THE METHOD OF OPERATOR’S ACTIVITY ESTIMATION FOR THE AUTOMATED CONTROL SYSTEM IN AERATED CONCRETE PRODUCTION

Authors

  • Zh. К. Кaminska Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine
  • S. N. Serdiuk Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine
  • E. М. Kulynych Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2019-2-19

Keywords:

imitation model, mathematical model, operator, aerated concrete, human-machine interface, battery of indicators, load factor.

Abstract

Context. The problem of quantitative estimation of the Automated Control System operator’s activity for aerated concrete production
is considered. The relevance of the problem is determined by the need to take into account the human factor in the development
of systems of this type. The research object is the ergonomic and psychological-engineering support in the activity of Automated
Control System operator for aerated concrete production. Models, methods and means for increasing the efficiency of the operator’s
activity are the research subject for a type of the manufacturing considered.
Objective. The method of conducting an ergonomic examination of the Automated Control System operator’s activity based on
quantitative indicators of this activity was proposed as a solution. The quantitative indicators were obtained as the results of a simulation.
The method verification took place by the example of the analysis of Automated Control System operator’s activity in dosing
materials for manufacturing aerated concrete at JSC “Motor Sich” (Zaporizhzhia, Ukraine).
Method. The solution offered includes the imitation model of Automated Control System operating process for the aerated concrete
preparation and operator’s interaction with the analyzed human-machine interface version. The estimation of the operator’s
activity is based on a comparative analysis of the results of an experiment with a battery of regulating and marginal indicators introduced
into the model as for characterizing the operator’s activities. The “operator-Automated Control System” human-machine system
incorporated into the imitation model is presented as a queuing system.
Results. The research resulted in software to realize the offered method of quantitative estimation of the Automated Control System
operator’s activity for aerated concrete production.
Conclusions. The research proposes the method of quantitative estimation of operator’s activity for aerated concrete production
based on a stochastic combined model. Offered model is a further development of the combined model proposed by the authors earlier.
Unlike the combined model, the stochastic combined model takes into account random effects in the “operator-Automated Control
System” system and the operator’s activity formalization to eliminate such impacts. The conducted experiments have proved the
operability of the software offered; such software can be recommended to be used while justifying the control methods, different
human-machine interface prototypes variants to keep them optimized on criteria of the required efficiency and quality concerning the
operator’s activity for aerated concrete production.

Author Biographies

Zh. К. Кaminska, Zaporizhzhia National Technical University, Zaporizhzhia

Assistant of the Software Tools Department

S. N. Serdiuk, Zaporizhzhia National Technical University, Zaporizhzhia

PhD, Associate Professor, Software Tools Department

E. М. Kulynych, Zaporizhzhia National Technical University, Zaporizhzhia

PhD, Associate Professor, Electric Drive and Commercial Plant Automation Department

References

Burns C. M., Haidukiewicz J. R. Ecological interface design. Boca Raton, CRC Press, 2004, 344 p.

Ergonomics of human-system interaction. Part 210. Humancentred design for interactive systems: ISO 9241-210:2010

[Effective from 2010-03-15]. Geneve, ISO, 2010, 32 p.

Anohin A. N., Malishevskiy V. S. Metodyi predproektnogo analiza pri sozdanii operatorskogo interfeysa, Trudyi II

Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Chelovecheskiy faktor v slozhnyih tehnicheskih sistemah i sredah» (Sankt-Peterburg, Rossiya, 6–9 iyulya 2016). SPb, Mezhregionalnaya ergonomicheskaya assotsiatsiya, FGAOU DPO «PEIPK», Severnaya zvezda, 2016, pp. 357–363.

Serdiuk S. M. Erhonomichni pytannya proektuvannya lyudyno-mashynnykh system, Navchalnyy posibnyk. Zaporizhzhya, ZNTU, 2013, 319 p. ISBN 978-617-529-093-4 (In Ukrainian)

Kaminska Zh. K., Kulynych E. M., Serdiuk S. N., Modelirovanie i analiz protsessov funktsionirovaniya avtomatizirovannoy sistemyi upravleniya tehnologicheskim protsessom proizvodstva gazobetona, Radio Electronics, Computer Science, Control, 2018, No. 4, pp. 214–225. DOI:10.15588/1607-3274-2018-4-21

Dushkov B. A., Korolev A. V., Smirnov B. A. Osnovyi inzhenernoy psihologii. Uchebnik dlya studentov vuzov. Moscow, Akademicheskiy proekt, 2002, 576 p.

Smirnov B. A. Inzhenernaya psihologiya. Prakticheskie zanyatiya. Kyev, Vischa shkola, 1979, 192 p.

Venda V. F. Inzhenernaya psihologiya i sintez sistem otobrazheniya informatsii. Moscow, Mashinostroenie, 1982, 344 p.

Zinchenko V. P., Munipov V. M. Ergonomika. Orientirovannoe na cheloveka proektirovanie. Moscow, Trivola, 1995, 480 p.

Kryilov A. A. Chelovek v avtomatizirovannyih sistemah upravleniya. Leningrad, LGU, 1972, 192 p.

Adamenko A. N., Asherov A. T., Berdnikov I. L. i dr. ; pod obsch. red. A. I. Gubinskogo. Informatsionnoupravlyayuschie

cheloveko-mashinnyie sistemyi: issledovanie, proektirovanie, ispyitanie. Spravochnik. Moscow, Mashinostroenie, 1993, 528 p.

Spravochnik po inzhenernoy psihologii. Pod red. B. F. Lomova. Moscow, Mashinostroenie, 1982, 368 p.

Petuhov I. V. Sistema podderzhki prinyatiya resheniy pri otsenke profprigodnosti operatora ergaticheskih sistem (na

primere transportno-tehnologicheskih mashin): avtoref. dis. … d-ra tehn. nauk: 05.13.01. Ufa, 2013, 35 p.

Tsoy E. B. Veroyatnostnoe modelirovanie po gruppirovannyim dannyim pri issledovanii i proektirovanii

cheloveko-mashinnyih sistem: avtoref. dis. … d-ra tehn. nauk. 05.13.01. Novosibirsk, 1997, 49 p.

Grif M. G. Avtomatizatsiya proektirovaniya protsessov funktsionirovaniya cheloveko-mashinnyih sistem po

veroyatnostnyim i nechetkim pokazatelyam: dis. … d-ra tehn. nauk. 05.13.17. Novosibirsk, 2002, 270 p.

Card S. K., Newell A. and Moran T. P. The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA. 1983, 469 p. ISBN:0898592437

Card S. K., Moran T. P., Newell A. The keystroke-level model for user performance time with interactive systems

Communications ACM, 1980, Vol. 23, Issue 7 (July), pp. 396–410. DOI: 10.1145/358886.358895

Lerch F. J., Mantei M. M., Olson J. R. Skilled financial planning: the cost of translating ideas into action, Human

Factors in Computing Systems: SIGCHI Conference, New York, March 1989: proceedings. New York: ACM, 1989, pp. 121–126. DOI:10.1145/358886.358895

Kieras, D. E. A Guide to GOMS model usability evaluation using NGOMSL, The Handbook of Human-Computer Interaction. 2nd ed., 1997, Ch. 7, Ch. 31. Elsiver Science B. V., pp. 135–157, 733–767. DOI: 10.1016/B978-0-444-81862-1.X5065-1

Gray W. D., John B. E., Atwood M. E. Project Ernestine: A validation of GOMS for prediction and explanation of realworld

task performance, Human-Computer Interaction, 1993, Vol. 8, Issue 3, pp. 237–309. DOI:10.1207/s15327051hci08 03_3.

John B. E., Kieras D. E. The GOMS Family of User Interface Analysis Techniques: Comparison and Contrast,

ACM Transactions on Computer-Human Interaction, 1996, Vol. 3, Issue 4, Dec., pp. 320–351. DOI: 10.1145/235833.236054

John B. E., Prevas K., Salvucci D. D., Koedinger K. Predictive Human Performance Modeling Made Easy

Human Factors in Computing Systems: SIGCHI Conference, New York, 24–29 April 1989: proceedings.

New York, ACM, 1989, pp. 121–126. DOI:10.1207/s15327051hci0803_3.

Holleis P., Otto F., Hussmann H., Schmidt A. Keystrokelevel model for advanced mobile phone interaction, Human

Factors in Computing Systems: SIGCHI Conference, San Jose, April 28 – May 03, 2007: proceedings. New York: ACM, 2007, pp. 1505–1514. DOI:10.1145/1240624.1240851

Barchenko N. L. ErgonomIchne zabezpechennya dialogovoyi lyudino-mashinnoyi vzaemodiyi v modulnih

sistemah elektronnogo navchannya: avtoref. dis. … kand. tehn. nauk. 05.01.04. Harkiv, 2019, 25 p. (In Ukrainian)

Karpov A. V. i dr.; pod red. A. V. Karpova. Psihologiya truda: uchebnik i praktikum dlya akademicheskogo

bakalavriata. Moscow, Izdatelstvo Yurayt, 2016, 364 p. ISBN 978-5-9916-5320-6

Prangishvili I. V. Entropiynyie i drugie sistemnyie zakonomernosti: Voprosyi upravleniya slozhnyimi sistemami. Moscow, Nauka, 2003, 428 p.

Dushkov B. A., Smirnov B. A., Korolev A. V. Psihologiya truda, professionalnoy informatsionnoy i organizatsionnoy

deyatelnosti: Slovar. Pod red. B. A. Dushkova. Moscow, Akademicheskiy Proekt: Fond «Mir», 2005, 848 p.

Pereverzev E. S. Entropiynyie metodyi v teorii samoorganizatsionnyih protsessov, Tehnicheskaya mehanika, 2010, No. 3, pp. 81–90

Sovetov B. Ya., Yakovlev S. A. Modelirovanie sistem. Moscow, Vyissh. shk., 2001, 343 p.

Reilly R., O’Regan J. K. Eye movement control in reading: A simulation of some word-targeting strategies, Vision Research, 1998, No. 38, pp. 303–317

Rayner K., McConkie G. W., Zola D. Integrating information across eye movements, Cognitive Psychology, 1980, No. 12, pp.206–226.

Published

2019-05-28

How to Cite

Кaminska Z. К., Serdiuk, S. N., & Kulynych E. М. (2019). THE METHOD OF OPERATOR’S ACTIVITY ESTIMATION FOR THE AUTOMATED CONTROL SYSTEM IN AERATED CONCRETE PRODUCTION. Radio Electronics, Computer Science, Control, (2), 177–188. https://doi.org/10.15588/1607-3274-2019-2-19

Issue

Section

Control in technical systems