THE ALGORITHM FOR DETERMINING THE STARTING POINT IN THE SIMULATION BY THE METHOD OF POSSIBLE DIRECTIONS

Authors

  • O. O. Kryazhych Technology and Business in České Budějovice, České Budějovice, Czech Republic, Czechia
  • O. M. Trofymchuk Director of Institute of Telecommunications and Global Information Space of NAS of Ukraine, Kyiv, Ukraine
  • O. V. Kovalenko Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2019-3-5

Keywords:

Аrea, step, model, function, segment, vector, iteration

Abstract

Context. The problem of determining the starting point when of G. Zoutendijk’s method of possible directions is considered, namely the case where such a point can be arbitrary or even unknown. Presented in the article allows to determine the further direction of movement in such a way that with a minimum number of study points to obtain the most accurate result. The solution of the above problem relates to the description of complex surfaces that can be represented by a gully function. The definition of the starting point is used in the practice of modeling the development of environmental risks in technogenic pollution of intersections of territories.
Objective. The solution of the problem of choosing the starting point when using the method of possible directions for describing complex surfaces ravine function.
Method. The article uses the method of G. Zoutendijk for solving tasks Chebyshev’s approximation.
Results. An algorithm for determining the starting point for a problem with linear constraints is introduced. An approach for solving complex tasks of representation of gully functions with the minimum possible number of iterations is presented. The results of mathematical modeling are tested in practice to solve the problem of description of the contaminated area by hydrogen’s radioisotope – tritium.
Conclusions. An approach to determining the starting point in the calculations using the method of possible directions of G. Zoutendijk that allows you to select a point to build from it the motion vector with the specified step and to determine the direction of the second point to draw the next step. This takes into account the limitations, in particular – the values at each new point must be expressed in a non-negative number. For the given normalization, there are a number of features that should be taken into account in the calculation and construction of algorithms for solving applied problems according to the proposed approach. For example, some iterations can lead to more calculations and transformations on each iteration, but the number of iterations is smaller than other types of iterations. This depends on the size of the task and the number of constraints in each case. The presented approach can be used in the development of methods, models and algorithms for the description of rough terrain to solve the problems of visualization of the process of pollution by dangerous substances.

Author Biographies

O. O. Kryazhych, Technology and Business in České Budějovice, České Budějovice, Czech Republic

PhD, Researcher, Institute

O. M. Trofymchuk, Director of Institute of Telecommunications and Global Information Space of NAS of Ukraine, Kyiv

Doctor of Science, Professor, Corresponding Member of NAS of Ukraine

O. V. Kovalenko, Institute for Nuclear Research of NAS of Ukraine, Kyiv

PhD, Head of Laboratory of Physical and Technical Problems of Nuclear Radiation Sources, Dep. CEPAE

References

Dovhyi S. O., Korzhniev M. M., Trofymchuk O. M. at al. edit. Dovhyi S. O. Ekolohichni ryzyky, zbytky ta ratsionalni mezhi

vykorystannia nadr v Ukraini. Кiev, Nika-Tsentr, 2013, 314 р.

Trofymchuk O. M., Kryazhych O. O. Kuskovo-polinomialna aproksymatsiia yaruzhnykh funktsii, Tekhnichni nauky ta

tekhnolohii, 2015, No. 1, pp. 67–75.

Snyman J. A. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New

Gradient-Based Algorithms. Berlin, Springer Science & Business Media, 2005, 257 р.

Zangwill W. I. Nonlinear Programming a Unified Approach, N.J., Prentice-Hall, 1969, 356 р.

Zoutendijk G. Methods of feasible directions; a study in linear and nonlinear programming. Amsterdam, New York, Elsevier

Pub. Co., 1960, 178 р.

Hovanskij A. G. Polinomy Chebyshyova i ih obrashcheniya, Matematicheskoe prosveshchenie, 2013, Vol. 17, pp. 93–106.

Ahlberg J. H., Nilson E. N., Walsh J. L. The Theory of Splines and Their Applications. United Kingdom, Academic Press,

, 284 р.

S.N. Bernshtejn edit. akad. Nauchnoe nasledie P. L. Chebysheva. М.-L., Izdatel’stvo akademii nauk SSSR, Vol. 1,

Matematika, 1945, 174 p.

Kirk D. E. Optimal Control Theory : аn Introduction. N.J., Prentice-Hall, 1970, 480 p.

Trofymchuk O. M., Kryazhych О. О. Aproksymatsiia funktsii dlia stvorennia alhorytmu opysu peresichenoi mistsevosti, Systemni

doslidzhennia ta informatsiini tekhnolohii, 2016, No. 1, pp. 134–141.

Kryazhych О.О. Aproksymatsiia skladnykh funktsii dlia opysu rozvytku lokalnoi nadzvychainoi sytuatsii, Matematychni

mashyny i systemy, 2016, No. 1, pp. 148–157.

Kryazhych О.О. Alhorytm aproksymatsii funktsii z vykorystanniam metodu Dzh. Zoitendeika, Matematychne modeliuvannia v

ekonomitsi, 2016, No. 1, pp. 19–29.

Kryazhych О. О., Kovalenko O. V., Ivanchenko V. V. Sposib opysu zabrudnenoi terytorii : prohramna realizatsiia, Matematychne modeliuvannia v ekonomitsi, 2016, No. 2, pp. 22–35.

Zoutendijk G. Nonlinear programming, computational methods, Integer and Nonlinear Programming, 1970, Vol. 1, pp. 37–86.

Polak E. On the Convergence of the Pshenichnyi-Pironneau-Polak : Minimax Algorithm with an Active Set Strategy, Journal

Optim. Theory Appl., 2008, Vol. 138, pp. 305–309.

Gonglin Yu., Xiwen L., Zengxin W. A conjugate gradient method with descent direction for unconstrained optimization,

Journal of Computational and Applied Mathematics, 2009, Vol. 233, pp. 519–530.

Benrabia N., Laskri Y., Guebbai H. at al. Applying the Powell’s Symmetrical Technique to Conjugate Gradient Methods with

the Generalized Conjugacy Condition, Numerical Functional Analysis and Optimization, 2016, Vol. 37, No. 7, рp. 839–849.

Stoyan Yu., Yaskov G. Packing congruent hyperspheres into a hypersphere, Journal Glob. Optim, 2012, Vol. 52, pp. 855–868.

Stoyan Yu., Patsuk V. Covering a compact polygonal set by identical circles, Comput. Optim. Appl., 2010, Vol. 46, рp. 75–9.

Stoyan Yu., Yaskov G. Packing congruent spheres into a multiconnected polyhedral domain, International Transactions in

Operational Research, 2013, No. 20, рp. 79–99.

Stoyan Yu., Yaskov G. Packing identical spheres into a cylinder, International Federation of Operational Research Societies,

, Vol. 17, рp. 51–70.

Stoyan Yu., Zlotnik M., Chugay A. Solving an optimization packing problem of circles and non-convex polygons with rotations

into a multiply connected region, Journal of the Operational Research Society, 2012, Vol. 63, рp. 379–391.

Stoyan Yu., Yaskov G. Packing equal circles into a circle with circular prohibited areas, International Journal of Computer

Mathematics, 2012, Vol. 89, No. 10, рp. 1355–1369.

Lei Xu., Arumugam N. Energy-Efficient Chance-Constrained Resource Allocation for Multicast Cognitive OFDM Network,

IEEE Journal on selected areas in cоmmunications, 2016, Vol. 34, No. 5, рp. 1298–1306.

Wah J. L., Bean S. G. Convergence and Stability of Line Search Methods for Unconstrained Optimization, Acta. Appl. Math.,

, Vol. 127, pр. 155–167.

Fliege J., Svaiter B. F. Steepest descent methods for multicriteria optimization, Math. Meth. Oper. Res., 2000, Vol. 51, рp. 479–494.

Liu D., Xu G. Applying Powell’s symmetrical technique to conjugate gradient methods, Comput. Optim. Appl, 2011, Vol. 49, pp. 319–334.

Sharma T., Hunachew S. Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study, International Journal of Mathematics and Its Applications, 2014, Vol. 2, No. 4, pp. 47–56.

Remez E. Yа. Osnovy chislennyh metodov chebyshevskogo priblizheniya. Кiev, Nauk. Dumka, 1969, 620 p.

Published

2019-10-01

How to Cite

Kryazhych, O. O., Trofymchuk, O. M., & Kovalenko, O. V. (2019). THE ALGORITHM FOR DETERMINING THE STARTING POINT IN THE SIMULATION BY THE METHOD OF POSSIBLE DIRECTIONS. Radio Electronics, Computer Science, Control, (3), 40–46. https://doi.org/10.15588/1607-3274-2019-3-5

Issue

Section

Mathematical and computer modelling