DOI: https://doi.org/10.15588/1607-3274-2019-4-8

NEURO-FUZZY MULTICRITERIA ASSESSMENT MODEL

N. N. Malyar, A. V. Polishchuk, V. V. Polishchuk, M. N. Sharkadi

Abstract


Context. The research of the actual problem of development of models and methods of multicriteria evaluation using neurofuzzy
technologies is carried out.
The purpose of this work is to develop a model for obtaining an aggregate evaluation of the significance of the object of study,
which on the one hand uses different characteristics of the object, evaluated by quantitative indicators and on the basis of different
models of representation of knowledge about the object, and on the other uses experience, knowledge and the expertise of experts in
the relevant subject area.
Objective. The object of the study is the process of modeling the experience, knowledge and competence of experts to quantify
the object of study on the basis of neuro-fuzzy networks.
The subject of the study is a neuro-fuzzy model of quantifying an object of study for decision making in expert data.
Method. For the first time, a five-layer neuro-fuzzy model has been developed to derive quantitative and linguistic assessments
of the object of the study using the expertise, expertise and expertise of the subject area. For the first time, it is proposed to use quan-
titative estimates of the object of study (aggregated estimates using multicriteria models) and linguistic expert reasoning on a neurofuzzy
network. For the first time, a model has been tested and verified for an example of assessing the risk of financing a startup
project in the business expansion phase, and is also offered as a training for the neuro-fuzzy synaptic weight interval network. Comparison
of the results of the study on different approaches to determining synaptic weights and real data with error detection.
Results. The result of the study is a neural-fuzzy model for evaluating an object by many criteria. The developed model allows to
combine quantitative characteristics of an object with expert opinions in the form of qualitative estimates. The rationality of the
evaluation proves the advantages of the developed models.
Conclusions. Sharing the apparatus of fuzzy sets and neural networks theory is a convenient simulation tool for multicriteria selection
problems. As a rule, important information for management decision support systems comes from two sources: 1) obtaining
object estimates by certain quantitative indicators, which creates inaccuracy; 2) from expert people who describe their subject matter
knowledge, which creates subjectivity and uncertainty. Therefore, maintaining expert judgment and inaccurate data requires the
ability to work with them. The paper deals with the scientific and applied problem of developing a model for obtaining an aggregate
estimation of an object based on a neural-fuzzy network and can be applied in solving management decision-making problems in
socio-economic systems.

Keywords


Neuro-fuzzy network, fuzzy knowledge, research object, risk assessment, membership function, peer review, decision making.

References


Wang J. G., Tai S. C., Lin C. J. The application of an interactively recurrent self-evolving fuzzy CMAC classifier on

face detection in color images, Neural Comput. Appl., 2018, 29, pp. 201–213. DOI: https://doi.org/10.1007/s00521-016-2551-x

Jhang J.-Y., Tang K.-H., Huang C.-K., Lin C.-J., Young K.-Y. FPGA Implementation of a Functional Neuro-Fuzzy Network

for Nonlinear System Control, Electronics, 2018, 7, P. 145. DOI: https://doi.org/10.3390/electronics7080145

Wu M. F., Huang W. C., Juang C. F., Chang K. M., Wen C. Y., Chen Y.H., Lin C. Y., Chen Y. C., Lin C. C. A new method for

self-estimation of the severity of obstructive sleep apnea using easily available measurements and neural fuzzy evaluation

system, IEEE J. Biomed. Health Inf., 2017, 21, pp. 1524–1532. DOI: 10.1109/JBHI.2016.2633986

Kelemen M., Polishchuk V., Gavurová B., Szabo S., Rozenberg R., Gera M., Kozuba J., Hospodka J., Andoga R., Divoková A.,

Bliš’an P. Fuzzy Model for Quantitative Assessment of Environmental Start-up Projects in Air Transport, Int. J. Environ.

Res. Public Health. 2019, 16, P. 3585. DOI: https://doi.org/10.3390/ijerph16193585

Subbotin S. A., Blagodarev A. YU., Gofman Ye. A. Sintez neyro-nechetkikh diagnosticheskikh modeley s kheshiruyushchim preobrazovaniyem v posledovatel’nom i parallel’nom rezhimakh, Radio Electronics, Computer Science, Control, 2017, No. 1, pp. 56–65. DOI: https://doi.org/10.15588/1607-3274-2017-1-7

Oliynyk A. O., Skrups’kyy S. YU., Subbotin S. O., Blahodar’ov A. YU., Hofman YE. O. Planuvannya resursiv paralel’noyi

obchys-lyuval’noyi systemy pry syntezi neyro-nechitkykh modeley dlya obrobky velykykh danykh, Radio Electronics,

Computer Science, Control, 2016, No. 4, pp. 61–69. DOI: https://doi.org/10.15588/1607-3274-2016-4-8

Bodyans’kyy YE. V. Deyneko A. O., Kutsenko YA. V. Poslidovne nechitke klasteruvannya na osnovi neyro-fazzi

pidkhodu, Radio Electronics, Computer Science, Control, 2016, No. 3, pp. 30–38. DOI: https://doi.org/10.15588/1607-3274-

-3-4

Lin C. J., Chen C. H. Identification and prediction using recurrent compensatory neuro-fuzzy systems, Fuzzy Sets Syst,

, 2004, pp. 307–330. DOI:https://doi.org/10.1016/j.fss.2004.07.001

Khayat O. Structural parameter tuning of the first-order derivative of an adaptive neuro-fuzzy system for chaotic

function modeling, J. Int. Fuzzy Syst., 2014, 27, pp. 235–245.

Zade L. Ponyatiye lingvisticheskoy peremennoy i yego primeneniye k prinyatiyu priblizhennykh resheniy. Moscow,

Mir, 1976, 167 p.

Rotshteyn O. P. Intelektualni tekhnolohiyi identyfikatsiyi:nechitki mnozhyny, henetychni alhorytmy, neyronni merezhi.

Vinnytsya, UNIVERSUM, 1999, 320 p.

Subbotin S. O. Podannya ta obrobka znan u systemakh shtuchnoho intelektu ta pidtrymky pryynyattya rishen: navch.

posib. Zaporizhzhya, ZNTU, 2008, 341 p. ISBN 978-966-7809-84-4

Oliynyk A. O., Subbotin S. O., Oliynyk O. O. Intelektual’nyy analiz danykh : navchal’nyy posibnyk. Zaporizhzhya, ZNTU,

, 271 p.

Snytyuk V. YE. Prohnozuvannya. Modeli. Metody. Alhorytmy:navch. posib. Kiev, Maklaut, 2008, 364 p.

Zaychenko YU. P. Nechetkiye modeli i metody v intellektualnykh sistemakh: ucheb. Posobiye. Kiev, Slovo,

, 341 p.

Jang R. J.-S., Sun C.-T., Mizutani E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine

Intelligence. Upper Saddle River, Prentice Hall, 1997.

Sugeno M., Kang G. T. Structure identification of fuzzy model, Fuzzy Sets and Systems, 1998, 28, pp. 15–33.

Bodyanskiy Ye., Zaychenko Yu., Pavlikovskaya E., Samarina M., Viktorov Ye. The neo-fuzzy neural network structure optimization using the GMDH for the solving forecasting and classification problems, Proc. Int. Workshop on Inductive Modeling,

Krynica, Poland, 2009, pp. 77–89.

Malyar М. М., Polishchuk V. V. Nechitki modeli i metody otsinyuvannya kredytospromozhnosti pidpryyemstv ta

investytsiynykh proektiv : monohrafiya. Uzhhorod, RA «AUTDOR-SHARK», 2018, 174 p. ISBN 978-617-7132-85-0.

Polishchuk V., Voloshyn O., Malyar M., Sharkadi M. Fuzzy mathematical modeling financial risks, IEEE Second International

Conference on Data Stream Mining & Processing (DSMP), (Lviv, 21–25 August 2018). Lviv, 2018, pp. 65–69.

DOI: 10.1109/DSMP.2018.8478604

Polishchuk V. Fuzzy Method for Evaluating Commercial Projects of Different Origin, Journal of Automation and Information

Sciences. Begell house, Inc, New York, 2018, Volume 50, Issue 5, pp. 60–73.

Malyar M. M., Polishchuk V. V., Sharkadi M. M. Model informatsiynoyi tekhnolohiyi otsinky ryzyku finansuvannya

proektiv, Radio Electronics, Computer Science, Control, 2017, No. 2, pp. 44–52. DOI: 10.15588/1607-3274-2017-2-5.

Malyar M., Polishchuk V., Sharkadi M., Liakh I. Model of startups assessment under conditions of information uncertainty,

Eastern European Journal of Enterprise Technologies, Mathematics and cybernetics – applied aspects, 2016, No. 3/4

(81), pp. 43–49. DOI: 10.15587/1729-4061.2016.71222.

Polishchuk V. V., Malyar M. M., Polishchuk V. V., Sharkadi M. M. Informatsiyne modelyuvannya nechitkykh znan, Radio

Electronics, Computer Science, Control, 2018, No. 4, pp. 84–95. DOI 10.15588/1607-3274-2018-4-8


GOST Style Citations


1. Wang J. G. The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in
color images / J. G. Wang, S. C. Tai, C. J. Lin // Neural Comput. Appl. – 2018. – 29. – P. 201–213. DOI:
https://doi.org/10.1007/s00521-016-2551-x
2. FPGA Implementation of a Functional Neuro-Fuzzy Network for Nonlinear System Control / [J.-Y. Jhang,
K.-H. Tang, C.-K. Huang et al] // Electronics. 2018. – 7, 145. DOI: https://doi.org/10.3390/electronics7080145
3. Wu M. F. A new method for self-estimation of the severity of obstructive sleep apnea using easily available
measurements and neural fuzzy evaluation system / [M. F. Wu, W. C. Huang, C. F. Juang et al.] // IEEE
J. Biomed. Health Inf. – 2017. – 21. – P. 1524–1532. DOI:10.1109/JBHI.2016.2633986
4. Fuzzy Model for Quantitative Assessment of Environmental Start-up Projects in Air Transport / [M. Kelemen, V. Polishchuk,
B. Gavurová et al.] // Int. J. Environ. Res. Public Health. – 2019. – 16. – P. 3585. DOI: https://doi.org/10.3390/ijerph16193585
5. Субботин С. А. Синтез нейро-нечетких диагностических моделей с хэширующим преобразованием в последова-
тельном и параллельном режимах / С. А. Субботин, А. Ю. Благодарев, Е. А. Гофман // Радіоелектроніка, ін-
форматика, управління. – 2017. – № 1. – С. 56–65. DOI: https://doi.org/10.15588/1607-3274-2017-1-7
6. Олійник А. О. Планування ресурсів паралельної обчислювальної системи при синтезі нейро-нечітких моделей
для обробки великих даних / [А. О. Олійник, С. Ю. Скрупський, С. О. Субботін та інш.]
// Радіоелектроніка, інформатика, управління. – 2016. – № 4. – С. 61–69. DOI: https://doi.org/10.15588/1607-3274-
2016-4-8
7. Бодянський Є. В. Послідовне нечітке кластерування на основі нейро-фаззі підходу / Є. В. Бодянський,
А. О. Дейнеко, Я. В. Куценко // Радіоелектроніка, інформатика, управління. – 2016. – № 3. – С. 30–38.
DOI: https://doi.org/10.15588/1607-3274-2016-3-4
8. Lin C. J. Identification and prediction using recurrent compensatory neuro-fuzzy systems / C. J. Lin, C. H. Chen
// Fuzzy Sets Syst. – 2004. – 150. – P. 307–330. DOI:https://doi.org/10.1016/j.fss.2004.07.001
9. Khayat O. Structural parameter tuning of the first-order derivative of an adaptive neuro-fuzzy system for chaotic
function modeling / O. Khayat // J. Int. Fuzzy Syst. – 2014. – 27. – P. 235–245.
10. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений /
Л. Заде. – М. : Мир, 1976. – 167 с.
11. Ротштейн О. П. Інтелектуальні технології ідентифікації:нечіткі множини, генетичні алгоритми, нейронні мережі
/ О. П. Ротштейн. – Вінниця : «УНІВЕРСУМ-Вінниця», 1999. – 320 с.
12. Субботін С. О. Подання й обробка знань у системах штучного інтелекту та підтримки прийняття рішень
[Текст]: навч. посіб. / С. О. Субботін. – Запоріжжя : ЗНТУ, 2008. – 341 с. ISBN 978-966-7809-84-4
13. Олійник А.О. Інтелектуальний аналіз даних : навчальний посібник / А. О. Олійник, С. О. Субботін,
О. О. Олійник. – Запоріжжя : ЗНТУ, 2011. – 271 с.
14. Снитюк В. Є. Прогнозування. Моделі. Методи. Алгоритми: навч. посіб. / В. Є. Снитюк. – К. : Маклаут, 2008. –
364 c.
15. Зайченко Ю.П. Нечеткие модели и методы в интеллектуальных системах [Текст]: учеб. пособие / Ю. П. Зай-
ченко. − К. : Слово, 2008. − 341 с.
16. Jang R. J.-S. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence /
R. J.-S. Jang, C.-T. Sun, E. Mizutani. – Upper Saddle River, Prentice Hall, 1997.
17. Sugeno M. Structure identification of fuzzy model / M. Sugeno, G. T. Kang // Fuzzy Sets and Systems. – 1998. –
28. – P. 15–33.
18. The neo-fuzzy neural network structure optimization using the GMDH for the solving forecasting and classification
problems / [Ye. Bodyanskiy, Yu. Zaychenko, E. Pavlikovskaya et al] // Proc. Int. Workshop on Inductive
Modeling, Krynica, Poland. – 2009. – P. 77–89.
19. Маляр М.М. Нечіткі моделі і методи оцінювання кредитоспроможності підприємств та інвестиційних
проектів : монографія / М.М. Маляр, В.В. Поліщук. – Ужгород : РА «АУТДОР-ШАРК», 2018. – 174 с.
20. Fuzzy mathematical modeling financial risks / [V. Polishchuk, O. Voloshyn, M. Malyar, M. Sharkadi] //
IEEE Second International Conference on Data Stream Mining & Processing (DSMP), (Lviv, 21–25 August 2018). –
Lviv, 2018 – P. 65–69. DOI: 10.1109/DSMP.2018.8478604
21. Polishchuk V. Fuzzy Method for Evaluating Commercial Projects of Different Origin/ V. Polishchuk// Journal of Automation
and Information Sciences. – Begell house, Inc, New York, 2018. – Volume 50, 2018 Issue 5. – P. 60–73.
22. Маляр М. М. Модель інформаційної технології оцінювання ризику фінансування проектів / М. М. Маляр,
В. В. Поліщук, М. М. Шаркаді // Радіоелектроніка, інформатика, управління. – 2017. – № 2. – С. 44–52.
DOI: 10.15588/1607-3274-2017-2-5.
23. Model of start-ups assessment under conditions of information uncertainty / [M. Malyar, V. Polishchuk,
M. Sharkadi, I. Liakh] // Eastern European Journal of Enterprise Technologies, Mathematics and cybernetics –
applied aspects, 2016. – No. 3/4 (81). – P. 43–49. DOI: 10.15587/1729-4061.2016.71222.
24. Інформаційне моделювання нечітких знань / [О. Ф. Волошин, М. М. Маляр, В. В. Поліщук, М. М. Шаркаді] //
Радіоелектроніка, інформатика, управління. – 2018. – No. 4. – С. 84–95. DOI 10.15588/1607-3274-2018-4-8.






Copyright (c) 2020 N. N. Malyar, A. V. Polishchuk, V. V. Polishchuk, M. N. Sharkadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.