DOI: https://doi.org/10.15588/1607-3274-2019-2-17

A MULTIPLE NON-LINEAR REGRESSION MODEL TO ESTIMATE THE AGILE TESTING EFFORTS FOR SMALL WEB PROJECTS

N. V. Prykhodko, S. B. Prykhodko

Abstract


Context. Software testing effort estimation is one of the important problems in software development and software testing life
cycle. The object of the study is the process of estimating the agile testing efforts for small Web projects. The subject of the study is the multiple regression models for estimating the agile testing efforts for small Web projects.
Objective. The goal of the work is the creation of the multiple non-linear regression model for estimating the agile testing efforts
for small Web projects on the basis of the Johnson multivariate normalizing transformation.
Method. The model, confidence and prediction intervals of multiple non-linear regression for estimating the agile testing efforts
for small Web projects are constructed on the basis of the Johnson multivariate normalizing transformation for non-Gaussian data
with the help of appropriate techniques. The techniques based on the multiple non-linear regression analysis using the multivariate normalizing transformations to build the models, equations, confidence and prediction intervals of multiple non-linear regressions are used. The techniques allow to take into account the correlation between random variables in the case of normalization of multivariate non-Gaussian data. In general, this leads to a reduction of the mean magnitude of relative error, the widths of the confidence and prediction intervals in comparison with the linear models and nonlinear models constructed using univariate normalizing transformations.
Results. Comparison of the constructed model with the linear model and non-linear regression models based on the decimal
logarithm and the Johnson univariate transformation has been performed.
Conclusions. The multiple non-linear regression model to estimate the agile testing efforts for small Web projects is firstly
constructed on the basis of the Johnson multivariate transformation for SB family. This model, in comparison with other regression
models (both linear and non-linear), has a smaller value of the mean magnitude of relative error, smaller widths of the confidence and prediction intervals. The prospects for further research may include the application of other multivariate normalizing transformations and data sets to construct the multiple non-linear regression model for estimating the agile testing efforts for small Web projects.

Keywords


agile testing, estimation, testing effort, Web project, multiple non-linear regression model, multivariate normalizing transformation, non-Gaussian data.

Full Text:

PDF

References


Olausson M., Rossberg J., Ehn J., Sköld M. Introduction to Agile Planning, Development, and Testing, Pro Team

Foundation Service. Berkeley, CA, Apress, 2013, Chapter 2, pp. 9–19. DOI: 10.1007/978-1-4302-5996-1_2

Olausson M., Rossberg J., Ehn J., Sköld M. Agile Testing, Pro Team Foundation Service. Berkeley, CA, Apress, 2013, Chapter

, pp. 19–33. DOI: 10.1007/978-1-4302-5996-1_19

Penmetsa J. R., Mohanty H., Mohanty J., Balakrishnan A. (eds). Agile Testing, Trends in Software Testing. Singapore, Springer,

, Chapter 2, pp. 19–33. DOI: 10.1007/978-981-10-1415-4_2

Nader-Rezvani N. Agile Quality Test Strategy, An Executive’s Guide to Software Quality in an Agile Organization. Berkeley,

CA, Apress, 2019, Chapter 7, pp. 121–138. DOI: 10.1007/978-1-4842-3751-9_7

Agile Testing – Principles, methods & advantages [Electronic resource]. Access mode: https://reqtest.com/testing-blog/agiletesting-principles-methods-advantages/

Boehm B. W., Abts C., Brown A. W. et al. Software Cost Estimation with COCOMO II, Upper Saddle River, NJ, Prentice

Hall PTR, 2000, 506 p.

Lazić L., Ðokić I., Milinković S. Challenges in estimating software testing effort, Proceedings of INFOTEH-JAHORINA,

, Vol. 13, pp. 637–642.

Bates D. M., Watts D. G. Nonlinear Regression Analysis and Its Applications. New York, John Wiley & Sons, 1988, 384 p.

DOI:10.1002/9780470316757

Seber G.A.F., Wild C. J. Nonlinear Regression. New York, John Wiley & Sons, 1989, 768 p. DOI: 10.1002/0471725315

Ryan T.P. Modern regression methods. New York, John Wiley & Sons, 1997, 529 p. DOI: 10.1002/9780470382806

Johnson R. A., Wichern D. W. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007, 800 p.

Samprit Chatterjee, Jeffrey S. Somonoff. Chatterjee Samprit. Handbook of Regression Analysis. New York, John Wiley &

Sons, 2012, 252 p. DOI:10.1002/9781118532843

Prykhodko N. V., Prykhodko S. B. Constructing the non-linear regression models on the basis of multivariate normalizing

transformations, Electronic modeling, 2018, Vol. 40, No. 6, pp. 101–110. DOI: 10.15407/emodel.40.06.101

Prykhodko N. V., Prykhodko S. B. The non-linear regression model to estimate the software size of open source Java-based

systems, Radio Electronics, Computer Science, Control, 2018, No. 3 (46), pp. 158–166. DOI 10.15588/1607-3274-2018-3-17

Prykhodko S., Prykhodko N., Makarova L. et al. Detecting Outliers in Multivariate Non-Gaussian Data on the basis of

Normalizing Transformations / [S. Prykhodko, // Electrical and Computer Engineering : the 2017 IEEE First Ukraine

Conference (UKRCON) «Celebrating 25 Years of IEEE Ukraine Section». Kyiv, Ukraine, May 29–June 2, 2017,

proceedings. Kyiv, IEEE, 2017, pp. 846–849. DOI:10.1109/UKRCON.2017.8100366

Mardia K. V. Measures of multivariate skewness and kurtosis with applications, Biometrika, 1970, Vol. 57, pp. 519–530. DOI:

1093/biomet/57.3.519


GOST Style Citations


1. Introduction to Agile Planning, Development, and Testing / [M. Olausson, J. Rossberg, J. Ehn, M. Sköld] // Pro Team Foundation Service. – Berkeley, CA: Apress, 2013. – Chapter 2. – P. 9–19. DOI: 10.1007/978-1-4302-5996-1_2
2. Agile Testing / [M. Olausson, J. Rossberg, J. Ehn, M. Sköld] // Pro Team Foundation Service. – Berkeley, CA: Apress, 2013. – Chapter 19. – P. 19–33. DOI: 10.1007/978-1-4302-5996-1_19
3. Agile Testing / [J. R. Penmetsa, H. Mohanty, J. Mohanty, A. Balakrishnan (eds).] // Trends in Software Testing. – Singapore : Springer, 2017. – Chapter 2. – P. 19–33. DOI:10.1007/978-981-10-1415-4_2
4. Nader-Rezvani N. Agile Quality Test Strategy / N. Nader-Rezvani // An Executive’s Guide to Software Quality in an Agile Organization. – Berkeley, CA: Apress, 2019. – Chapter 7.– P. 121–138. DOI: 10.1007/978-1-4842-3751-9_7
5. Agile Testing – Principles, methods & advantages [Electronic resource]. – Access mode: https://reqtest.com/testing-blog/agiletesting-
principles-methods-advantages/
6. Boehm B. W. Software Cost Estimation with COCOMO II / [B. W. Boehm, C. Abts, A. W. Brown et al.]. – Upper Saddle River, NJ: Prentice Hall PTR, 2000. – 506 p.
7. Lazić L. Challenges in estimating software testing effort / L. Lazić, I. Ðokić, S. Milinković // Proceedings of INFOTEHJAHORINA. – 2014. – Vol. 13. – P. 637–642.
8. Bates D. M. Nonlinear Regression Analysis and Its Applications / D. M. Bates, D. G. Watts. – New York : John Wiley & Sons, 1988. – 384 p. DOI:10.1002/9780470316757
9. Seber G.A.F. Nonlinear Regression / G.A.F. Seber, C.J. Wild. – New York : John Wiley & Sons, 1989. – 768 p. DOI:10.1002/0471725315
10. Ryan T. P. Modern regression methods / T. P. Ryan. – New York : John Wiley & Sons, 1997. – 529 p. DOI:10.1002/9780470382806
11. Johnson R. A. Applied Multivariate Statistical Analysis / R. A. Johnson, D. W. Wichern. – Pearson Prentice Hall, 2007. – 800 p.
12. Chatterjee Samprit. Handbook of Regression Analysis / Samprit Chatterjee, Jeffrey S. Somonoff. – New York : John Wiley & Sons, 2012. – 252 p. DOI:10.1002/9781118532843
13. Prykhodko N. V. Constructing the non-linear regression models on the basis of multivariate normalizing transformations / N. V. Prykhodko, S. B. Prykhodko // Электронное моделирование. – 2018. – Т. 40, № 6. – С. 101–110. DOI:10.15407/emodel.40.06.101
14. Prykhodko N. V. The non-linear regression model to estimate the software size of open source Java-based systems /
N. V. Prykhodko, S. B. Prykhodko // Радіоелектроніка, інформатика, управління. – 2018. – № 3 (46). – С. 158–166.
DOI 10.15588/1607-3274-2018-3-17
15. Prykhodko S. Detecting Outliers in Multivariate Non-Gaussian Data on the basis of Normalizing Transformations / [S. Prykhodko, N. Prykhodko, L. Makarova et al.] // Electrical and Computer Engineering : the 2017 IEEE First Ukraine Conference (UKRCON) «Celebrating 25 Years of IEEE
Ukraine Section», Kyiv, Ukraine, May 29 – June 2, 2017 : proceedings. – Kyiv : IEEE, 2017. – P. 846–849. DOI:10.1109/UKRCON.2017.8100366
16. Mardia K.V. Measures of multivariate skewness and kurtosis with applications / K. V. Mardia // Biometrika. – 1970. – Vol. 57. – P. 519–530. DOI: 10.1093/biomet/57.3.519






Copyright (c) 2019 N. V. Prykhodko, S. B. Prykhodko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.