A. V. Pavlyk, I. I. Koshevaya, T. G. Rozhnova

Abstract


Contex. The actual problem of reducing the set of plans for multivariate experiments in searching for the best in price costs has
been solved.
Objective is the synthesis and study of a variety of experimental plans with a minimum number of transitions of factor levels.
Methods. The use of experimental design methods allows reducing the price and time costs in the study of various technological
processes, devices and systems.
Minimizing the number of transitions of levels of factors in terms of the experiment, in turn, leads to a decrease in the cost (time)
of its implementation. One of the methods for reducing the number of transitions of levels of factors is the use of the Gray code when
constructing a plan of an experiment.
It is shown that multi-factor experiments plans constructed using the Gray code have a minimum number of transitions of factor
levels, but are not always optimal in terms of the cost (time) of the experiment.
For the synthesis of many experimental plans with a minimum number of transitions of levels of factors in searching for the optimal
plan for cost (time) costs, a method based on the generation of binary code variants is proposed. Analysis of their characteristics
and the choice of sequences that meet specified requirements were conducted. The formation of test plans for an experiment is
carried out according to the method based on the generation of variants for constructing plans, determining equivalence classes with
respect to a given group P of transformations and forming a set of typical representatives for the selected equivalence classes.
Results. Software that implements the proposed methods, which is used in the construction of a set of experimental plans for the
number of factors K = 3 with the minimum number of level transitions was developed.
Conclusions. The experiments, which were carried out, confirmed the efficiency of the proposed methods and the software implementing
them makes it possible to reduce the set of experiment plans for finding the optimal one. The scientific originality of the
research is presented by the methods which allow to synthesize many plans of multifactor experiments to reduce the search for optimal
plans in price (time) cost. The practical significance of the research results is in the developed software which implements the
proposed methods. It can be widely used in the study of technological processes, devices and systems, on which the implementation
of an active experiment is possible.

Keywords


мethods; optimal experiment plan; set; software; cost

References


Koshevoj N. D., Koshevaja I. I., Kostenko E. M. Primenenie metodov optimizacii, osnovannyh na kode Greja, pri issledovanii

tehnologicheskih processov i priborov, Vіsnik Hersons’kogo nacіonal’nogo tehnіchnogo unіversitetu, 2018, No. 3,

Tom 2, pp. 241–245.

Hoskins D. S. Combinatorics and Statistical Inferecing. Applied Optimal Designs, vol.4, 2007, pp.147-179.

Morgan J. P. Association Schemes: Designed Experiments, Algebra and Combinatorics. Journal of the American Statistical

Association, 2005, Vol. 100, No. 471, pp. 1092–1093.

Bailey R. A., Cameron P. G. Combinatorics of optimal designs. Surveys in Combinatorics, Vol. 365, 2009, pp. 19–73.

Karpenko A. P. Sovremennye algoritmy poiskovoj optimizacii. Algoritmy, vdohnovlennye prirodoj: uchebnoe posobie. Moscow,

izd-vo MGTU im. N. Je Baumana, 2014, 446 p.

Koshevoj N. D., Kostenko E. M. Optimal’noe po stoimostnym i vremennym zatratam planirovanie jeksperimenta. Poltava, izdatel’ Shevchenko R. V., 2013, 317 p.

Montgomery D. C. Design and Analysis of Experiments, 9th ed. Wiley, 2017, 629 p.

Bartos B. J. Cleary R. Mc., Dowall D. Mc. Design and analysis of time series experiments. Oxford, Oxford University Press,

, 393 p.

Berger P. D., Maurer R. E. Experimental Design with Applications in Management, Engineering and the Sciences. Celli New

York, Springer, 2018, 640 p.

Rodrigues M. I., Iemma A. F. Experimental Design and Process Optimization. N.-Y., CRC Press, 2016, 336 p.

Wu C. F. J., Hamada M. S. Experiments: Planning, Analysis, and Optimization. Wiley, 2015, 743 p.

Koshevoj N. D., Beljaeva A. A. Primenenie algoritma optimizacii roem chastic dlja minimizacii stoimosti provedenija

mnogofaktornogo jeksperimenta, Radio Electronics, Computer Science, Control, 2018, No. 1, pp. 41–49. DOI 10.15588/1607-

-2018-1-5.

Koshevoj N. D., Beljaeva A. A. Sravnitel’nyj analiz metodov optimizacii pri issledovanii vesoizmeritel’noj sistemy i

termoreguljatora, Radio Electronics, Computer Science, Control, 2018, №4, pp. 179–187. DOI: 10. 15588/1607-3274-2018-

-17. DOI:

Gal’chenko V. Ja., Trembovec’ka R. V., Tuchkov V. V. Zastosuvannja nejrokomp’jutinga na etapі pobudovi metamodelej v

procesі optimal’nogo surogatnogo sintezu anten, Visnyk NTUU KPI: Seriia Radiotekhnika Radioaparatobuduvannia, 2018, Issue

, pp. 60–72. DOI: 10.20535/RADAP.2018.74.60-72.

Yakovlev S. Convex extensions in combinatorial optimization and their applications, Springer Optimization and its Applications.

New York, Springer, 2017, Vol. 130, pp. 567–584.

Yakovlev S. V., Pichugina O. S. Properties of combinatorial optimization problems over polyhedral-spherical sets, Cybernetics

and Systems Analysis, 2018, No. 1, Vol. 54, pp. 99–109.

Ugryumov M. L., Men’shikov V. A., Belik V. V. Networkcharacteristic calculation method of spatial boundary layer on

bounding surface of interblade channel of turboset, Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika, 1992,

No. 1, pp. 38–41.

Ugryumov M. L.. Afanasjevska V. E., Tronchuk A. A. , Myenyaylov A. V. Stochastic optimization models and method

in the turbomachines system improvement problem, ASMEJSME-KSME 2011 Joint Fluids Engineering Conference, AJK,

, No. 1 (PARTS A, B, C, D), pp. 755–761.

Koshovy`j M. D., Koshova I. I., Dergachov V. A., Pavlyk G. V., Kostenko O. M. Komp’yuterna programa “Programa

formuvannya variantiv kodiv z minimal`ny`my` zminamy`”, svid. pro reyestr. avtor. prava na tvir №74877, Zareyestr.

v Ministerstvi ekonomichnogo rozvy`tku i torgivli Ukrayiny` 21.11.2017r.

Koshovy`j M. D., Koshova I. I., Dergachov V. A., Pavly`k G. V. , Kostenko O. M. Komp’yuterna programa «Programa

formuvannya ty`povy`x planiv bagatofaktornogo ekspery`mentu», svid. pro reyestr. avtor. prava na tvir №74881.

Zareyestr v Ministerstvi ekonomichnogo rozvy`tku i torgivli Ukrayiny` 21.11.2017r.

Firsov S. N., Reznikova O. V. Apparatno-programmnyj kompleks jeksperimental’noj otrabotki processov upravlenija, diagnostirovanija i parirovanija otkazov malyh kosmicheskih apparatov, Pribory i sistemy. Upravlenie, kontrol’, diagnostika,

, No. 6, pp. 60–69. eLIBRARY ID: 22776434.


GOST Style Citations


1. Кошевой Н. Д. Применение методов оптимизации, основанных на коде Грея, при исследовании технологических процессов и приборов / Н. Д. Кошевой, И. И. Кошевая, Е. М. Костенко // Вісник Херсонського національного технічного університету. – 2018. – № 3, Том 2. –С. 241–245.
2. Hoskins D. S. Combinatorics and Statistical Inferecing / D. S. Hoskins // Applied Optimal Designs. – 2007. – № 4. – P. 147–179.
3. Morgan J. P. Association Schemes: Designed Experiments, Algebra and Combinatorics / J. P. Morgan // Journal of the
American Statistical Association. – 2005. – Vol. 100. – № 471. – P. 1092–1093.
4. Bailey R. A. Combinatorics of optimal designs / R. A. Bailey, P. G. Cameron // Surveys in Combinatorics. – 2009. – V.365. – P. 19–73.
5. Карпенко А. П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой: учебное
пособие / А. П. Карпенко. – М. : изд-во МГТУ им. Н.Э Баумана, 2014. – 446 с.
6. Кошевой Н. Д. Оптимальное по стоимостным и временным затратам планирование эксперимента / Н. Д. Кошевой,
Е. М. Костенко. – Полтава : издатель Шевченко Р. В., 2013. – 317 с.
7. Montgomery D. C. Design and Analysis of Experiments / D. C. Montgomery. – 9th ed. – Wiley, 2017. – 629 p.
8. Bartos B. J. Design and analysis of time series experiments / B. J. Bartos, R. Mc Cleary, D. Mc Dowall. – Oxford : Oxford University Press, 2017.         – 393 p.
9. Berger P. D. Experimental Design with Applications in Management, Engineering and the Sciences / P. D. Berger,
R. E. Maurer. – Celli New York : Springer, 2018. – 640 p.
10. Rodrigues M. I. Experimental Design and Process Optimization / M. I. Rodrigues, A. F. Iemma. – N.-Y. : CRC Press, 2016. – 336 p.
11. Wu C. F. J. Experiments: Planning, Analysis, and Optimization / C. F. J. Wu., M. S. Hamada. – Wiley, 2015. – 743 p.
12. Кошевой Н. Д. Применение алгоритма оптимизации роем частиц для минимизации стоимости проведения многофакторного эксперимента / Н. Д. Кошевой, А. А. Беляева // Радиоэлектроника, информатика, управление. – 2018. – № 1. – С. 41–49. DOI: 10.15588/1607-3274-2018-1-5.
13. Кошевой Н. Д. Сравнительный анализ методов оптимизации при исследовании весоизмерительной системы и терморегулятора / Н. Д. Кошевой,   А. А. Беляева // Радиоэлектроника, информатика, управление. – 2018. – № 4. – С. 179–187. DOI: 10. 15588/1607-3274-2018-4-17.
14. Гальченко В. Я. Застосування нейрокомп’ютинга на етапі побудови метамоделей в процесі оптимального сурогатного
синтезу антен / В. Я. Гальченко, Р. В. Трембовецька, В. В. Тучков // Visnyk NTUU KPI: Seriia RadiotekhnikaRadioaparatobuduvannia. – 2018. – Issue 74. – P. 60–72. DOI:10.20535/RADAP.2018.74.60-72.
15. Yakovlev S. Convex extensions in combinatorial optimization and their applications / S. Yakovlev // Springer Optimization
and its Applications. – Springer, New York, 2017. – Vol. 130. – P. 567–584.
16. Yakovlev S. V. Properties of combinatorial optimization problems over polyhedral-spherical sets / S. V. Yakovlev,
O. S Pichugina // Cybernetics and Systems Analysis. – 2018. – No. 1, Vol. 54. – P. 99–109.
17. Ugryumov M. L. Network-characteristic calculation method of spatial boundary layer on bounding surface of interblade channelof turboset / M. L. Ugryumov, V. A. Men’shikov, V .V. Belik // Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika. – 1992. – №1. – P. 38–41.
18. Stochastic optimization models and method in the turbomachines system improvement problem / [M. L. Ugryumov, V. E. Afanasjevska, A. A. Tronchuk, A. V. Myenyaylov] // ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK. –2011. – № 1 (PARTS A, B, C, D). – P. 755–761.
19. Комп’ютерна програма «Програма формування варіантів кодів з мінімальними змінами» / [М. Д. Кошовий, І. І. Кошова, В. А. Дергачов и др.]: свід. про реєстр. автор. права на твір №74877. – Зареєстр. в Міністерстві економічного розвитку і торгівлі України 21.11.2017 р.
20. Комп’ютерна програма «Програма формування типових планів багатофакторного експерименту» / [М. Д. Кошовий, І. І. Кошова, В. А. Дергачов и др.]: свід. про реєстр. автор. права на твір №74881. – Зареєстр. в Міністерстві економічного розвитку і торгівлі України 21.11.2017р.
21. Фирсов С. Н. Аппаратно-программный комплекс экспериментальной отработки процессов управления, диагностиро-
вания и парирования отказов малых космических аппаратов / С. Н. Фирсов, О. В. Резникова // Приборы и системы.
Управление, контроль, диагностика. – 2014. – № 6. – С. 60–69. eLIBRARY ID: 22776434.






Copyright (c) 2019 N. D. Kоshevoy, E. M. Kostenko, A. V. Pavlyk, I. I. Koshevaya, T. G. Rozhnova

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.